Kontext
The most common approach for a solar installation in Europe is on rooftops of industrial or private buildings. Potential alternative locations are being investigated for the installation of solar panels, which most often imply occupation of extensive areas when deployed at large scale, leading to growing concerns about displacements of other land uses.
Given the huge potential of available open space, farmers can play a central and positive role in this emerging field. Importantly, global food security requires at the same time an increase in production, leading to a conflict of demand of land for both food and energy needs. The ideal combination would be to simultaneously produce renewable energy, while at the same time preserving and protecting productive agricultural land. Both needs can be addressed by agrivoltaic systems.
Objectives
The objective of the project is to demonstrate the effective decarbonisation of farms by agrivoltaics while maintaining the crop yield. We will design and set up agrivoltaic systems, on which we will demonstrate different use cases for the energy produced, showing the technical feasibility. HyPErFarm joins multiple types of actors with the objective to optimize viable agrivoltaic business models as well as test the marketability of the products, via inclusion of innovative PV technologies (PV H2-production, bifacial PV-panels), radically new crop production systems, citizen-consumer acceptance, public perception analysis and farmer adoption studies.
Objectives
The objective of the project is to demonstrate the effective decarbonisation of farms by agrivoltaics while maintaining the crop yield. We will design and set up agrivoltaic systems, on which we will demonstrate different use cases for the energy produced, showing the technical feasibility. HyPErFarm joins multiple types of actors with the objective to optimize viable agrivoltaic business models as well as test the marketability of the products, via inclusion of innovative PV technologies (PV H2-production, bifacial PV-panels), radically new crop production systems, citizen-consumer acceptance, public perception analysis and farmer adoption studies.
Activities
The key innovation steps are:
- to develop optimised agrivoltaic systems to guarantee sustained or even enhanced crop production, by simultaneous implementation of crop protective solutions and associated modelling tools
- to implement H2 production and usage in a cost-effective manner as reliable energy source and to adjust heavy duty machinery, in order to reduce fossil-dependency and emission rates
- to deploy on farm electricity production towards electrification of farm operations by using e-robotics on the field, intelligent climate control and e-driven pyrolysis
-to demonstrate the business case and public acceptability of producing solar-based energy locally on farm
Activities
The key innovation steps are:
- to develop optimised agrivoltaic systems to guarantee sustained or even enhanced crop production, by simultaneous implementation of crop protective solutions and associated modelling tools
- to implement H2 production and usage in a cost-effective manner as reliable energy source and to adjust heavy duty machinery, in order to reduce fossil-dependency and emission rates
- to deploy on farm electricity production towards electrification of farm operations by using e-robotics on the field, intelligent climate control and e-driven pyrolysis
-to demonstrate the business case and public acceptability of producing solar-based energy locally on farm
Project details
- Main funding source
- Horizon 2020 (EU Research and Innovation Programme)
- Horizon Project Type
- Multi-actor project
Ort
- Main geographical location
- Arr. Leuven
EUR 5 732 216.00
Total budget
Total contributions including EU funding.
Project keyword
35 Practice Abstracts
Based on the CO2 emission values derived from a Life Cycle Assessment (LCA), the Carbon Payback Times (CPBT) can be calculated. CPBTs are defined as the time required for an agrivoltaics system to offset its lifecycle carbon emissions by displacing more carbon-intensive electricity. CPBTs indicate how long an agrivoltaics system must operate to offset its lifetime greenhouse gas (GHG) emissions, of which most are released in the manufacturing stage. CPBT is one approach to evaluate and compare agrivoltaics system configurations. In the assessment, the total life cycle emissions are compared with the avoided emissions in kg CO2 equivalent.
Factors influencing the CPBT include solar irradiation, photovoltaic (PV) system efficiency, degradation over time and the carbon intensity of the grid mix. For the three HyPErFarm pilot sites, the CPBT ranged from 1.94 to 3.37 years. The estimated return on carbon investment provides an understanding of which configuration is more desirable in terms of carbon emissions.
While the evaluation of different agrivoltaics configurations provides valuable feedback for the development of agrivoltaics, it is important to highlight the general sustainability of renewables in comparison to other energy sources. For example, the average emission factor (g CO2 eq./kWh) for natural gas in Germany in 2022 (source: Umwelt Bundesamt) is approximately 4.8 times higher than the least performing agrivoltaic system analysed in this study.
Based on the CO2 emission values derived from a Life Cycle Assessment (LCA), the Carbon Payback Times (CPBT) can be calculated. CPBTs are defined as the time required for an agrivoltaics system to offset its lifecycle carbon emissions by displacing more carbon-intensive electricity. CPBTs indicate how long an agrivoltaics system must operate to offset its lifetime greenhouse gas (GHG) emissions, of which most are released in the manufacturing stage. CPBT is one approach to evaluate and compare agrivoltaics system configurations. In the assessment, the total life cycle emissions are compared with the avoided emissions in kg CO2 equivalent.
Factors influencing the CPBT include solar irradiation, photovoltaic (PV) system efficiency, degradation over time and the carbon intensity of the grid mix. For the three HyPErFarm pilot sites, the CPBT ranged from 1.94 to 3.37 years. The estimated return on carbon investment provides an understanding of which configuration is more desirable in terms of carbon emissions.
While the evaluation of different agrivoltaics configurations provides valuable feedback for the development of agrivoltaics, it is important to highlight the general sustainability of renewables in comparison to other energy sources. For example, the average emission factor (g CO2 eq./kWh) for natural gas in Germany in 2022 (source: Umwelt Bundesamt) is approximately 4.8 times higher than the least performing agrivoltaic system analysed in this study.
Agrivoltaics business models allow farmers to generate additional income through renewable energy production, while maintaining or enhancing crop yield. The HyPErFarm project conducted an economic analysis of agrivoltaics deployment through a detailed breakdown of CAPEX, OPEX, profitability, and breakeven points to support stakeholder decision-making and assess feasibility.
To ensure an accurate depiction of real total expenditures, the cost breakdown for agrivoltaics installations incorporated data from the Life Cycle Analysis, other project partners’ inputs and literature values.
Business case scenarios across the HyPErFarm pilot sites in Belgium, Denmark, and Germany identified the Danish ground-mounted systems as the most profitable due to high energy self-consumption and optimised CAPEX. However, all systems demonstrated the potential to become profitable.
The cash flow analysis revealed that profitability increases with higher levels of energy self-consumption, offset by the installation CAPEX, operational costs, and the alignment of system configurations with site-specific energy production and demand profiles. In contrast, crop yield had a limited financial impact compared to factors like CAPEX and energy self-consumption.
Detailed feasibility studies tailored to end-user requirements are essential, with this business model analysis providing a foundational framework for demonstrating the positive economic feasibility of agrivoltaics systems.
Agrivoltaics business models allow farmers to generate additional income through renewable energy production, while maintaining or enhancing crop yield. The HyPErFarm project conducted an economic analysis of agrivoltaics deployment through a detailed breakdown of CAPEX, OPEX, profitability, and breakeven points to support stakeholder decision-making and assess feasibility.
To ensure an accurate depiction of real total expenditures, the cost breakdown for agrivoltaics installations incorporated data from the Life Cycle Analysis, other project partners’ inputs and literature values.
Business case scenarios across the HyPErFarm pilot sites in Belgium, Denmark, and Germany identified the Danish ground-mounted systems as the most profitable due to high energy self-consumption and optimised CAPEX. However, all systems demonstrated the potential to become profitable.
The cash flow analysis revealed that profitability increases with higher levels of energy self-consumption, offset by the installation CAPEX, operational costs, and the alignment of system configurations with site-specific energy production and demand profiles. In contrast, crop yield had a limited financial impact compared to factors like CAPEX and energy self-consumption.
Detailed feasibility studies tailored to end-user requirements are essential, with this business model analysis providing a foundational framework for demonstrating the positive economic feasibility of agrivoltaics systems.
Agrivoltaics, a $3.6 billion market in 2021, is projected to grow to $9.3 billion by 2031 (CAGR 10.1%). Growth is driven by global challenges such as increasing food and energy demands, climate change, and limited arable land, alongside investments in technological solutions and supportive policies like the EU Green Deal. However, barriers include high initial costs, a lack of awareness, skilled labour shortages and the lack of EU-wide standard for agrivoltaics, which creates regulatory ambiguity. While Europe and North America currently dominate due to technological advancements and policy incentives, the Asia-Pacific region is set for robust growth.
A PEST analysis highlights key factors influencing the adoption of agrivoltaic systems in Europe, including:
• Supportive political policies and incentives hindered by regulatory inconsistencies.
• Economic opportunities from rising renewable energy demand offset by high initial costs and limited financial access for farmers.
• Social challenges like the need for public perception of agrivoltaics as a sustainable and innovative solution for acceptance, and the need for education and awareness.
• Technological advancements in solar, energy storage, and agricultural integration requiring continued innovation for optimized performance.
Despite challenges, agrivoltaics hold potential to significantly advance sustainability goals, with policy support and innovation.
Agrivoltaics, a $3.6 billion market in 2021, is projected to grow to $9.3 billion by 2031 (CAGR 10.1%). Growth is driven by global challenges such as increasing food and energy demands, climate change, and limited arable land, alongside investments in technological solutions and supportive policies like the EU Green Deal. However, barriers include high initial costs, a lack of awareness, skilled labour shortages and the lack of EU-wide standard for agrivoltaics, which creates regulatory ambiguity. While Europe and North America currently dominate due to technological advancements and policy incentives, the Asia-Pacific region is set for robust growth.
A PEST analysis highlights key factors influencing the adoption of agrivoltaic systems in Europe, including:
• Supportive political policies and incentives hindered by regulatory inconsistencies.
• Economic opportunities from rising renewable energy demand offset by high initial costs and limited financial access for farmers.
• Social challenges like the need for public perception of agrivoltaics as a sustainable and innovative solution for acceptance, and the need for education and awareness.
• Technological advancements in solar, energy storage, and agricultural integration requiring continued innovation for optimized performance.
Despite challenges, agrivoltaics hold potential to significantly advance sustainability goals, with policy support and innovation.
One of the key goals of the HyPErFarm project was to demonstrate new ways of utilising the electricity produced on-farm through extensive electrification. This goal was realized at TRANSfarm, the experimental farm of KU Leuven, by electrifying the major energy consumers.
Electrification was achieved by implementing two 4-pipes heat pumps in combination with solar electricity generated by rooftop-mounted photovoltaics (PV) and agrivoltaics. They drive the heating, cooling and ventilation of the stables to regulate their climate conditions.
The electricity production from the rooftop PV and agrivoltaics was measured over three years. Both systems achieved relative yields of 1000 kWh/kWp or higher, with the agrivoltaics setup contributing approximately 30% of the total annual electricity yield. Comparing electricity production with consumption showed that 15 to 25 % of the locally produced electricity was injected into the grid, resulting in a self-consumption rate of 75 to 80 %.
The total electricity consumption of the major energy consumers, specifically the heating, cooling and ventilation of the animal facilities, shows a clear correlation with outside temperature. Electricity usage increased at both low (<10 °C) and high temperatures (>20 °C). However, the rise in electricity consumption is significantly more pronounced at lower temperatures compared to higher ones.
Overall, these results indicate that the high self-consumption rate combined with the low self-sufficiency rate suggests that installing additional solar panels could benefit TRANSfarm. When extrapolating these findings to conventional farms, a similar approach could be employed to enable strategic decision-making to optimize farm performance.
One of the key goals of the HyPErFarm project was to demonstrate new ways of utilising the electricity produced on-farm through extensive electrification. This goal was realized at TRANSfarm, the experimental farm of KU Leuven, by electrifying the major energy consumers.
Electrification was achieved by implementing two 4-pipes heat pumps in combination with solar electricity generated by rooftop-mounted photovoltaics (PV) and agrivoltaics. They drive the heating, cooling and ventilation of the stables to regulate their climate conditions.
The electricity production from the rooftop PV and agrivoltaics was measured over three years. Both systems achieved relative yields of 1000 kWh/kWp or higher, with the agrivoltaics setup contributing approximately 30% of the total annual electricity yield. Comparing electricity production with consumption showed that 15 to 25 % of the locally produced electricity was injected into the grid, resulting in a self-consumption rate of 75 to 80 %.
The total electricity consumption of the major energy consumers, specifically the heating, cooling and ventilation of the animal facilities, shows a clear correlation with outside temperature. Electricity usage increased at both low (<10 °C) and high temperatures (>20 °C). However, the rise in electricity consumption is significantly more pronounced at lower temperatures compared to higher ones.
Overall, these results indicate that the high self-consumption rate combined with the low self-sufficiency rate suggests that installing additional solar panels could benefit TRANSfarm. When extrapolating these findings to conventional farms, a similar approach could be employed to enable strategic decision-making to optimize farm performance.
One of the key goals of the HyPErFarm project was to demonstrate new ways of utilising the electricity produced on-farm through extensive electrification. At KU Leuven’s experimental farm, TRANSfarm, electrification was successfully implemented for major energy consumers such as heating, cooling, and ventilation systems. Data from the fossil-based system (pre-2019) was compared with the new fossil-free infrastructure, which has been fully operational since 2022.
Post-pandemic material price increases (after 2020) and the energy crisis (2021- 2022) have made direct cost comparisons challenging. Nevertheless, the environmental benefits of the new fossil-free system are clear, with a 77% reduction in CO2 emissions—from 418 tons annually under the fossil-based system to just 95.6 tons. Furthermore, the installation of additional photovoltaic (PV) systems or the integration of more low-carbon technologies into the Belgian power grid will drive further reductions in emissions.
The EU aims to reduce greenhouse gas emissions by 55% by 2030 (compared to 1990 levels) and to achieve net-zero emissions by 2050. The EU’s “Fit-for-55” package will leverage measures such as carbon pricing, regulation, and green investment to meet these goals. Carbon pricing is considered one of the most effective instruments for reducing emissions by addressing the carbon footprint of the economy.
Therefore, taking into account the massive reduction in CO2 emissions achieved by the electrification of the TRANSfarm farm, this environmental benefit will be translated into an economic benefit in the future. This will have a positive impact on the business case for farm electrification.
One of the key goals of the HyPErFarm project was to demonstrate new ways of utilising the electricity produced on-farm through extensive electrification. At KU Leuven’s experimental farm, TRANSfarm, electrification was successfully implemented for major energy consumers such as heating, cooling, and ventilation systems. Data from the fossil-based system (pre-2019) was compared with the new fossil-free infrastructure, which has been fully operational since 2022.
Post-pandemic material price increases (after 2020) and the energy crisis (2021- 2022) have made direct cost comparisons challenging. Nevertheless, the environmental benefits of the new fossil-free system are clear, with a 77% reduction in CO2 emissions—from 418 tons annually under the fossil-based system to just 95.6 tons. Furthermore, the installation of additional photovoltaic (PV) systems or the integration of more low-carbon technologies into the Belgian power grid will drive further reductions in emissions.
The EU aims to reduce greenhouse gas emissions by 55% by 2030 (compared to 1990 levels) and to achieve net-zero emissions by 2050. The EU’s “Fit-for-55” package will leverage measures such as carbon pricing, regulation, and green investment to meet these goals. Carbon pricing is considered one of the most effective instruments for reducing emissions by addressing the carbon footprint of the economy.
Therefore, taking into account the massive reduction in CO2 emissions achieved by the electrification of the TRANSfarm farm, this environmental benefit will be translated into an economic benefit in the future. This will have a positive impact on the business case for farm electrification.
In January 2024, four hydrogen panels were installed on top of the agrivoltaics structure at the HyPErFarm pilot site at TRANSfarm. The panels were installed facing the South-West, at the North-East corner of the agrivoltaics plant, as this avoided interference with the existing photovoltaic installation and allowed for easy access with minimal disruption of the topsoil beneath the installation. For comparison, two hydrogen panels were installed on a flat roof of the farm building. Their hydrogen production was evaluated over a 17-day period in the first half of March. While the reference rooftop panels produced a total of approximately 165 g of hydrogen per panel, the agrivoltaics panels were observed to perform better, producing up to 10% more hydrogen per panel over the same 17-day period. This improvement could largely be attributed to the overall lower temperature and higher relative humidity experienced by the agrivoltaics panels during daytime.
The production capacity of the hydrogen panels can be expected to vary from season to season, with summer production exceeding that of winter, highlighting the need for storing/buffering hydrogen seasonally (which has a high cost) or for considering supplemental energy sources, such as wind turbines, during periods of low sunlight, which is more economical. The system’s integration with compressors and storage ensures practical energy use for farming applications. The hydrogen produced at TRANSfarm will be fed to a electrochemical compressor system, compressing hydrogen from 1.5 bar to 200 bar in a single stage. The high-pressure hydrogen will be dispensed using a commercially available H2 dispenser, enabling to fuel an adapted field tractor also being developed in the HyPErFarm project.
In January 2024, four hydrogen panels were installed on top of the agrivoltaics structure at the HyPErFarm pilot site at TRANSfarm. The panels were installed facing the South-West, at the North-East corner of the agrivoltaics plant, as this avoided interference with the existing photovoltaic installation and allowed for easy access with minimal disruption of the topsoil beneath the installation. For comparison, two hydrogen panels were installed on a flat roof of the farm building. Their hydrogen production was evaluated over a 17-day period in the first half of March. While the reference rooftop panels produced a total of approximately 165 g of hydrogen per panel, the agrivoltaics panels were observed to perform better, producing up to 10% more hydrogen per panel over the same 17-day period. This improvement could largely be attributed to the overall lower temperature and higher relative humidity experienced by the agrivoltaics panels during daytime.
The production capacity of the hydrogen panels can be expected to vary from season to season, with summer production exceeding that of winter, highlighting the need for storing/buffering hydrogen seasonally (which has a high cost) or for considering supplemental energy sources, such as wind turbines, during periods of low sunlight, which is more economical. The system’s integration with compressors and storage ensures practical energy use for farming applications. The hydrogen produced at TRANSfarm will be fed to a electrochemical compressor system, compressing hydrogen from 1.5 bar to 200 bar in a single stage. The high-pressure hydrogen will be dispensed using a commercially available H2 dispenser, enabling to fuel an adapted field tractor also being developed in the HyPErFarm project.
The hydrogen panels utilised in the HyPErFarm project are an innovative technology originally developed at KU Leuven. These panels directly produce green hydrogen by harnessing sunlight and ambient moisture. They integrate photovoltaic cells to convert solar energy into power, which drives the splitting of water vapour-captured from the air-into hydrogen and oxygen. This process operates independently of traditional water infrastructure, drawing only on the natural humidity in the environment. To evaluate the possibility of combining agrivoltaics with hydrogen production, a number of H2 panels will be installed on top of the agrivoltaics mounting structure at the HyPErFarm pilot site at TRANSfarm. The panels should produce anywhere from 5 to 20 g of H2 per panel per day, on days with sufficient solar irradiation. The produced hydrogen can be captured and stored for various applications, such as energy storage and for powering machinery or heavy-duty vehicles, contributing to carbon-neutral energy systems.
The hydrogen panel technology stands out for its efficiency, modularity, and ability to function in diverse environments, providing a solution for sustainable energy production at virtually any scale. It is currently being scaled up and commercialised by Solhyd, a KU Leuven spin-off. Solhyd envisions their panels being deployed worldwide, from medium-scale hydrogen hubs to large-scale industrial setups, driving the transition to renewable energy. The system is a scalable and clean energy innovation that aligns with global goals to reduce carbon emissions and enhance energy independence. For more details you can visit the SOLHYD website, which outlines plans to commercialise a new generation of hydrogen panels by 2026.
The hydrogen panels utilised in the HyPErFarm project are an innovative technology originally developed at KU Leuven. These panels directly produce green hydrogen by harnessing sunlight and ambient moisture. They integrate photovoltaic cells to convert solar energy into power, which drives the splitting of water vapour-captured from the air-into hydrogen and oxygen. This process operates independently of traditional water infrastructure, drawing only on the natural humidity in the environment. To evaluate the possibility of combining agrivoltaics with hydrogen production, a number of H2 panels will be installed on top of the agrivoltaics mounting structure at the HyPErFarm pilot site at TRANSfarm. The panels should produce anywhere from 5 to 20 g of H2 per panel per day, on days with sufficient solar irradiation. The produced hydrogen can be captured and stored for various applications, such as energy storage and for powering machinery or heavy-duty vehicles, contributing to carbon-neutral energy systems.
The hydrogen panel technology stands out for its efficiency, modularity, and ability to function in diverse environments, providing a solution for sustainable energy production at virtually any scale. It is currently being scaled up and commercialised by Solhyd, a KU Leuven spin-off. Solhyd envisions their panels being deployed worldwide, from medium-scale hydrogen hubs to large-scale industrial setups, driving the transition to renewable energy. The system is a scalable and clean energy innovation that aligns with global goals to reduce carbon emissions and enhance energy independence. For more details you can visit the SOLHYD website, which outlines plans to commercialise a new generation of hydrogen panels by 2026.
The integration of agrivoltaics in agriculture has emerged as a sustainable approach to maximise land-use efficiency and energy production. The HyPErFarm project investigated the effects of agrivoltaics on cabbage cultivation and their impact on sauerkraut quality. A field experiment over one growing season compared cabbage growth and sauerkraut quality under agrivoltaics and under traditional open-field conditions.
Our findings show that agrivoltaic systems above cabbage crops significantly influenced cabbage growth and head development. Cabbage grown under solar panels exhibited increased leaf area and thicker leaf layers due to the altered light conditions, including diffused light and reduced direct sunlight. The lower weight of leaf layers in agrivoltaic-grown cabbages suggests a finely layered head ideal for tender sauerkraut. Consequently, the cabbage developed more robust and dense foliage, enhancing sauerkraut quality.
We also found a positive correlation between the number of leaf layers and sauerkraut texture and flavour profiles. Cabbage heads with more leaf layers produced sauerkraut with superior crunchiness, tanginess, and taste, indicating that agrivoltaic-influenced cabbage structure positively affects sauerkraut fermentation and flavour.
Overall, this study demonstrates the potential of integrating agrivoltaics with cabbage cultivation to improve both crop productivity and sauerkraut quality. These findings underscore the importance of considering agro-technological innovations in optimising sustainable food production and energy generation.
The integration of agrivoltaics in agriculture has emerged as a sustainable approach to maximise land-use efficiency and energy production. The HyPErFarm project investigated the effects of agrivoltaics on cabbage cultivation and their impact on sauerkraut quality. A field experiment over one growing season compared cabbage growth and sauerkraut quality under agrivoltaics and under traditional open-field conditions.
Our findings show that agrivoltaic systems above cabbage crops significantly influenced cabbage growth and head development. Cabbage grown under solar panels exhibited increased leaf area and thicker leaf layers due to the altered light conditions, including diffused light and reduced direct sunlight. The lower weight of leaf layers in agrivoltaic-grown cabbages suggests a finely layered head ideal for tender sauerkraut. Consequently, the cabbage developed more robust and dense foliage, enhancing sauerkraut quality.
We also found a positive correlation between the number of leaf layers and sauerkraut texture and flavour profiles. Cabbage heads with more leaf layers produced sauerkraut with superior crunchiness, tanginess, and taste, indicating that agrivoltaic-influenced cabbage structure positively affects sauerkraut fermentation and flavour.
Overall, this study demonstrates the potential of integrating agrivoltaics with cabbage cultivation to improve both crop productivity and sauerkraut quality. These findings underscore the importance of considering agro-technological innovations in optimising sustainable food production and energy generation.
Wheat cultivation is vital for global food security, and the integration of agrivoltaic systems offers a promising way to combine food production with renewable energy. The HyPErFarm project studied the effects of agrivoltaics on wheat, focusing on protein content. Agrivoltaic systems are designed to enable optimal use of the available land and solar energy, supporting sustainable energy generation while influencing crop growth and quality. Research shows that shading from PV modules reduces soil temperature, benefiting plants during hot periods and improving water management.
Initial findings suggest agrivoltaics can enhance wheat protein content. This may be attributed to the altered environmental conditions beneath the solar panels, which could stimulate specific metabolic pathways in wheat plants. Additionally, lower temperatures and increased humidity under the panels may promote wheat growth, contributing to improved protein synthesis. However, the system was observed to reduce pure grain yield in wheat and barley by approximately 20%. Despite this reduction, protein content was not adversely affected. The agrivoltaic installation primarily influenced yield formation during organ development rather than grain filling.
Exploring wheat protein content under agrivoltaic systems presents new opportunities to optimise agricultural yields and improve the nutritional quality of wheat products. Integrating agrivoltaic systems into wheat cultivation could make a significant contribution to sustainable agriculture by efficiently combining energy production with food production while minimising environmental impacts.
Wheat cultivation is vital for global food security, and the integration of agrivoltaic systems offers a promising way to combine food production with renewable energy. The HyPErFarm project studied the effects of agrivoltaics on wheat, focusing on protein content. Agrivoltaic systems are designed to enable optimal use of the available land and solar energy, supporting sustainable energy generation while influencing crop growth and quality. Research shows that shading from PV modules reduces soil temperature, benefiting plants during hot periods and improving water management.
Initial findings suggest agrivoltaics can enhance wheat protein content. This may be attributed to the altered environmental conditions beneath the solar panels, which could stimulate specific metabolic pathways in wheat plants. Additionally, lower temperatures and increased humidity under the panels may promote wheat growth, contributing to improved protein synthesis. However, the system was observed to reduce pure grain yield in wheat and barley by approximately 20%. Despite this reduction, protein content was not adversely affected. The agrivoltaic installation primarily influenced yield formation during organ development rather than grain filling.
Exploring wheat protein content under agrivoltaic systems presents new opportunities to optimise agricultural yields and improve the nutritional quality of wheat products. Integrating agrivoltaic systems into wheat cultivation could make a significant contribution to sustainable agriculture by efficiently combining energy production with food production while minimising environmental impacts.
Several countries, including Germany (66%), France (90%), and Japan (80%), couple the permitting or installation of agrivoltaic systems with a minimal relative crop yield requirement. This policy aims to prevent a (too) drastic reduction in crop yields in agrivoltaic systems. However, this approach has several drawbacks:
(1) Compliance burden: Setting a minimum crop yield creates a significant compliance burden after the agrivoltaic system is installed and introduces considerable uncertainty for the farmers or system owner.
(2) Year-to-year variability: Research has shown that the impact of agrivoltaics on crop yields can vary significantly year to year due to weather conditions. Setting a fixed relative crop yield does not take this into account.
(3) Challenges in establishing reference yields: Establishing an appropriate reference yield is a complex task. For example, using a reference area on the farm can be manipulated to make the agrivoltaic area appear more favourable.
To avoid these issues and uncertainties, we believe it is more effective to use a requirement that can be tested and verified during the design phase or at the time of permit application.
In this case, a shade test, where the setup must meet specific thresholds for both the amount and uniformity of light reaching the crops in the agrivoltaics setup, appears to be a more effective and practical approach.
Verschillende landen, waaronder Duitsland (66%), Frankrijk (90%) en Japan (80%), koppelen de vergunning van een agrivoltaics systeem aan een minimale relatieve opbrengsteis voor gewassen. Dit beleid is bedoeld om een (te) sterke vermindering van de gewasopbrengst in agrivoltaics systemen te voorkomen. Toch is deze aanpak om verschillende redenen problematisch:
(1) Nalevingslast: Het instellen van een minimale gewasopbrengst legt een aanzienlijke nalevingslast op nadat het agrivoltaics systeem is geïnstalleerd en veroorzaakt aanzienlijke onzekerheid voor de boer of de eigenaar.
(2) Jaar-op-jaar variabiliteit: Onderzoek heeft aangetoond dat de impact van agrivoltaics systemen op gewasopbrengsten sterk kan variëren van jaar tot jaar, afhankelijk van de weersomstandigheden. Een vaste relatieve gewasopbrengst houdt geen rekening met deze variabiliteit.
(3) Uitdagingen bij het vaststellen van referentieopbrengsten: Het bepalen van een geschikte referentieopbrengst is een complexe opgave. Zo kan het gebruik van een referentiegebied op de boerderij worden gemanipuleerd om het agrivoltaics gebied gunstiger te laten lijken.
Om dergelijke problemen en onzekerheden te vermijden, geloven wij dat het effectiever is om een vereiste te hanteren die al tijdens de ontwerpfase of bij de vergunningsaanvraag kan worden getest en geverifieerd. Een schaduwtest, waarbij wordt geëvalueerd of de opstelling voldoet aan specifieke drempelwaarden voor zowel de hoeveelheid als de uniformiteit van het licht dat de gewassen in de agrivoltaics opstelling bereikt, biedt in dit geval een meer effectievere en praktischere oplossing.
Several European Member States are developing legislative frameworks for agrivoltaics. These frameworks aim to clearly distinguish conventional solar parks from agrivoltaic systems, which integrate agricultural activities. While existing legislation varies from one country to another, these frameworks typically consider four key categories of parameters: construction requirements, land use considerations, electricity generation targets, and/or crop yield considerations.
Some examples of recurring parameters include:
(1) Construction parameters: Minimum panel height, maximum Ground Coverage Ratio (GCR), reversibility of the system, etc.
(2) Land use parameters: Maximum land loss, maximum agrivoltaic area per farm, parameters related to reducing the impact on the environment, etc.
(3) Electricity yield parameters: Minimum relative electricity yield, minimum amount of self-consumed electricity, possible subsidies, etc.
(4) Crop yield parameters: Minimum relative crop yield, methods for determining reference crop yield, parameters ensuring continuation of agricultural activity, etc.
Although most European Member States use similar parameters, significant differences persist between their legislative frameworks. This variation is natural, as these frameworks must be carefully adapted to the local context. Factors such as population density, availability of agricultural land, types of agricultural activities, crop varieties, climate, and other regional specifics determine to a large extent the values to be pursued for the given parameters.
Verschillende Europese lidstaten ontwikkelen momenteel een wetgevend kader voor agrivoltaics. Deze kaders hebben als doel om een duidelijk onderscheid te maken tussen conventionele zonneparken en agrivoltaics systemen, die landbouwactiviteiten integreren. Hoewel de bestaande wetgeving van land tot land verschilt, houden deze kaders doorgaans rekening met vier belangrijke categorieën van parameters: constructievereisten, overwegingen met betrekking tot landgebruik, elektriciteitsopwekking en gewasopbrengst.
Enkele voorbeelden van terugkerende parameters zijn:
(1) Constructieparameters: Minimale paneelhoogte, maximale GCR (Ground Coverage Ratio), omkeerbaarheid van het systeem,...
(2) Parameters voor landgebruik: Maximaal landverlies, maximaal gebied met agrivoltaics per boerderij, parameters met betrekking tot het verminderen van de impact op het milieu,...
(3) Parameters voor elektriciteitsopbrengst: Minimale relatieve elektriciteitsopbrengst, minimale hoeveelheid zelf verbruikte elektriciteit, mogelijke subsidies,...
(4) Gewasopbrengst parameters: Minimale relatieve gewasopbrengst, methoden voor het bepalen van de referentieopbrengst, parameters met betrekking tot de voortzetting van de landbouwactiviteit,...
Hoewel de meeste lidstaten vergelijkbare parameters hanteren, blijven er aanzienlijke verschillen bestaan tussen hun wettelijke kaders. Deze variatie is logisch, aangezien deze kaders zorgvuldig moeten worden afgestemd op de lokale context. Factoren zoals bevolkingsdichtheid, beschikbaarheid van landbouwgrond, soorten landbouwactiviteiten, gewasvariëteiten, klimaat en andere regionale specificaties spelen daarbij een cruciale rol.
Research conducted within the HyPErfarm project has revealed that European countries have developed or are in the process of developing significantly different legislative frameworks for agrivoltaics. This raises the question of whether European Union Member States might benefit from a unified agrivoltaics framework at the EU level.
We argue that a highly detailed legislative framework for agrivoltaics at the European level is not necessary. An agrivoltaics legislative framework should align with local/regional farming practices, existing environmental permit regulations, national energy policies, and other country- or regional-specific factors.
However, the European Union could mandate Member States to create comprehensive legislative frameworks for agrivoltaics, for example through a Directive. This Directive should focus on the following key elements:
(1) Definition and classification of agrivoltaic systems.
(2) Ensuring robustness to avoid unsustainable practices and the loss of agricultural land.
(3) Development of specific permitting and authorisation procedures, based on definition and classification.
(4) Facilitating deployment of pre-approved agrivoltaic practices, such as by reducing permitting times and requirements.
(5) Reducing compliance burdens after the installation of agrivoltaics systems by focusing on criteria that can be assessed during the design phase or at the time of permit application.
Onderzoek uitgevoerd binnen het HyPErfarm-project heeft aangetoond dat Europese landen sterk uiteenlopende wetgevende kaders voor agrivoltaics systemen hebben ontwikkeld of nog aan het ontwikkelen zijn. Dit roept de vraag op of de lidstaten van de Europese Unie baat zouden hebben bij een geharmoniseerd agrivoltaics wetgevend kader op EU-niveau.
Wij stellen echter dat een zeer gedetailleerd en uitgebreid wetgevend kader voor agrivoltaics op Europees niveau niet noodzakelijk is. Een dergelijk kader namelijk moet namelijk worden afgestemd op nationale landbouwpraktijken, bestaande milieuvergunningen, nationaal energiebeleid en andere land- of regiospecifieke factoren.
De Europese Unie zou lidstaten echter wel kunnen verplichten om een doordacht wetgevend kader voor agrivoltaics te creëren, bijvoorbeeld via een Richtlijn. Deze Richtlijn zou zich moeten richten op de volgende kernpunten:
(1) De definitie en classificatie van agrivoltaics systemen.
(2) Het waarborgen van robuustheid om niet-duurzame praktijken en verlies van landbouwgrond te voorkomen.
(3) De ontwikkeling van specifieke vergunnings- en autorisatieprocedures op basis van definitie en classificatie.
(4) Het vergemakkelijken van de toepassing van vooraf goedgekeurde agrivoltaics praktijken, bijvoorbeeld door kortere vergunningsprocedures en vereisten.
(5) Het verminderen van de nalevingslast na de installatie van agrivoltaics systemen en het focussen op criteria die gecontroleerd kunnen worden tijdens de ontwerpfase of op het moment van de vergunningsaanvraag.
The development, planning, and realisation of an agrivoltaics project must consider the crop itself, its growing conditions, regulations, and economic sustainability. The following steps outline a logical approach, as applied by HyPErFarm researchers, advisors, and the farmer to a blueberry farm in northern Flanders, Belgium, when realising their installation:
Step 1: Analyse cultivation and location
First, gain a better understanding of the light and water needs of the crop through a cultivation analysis to estimate shade impact on yield. Next, evaluate the site’s suitability, focusing on solar radiation, row orientation, slope, and sufficient spacing for ventilation and mechanisation. The HyPErFarm webtool (https://hyperfarm.eu/webtool/) will help you get a good initial estimate of the potential.
Step 2: Ensure legal and financial sustainability
Verify local regulations and permitting requirements. Assess how agrivoltaics affects the land's agricultural status and potential agricultural subsidy rights. This is crucial for financing the installation. In addition to agricultural subsidies, study whether the installation is eligible for green investment aid or tax breaks. Currently, the profitability of a project often depends on securing investment support.
Draw up a feasibility study. This study should include detailed cost estimates for:
• Start-up costs (e.g., solar panels, support structures, installation, grid connection)
• Recurring costs (e.g., maintenance, repairs, supervision)
Revenue sources include:
• Self-consumption of power
• Selling excess power to the grid
• Battery storage or charging applications
Bij de ontwikkeling, planning en realisatie van een agrivoltaics project moet je rekening houden met het gewas, de teeltomstandigheden, regelgeving en economische duurzaamheid. De volgende stappen schetsen een logische aanpak, zoals toegepast door onderzoekers en adviseurs van HyPErFarm en de boer zelf, op een blauwe bessenboerderij in Vlaanderen, België, bij de realisatie van hun installatie:
Stap 1: Analyseer teelt en locatie
Verkrijg eerst inzicht in de licht- en waternoden van het gewas via een teeltanalyse om de impact van schaduw op de opbrengst te schatten. Evalueer vervolgens de geschiktheid van de locatie, met aandacht voor zonnestraling, rijoriëntatie, helling en voldoende ruimte voor ventilatie en mechanisatie. De HyPErFarm-webtool (https://hyperfarm.eu/webtool/) kan helpen met een eerste inschatting van het potentieel.
Stap 2: Zorg voor juridische en financiële duurzaamheid
Controleer de lokale regelgeving en vergunningsvereisten. Ga na hoe agrivoltaics de landbouwstatus van het land en eventuele landbouwsubsidies beïnvloeden. Dit is cruciaal voor de financiering van de installatie. Onderzoek of de installatie naast landbouwsubsidies ook in aanmerking komt voor groene investeringssteun of belastingvoordelen. Momenteel hangt de winstgevendheid van een project vaak af van het verkrijgen van investeringssteun.
Stel een haalbaarheidsstudie op. Deze studie moet gedetailleerde kostenramingen bevatten voor:
• Opstartkosten (bijv. zonnepanelen, constructie, netaansluiting)
• Terugkerende kosten (bijv. onderhoud, reparaties, toezicht)
Inkomsten omvatten:
• Zelfconsumptie van energie
• Verkoop van overtollige energie aan het net
• Opslag in batterijen of toepassingen voor opladen
To consider adopting agrivoltaics on their farm, farmers need inspiration, practical knowledge, and opportunities to address concerns about feasibility, crop compatibility, regulations, and finances. To meet this need, farmers’ organisation Boerenbond organised two two-day inspiration bus trips to agrivoltaic sites in Germany and the Netherlands. These trips brought together farmers, researchers, advisors, policymakers, and energy cooperatives to inspire, showcase real-world examples, to exchange knowledge and experience and foster collaboration.
The trips were carefully planned to maximise learning and interaction, from selecting suitable agrivoltaic sites and coordinating logistics to targeted inviting of participants and ensuring a balanced mix of stakeholders. The trips featured diverse agrivoltaic setups, including vertical, high-mounted, fixed, and tiltable systems, across various farm types— including large commercial sites, research facilities, and working farms. Crops included apples, berries, herbs, and spices.
At each site, participants engaged with host farmers, researchers, and constructors to discuss practical challenges, solutions and also results. A luxury bus with tables facilitated a productive setting for exchange en route. Informal moments on the bus or at the hotel allowed participants to network and to share perspectives in a relaxed setting.
Though organising the trips required significant effort, these inspiration bus trips achieved a lot in one go: they effectively inspired participants, provided actionable insights, and created opportunities for cross-sectoral collaboration, fostering momentum for agrivoltaic adoption.
Om agrivoltaics op hun bedrijf te overwegen, hebben boeren inspiratie en praktische kennis nodig, naast opportuniteiten om zorgen over haalbaarheid, gewascompatibiliteit, regelgeving en financiën te bespreken. Daarom organiseerde landbouworganisatie Boerenbond twee tweedaagse inspiratiebustrips naar agrivoltaics sites in Duitsland en Nederland.
Deze trips brachten boeren, onderzoekers, adviseurs, beleidsmakers en energiecoöperaties samen om inspiratie op te doen, praktijkvoorbeelden te zien, kennis en ervaring uit te wisselen en samenwerking te initiëren. Deze werden zorgvuldig gepland voor maximaal leren en interactie: van het selecteren van geschikte agrivoltaics sites en het uitwerken van de logistiek tot het gericht uitnodigen van deelnemers voor een gebalanceerde mix van stakeholders.
De trips omvatten diverse agrivoltaics opstellingen, zoals verticale, hoog gemonteerde, vaste en kantelbare systemen voor onder meer fruit, bessen, grassen en kruiden, op verschillende typen boerderijen, waaronder grote commerciële locaties, onderzoeksfaciliteiten en actieve boerderijen.
Op elke locatie gingen de deelnemers in gesprek met de ontvangende boeren, onderzoekers en constructeurs om praktische uitdagingen, oplossingen en resultaten te bespreken. Een luxe bus met tafels zorgde onderweg voor een productieve setting voor uitwisseling. Informele momenten in de bus of het hotel boden deelnemers de kans om te netwerken in een ontspannen sfeer.
Hoewel het organiseren van deze reizen veel inspanning vergde, leverden de inspiratiereizen veel op: ze inspireerden de deelnemers, boden bruikbare inzichten en creëerden mogelijkheden voor samenwerking tussen sectoren, wat de adoptie van agrivoltaics een impuls gaf.
The 'Duck Curve' graphically represents the daily electricity demand pattern. Typically, most electricity is consumed in the morning when people wake up, and there is another secondary demand peak in the late afternoon when people return home from work. Traditional south-oriented solar farms are optimized for maximum total energy generation, capturing the solar irradiance peak at midday. This results in a daily imbalance between solar power generation and electricity demand , highlighting part of the challenge of integrating large-scale solar energy into the grid. Currently, these demand peaks are managed by scaling gas power plant outputs up and down. It is in our best interest to find a renewable alternative.
Vertical bifacial agrivoltaic (APV) systems are a commercially relevant tool in extensive agriculture. Their dual-sided solar panels, which capture sunlight on both the front and rear sides, can address the energy imbalance. As the sun rises, the APV system creates a production peak on its eastern side, and the same happens on their western face with the setting sun. Despite a slightly reduced overall productivity, appropriately orienting these modules allows us to match the generated energy to the actual demand on the grid. Given that utility-scale electricity prices fluctuate with demand and production imbalances, these vertical bifacial systems may be equally or more economically viable than south-oriented PV in a solar-powered future.
De 'Duck Curve' is een grafische weergave van het energieverbruik en de belasting op het elektriciteitsnet. Typisch wordt de meeste elektriciteit 's ochtends verbruikt wanneer mensen wakker worden, en is er een secundaire vraagpiek in de late namiddag wanneer mensen terug thuiskomen van hun werk. Traditionele zuidgeoriënteerde zonneparken zijn geoptimaliseerd voor maximale totale energieopwekking en vangen de middagspiek op. Dit resulteert in een dagelijkse onbalans tussen zonne-energieopwekking en elektriciteitsverbruik. Momenteel worden deze vraagpieken beheerd door de output van gascentrales dynamisch op en neer te schalen. Het is in ons beste belang om hiervoor een hernieuwbaar alternatief te vinden.
Verticale bifaciale agrivoltaics (APV) systemen zijn een commercieel relevante tool in de moderne landbouw. Hun dubbelzijdige zonnepanelen, die zowel aan de voor- als achterkant zonlicht opvangen, kunnen deze energieonbalans verminderen. Als de zon opkomt, creëert het APV-systeem een productie-piek aan zijn oostelijke zijde, en hetzelfde gebeurt aan hun westelijke zijde bij zonsondergang. Ondanks een iets lagere totale energieproductie, stelt een juiste oriëntatie van deze modules ons in staat de opgewekte energie af te stemmen op de daadwerkelijke vraag op het net. Gezien het feit dat elektriciteitsprijzen op de markt fluctueren met deze productie-onbalansen, kunnen deze verticale bifaciale systemen economisch zelfs rendabeler zijn dan zuidgeoriënteerde PV in een door zonne-energie aangedreven toekomst.
Grid operators utilize balancing services to manage fluctuations in energy demand. Pyrolysis plants, which generate both thermal and electrical energy, can contribute to the balancing energy market. A case study on a real pyrolysis plant (electrically heated) assessed the economic viability of its flexibilization. Options for flexibilization were identified, including the compensation required for plant operators (inclusion of potentially decreasing biochar production):
(1) Increase reactor temperature (by 50°C over 5 minutes; 12.98 €/kWhel)
(2) Reduction of the biomass throughput (2.68 €/kWhel)
(3) Condensation of the pyro-oil to reduce combustibles in the pyrolysis gas (0.55 €/kWhel)
(4) Partial detour of the gas around the turbine (0.05 €/kWhel)
(5) Reduction of biomass drying (-0.15 €/kWhel)
In (1) and (5), the demand for electrical energy in the reactor is increased, which means that less electrical energy is fed to the grid, while in options (2)-(4) it is mainly the reduction in combustible and convertible gases that reduces the feed-in of electrical energy and partly increases (4, 5) or reduces (2) the feed-in of thermal energy. Cases (2) to (5) are the most economical, whereby (5) is always worthwhile for pyrolysis plant operators, provided that the surplus thermal energy is purchased on the market. The analysis of the German market for secondary balancing energy in 2022 shows that (3) and (4) would have been called up for 3 and 322 hours respectively, while (5) would have been called up permanently (calculations based on data from the German Federal Network Agency). The analysis shows that pyrolysis plants offer promising opportunities for providing control energy.
Um auf Schwankungen im Bedarf Energie zu reagieren, nutzen Netzbetreiber Regelleistungen. Pyrolyseanlagen stellen thermische als auch elektrische Energie bereit und können daher als Teilnehmer im Regelenergiemarkt diskutiert werden. An einer realen Pyrolyseanlage (elektrisch beheizt) wurde in einem Fallbeispiel die Wirtschaftlichkeit ihrer Flexibilisierung bewertet. Möglichkeiten der Flexibilisierung wurden identifiziert, inklusive der Kompensation, die Anlagenbetreiber hierfür erhalten müssten (Einberechnung potentiell sinkender Pflanzenkohleproduktion):
(1) Erhöhung der Reaktortemperatur (über 5 Minuten um 50°C; 12,98 €/kWhel)
(2) Reduktion des Biomassedurchsatzes (2,68 €/kWhel)
(3) Kondensation des Pyrolyseöls zur Reduktion brennbarer Stoffe im Pyrolysegas (0,55 €/kWhel)
(4) Partiale Umleitung des Gases um die Turbine (0,05 €/kWhel)
(5) Reduktion der Biomassetrocknung (-0,15 €/kWhel)
Bei (1) und (5) wird der Bedarf an elektrischer Energie im Reaktor erhöht, wodurch weniger elektrische Energie eingespeist wird, während bei Option (2)-(4) hauptsächlich die Reduktion an brennbaren und verstrombaren Gasen die Einspeisung elektrischer Energie verringert und teils die Einspeisung thermischer Energie erhöht (4, 5) oder verringert (2). Die Fälle (2) bis (5) sind am wirtschaftlichsten, wobei sich für die Pyrolyseanlagenbetreiber (5) immer lohnt, vorausgesetzt die überschüssige thermische Energie wird am Markt abgenommen. Die Analyse des deutschen Marktes für sekundäre Regelenergie im Jahr 2022 ergibt, dass (3) und (4) jeweils für 3 und 322 Stunden abgerufen worden wären, wobei (5) dauerhaft abgerufen worden wäre (Berechnungen anhand Daten der Bundesnetzagentur).
Ground mounted agrivoltaic setups typically introduce strips of land that are lost for agricultural use. In fact, certain buffer zones have to be implemented around the structure to avoid damaging the agrivoltaic setups. In order not to completely lose these strips of land, they can be used for other applications such as flower strips to increase biodiversity. Another possibility would be to install white ground cloths to increase reflections to boost the energy yield.
A measurement setup was designed to test, measure and evaluate this second application. In both a fixed vertical bifacial setup and a single-axis tracking setup (both consisting of three rows of PV modules), three different situations are compared. A white cloth was installed for the first row of each system, a black cloth for the second row and the last row was left as is (grass surface). The row with grass below represents the reference situation (uncultivated or flower strip).
To measure the influence of different surfaces, several irradiance sensors were installed. For the vertical arrangement, each row’s East and West sides were equipped with irradiance sensors (6 in total). For the tracking setup, only one row was equipped with an irradiance sensor on the top side of the PV modules, but each row was equipped with an irradiance sensor on the bottom side of the PV modules since this is where most of the reflections occur.
The literature shows results of a similar setup for the single-axis tracker where the annual energy yield increased by 2.5% by installing a white fabric. With the new measurement setup, these values will be checked and it will be examined whether the same increase in yield can be achieved for the fixed vertical setup.
Grondgemonteerde agrivoltaic installaties op akkerland zorgen doorgaans voor stroken land die niet voor landbouw kunnen worden gebruikt. Er moeten rond de structuur namelijk bufferzones worden aangelegd om te voorkomen dat de agrivoltaics installaties worden beschadigd. Om deze stroken niet volledig te verliezen, kunnen ze worden gebruikt voor andere toepassingen, zoals het aanbrengen van witte gronddoeken om de reflectie te verhogen en zo de energieopbrengst te verhogen.
KU Leuven heeft een meetopstelling ontworpen om deze tweede toepassing te testen, te meten en te evalueren. In zowel een vaste verticale bifaciale opstelling als een eenassige tracking opstelling worden drie verschillende situaties vergeleken. Voor beide systemen is voor de eerste rij een wit doek geïnstalleerd, voor de tweede rij een zwart doek en tot slot is de laatste rij gelaten zoals ze was (grasoppervlak).
Om de invloed van verschillende oppervlakken te meten, werden verschillende instralingssensoren geïnstalleerd. Voor de verticale opstelling werden de oost- en westzijde van elke rij uitgerust met een instralingssensor. Voor de tracking opstelling werd slechts één rij uitgerust met een instralingssensor aan de bovenzijde van de PV-modules, maar elke rij werd uitgerust met een instralingssensor aan de onderzijde van de PV-modules.
De literatuur toont resultaten van een soortgelijke opstelling voor de single axis tracker waarbij de jaarlijkse energieopbrengst met 2,5% toenam door het aanbrengen van een wit doek. Met de nieuwe meetopstelling zullen deze waarden worden gecontroleerd en zal worden nagegaan of dezelfde verhoging van de opbrengst kan worden bereikt voor de vaste verticale opstelling.
A fixed vertical bifacial setup and a single-axis bifacial tracking setup are both examples of interspersed agrivoltaics. To determine which of these structures is best, they can be compared based on energy yield, crop yield, investment cost, maintenance cost, land efficiency,… :
i. East-West interspersed agrivoltaic systems have a reasonable business case (CAPEX, OPEX) with respect to ground-mounted PV systems mainly due to their limited need for steel compared to elevated agrivoltaics structures.
ii. Due to their low-ground and large-pitch design, they are not able to protect the whole cultivation area against extreme conditions, which is a significant limitation compared to overhead agrivoltaic systems.
iii. From a technical and economic perspective, the single-axis tracker is clearly preferable. Besides the higher annual energy production (+32%) and lower LCOE (-30%), the tracking setup offers the flexibility to increase the amount of cumulative solar radiation and its field distribution with an anti-tracing modus, according to the specific growing season and crop type.
iv. To achieve a Land Equivalent Ratio (LER) higher than one, it is essential to reduce land losses. Large buffer zones around the structure that are not cultivated reduce land efficiency significantly. (Exploitation as biodiversity buffers could be a solution to compensate the land loss.)
v. Climatic conditions have a major impact on agrivoltaic crop yields. In a dry, warm year (like 2022), the crop yield between the vertical setup was equal to that of a reference field while in a wet year (2021) there was a reduction of 26%. This shows the importance of monitoring an agrivoltaic set-up over several years with different meteorological conditions.
Vaste verticale bifaciale en eenassige bifaciale tracking opstellingen zijn voorbeelden van agrivoltaics systemen die tussen de gewassen worden geplaatst. We kunnen ze vergelijken op basis van energieopbrengst, gewasopbrengst, investerings- en onderhoudskosten, landefficiëntie,…:
i. Beide systemen (in oost-westelijke richting geplaatst) hebben een redelijke business case (CAPEX, OPEX) ten opzichte van grond gemonteerde PV-systemen, vnl. door het verminderd staalgebruik t.o.v. hooggeplaatste systemen boven de gewassen.
ii. Door hun lage hoogte en grote hellingshoek kunnen ze niet het hele teeltgebied beschermen tegen extreme weersomstandigheden, wat een belangrijke beperking is in vergelijking met op hoogte geplaatste systemen.
iii. Uit technisch en economisch oogpunt verdient de eenassige tracker duidelijk de voorkeur. Naast de hogere jaarlijkse energieproductie (+32%) en de lagere LCOE (-30%) biedt de tracker opstelling de flexibiliteit om de hoeveelheid cumulatieve zonnestraling en de veldverdeling daarvan te verhogen met een anti-tracking modus, afhankelijk van het specifieke groeiseizoen en gewastype.
iv. Om een Land Equivalent Ratio (LER) >1 te bereiken, is het van groot belang het landverlies te beperken. Grote bufferzones rond de agrivoltaic structuur die niet worden bewerkt, verminderen de landefficiëntie aanzienlijk.
v. Klimatologische omstandigheden beïnvloeden in grote mate de opbrengst van agrivoltaic gewassen. In een droog, warm jaar (2022) was de gewasopbrengst tussen de verticale opstelling gelijk aan die van een referentieveld, terwijl er in een nat jaar (2021) een afname van 26% was. Dit toont het belang aan van het monitoren van een agrivoltaic opstelling over meerdere jaren.
Elevated agrivoltaics systems above arable land have the advantage that the distance between solar panels rows can be chosen as a function of the amount of light the underlying crops require. However, the optimal Ground Coverage Ratio (solar module area per land area) depends on location, amount of irradiation and type of crop, among other factors.
A theoretical study investigated the theoretically ideal GCR across Europe for three different crop types: shade-loving, shade-tolerant and shade-intolerant. The main findings of this study are:
i. The GCR increases significantly for shade-tolerant crops and places with a high irradiance level;
ii. Field crops in a fixed agrivoltaics crop rotation system must be carefully selected concerning their shade (in)tolerance in order to have a guaranteed sustainable agricultural system during the lifespan of the installation;
iii. Agrivoltaic installations are financially more attractive and competitive for shade-loving crops (like leafy vegetables), leading to a risk that farmers will shift their production system and shade-intolerant crops will be cultivated less;
iv. From a general economic point of view, agrivoltaics are more profitable in the South due to the higher capacity factor and higher ground coverage ratio (more solar irradiation and smaller shade fractions);
v. In the Northern countries, ground coverage ratios of agrivoltaic installations are generally low. Ground-based agrivoltaic systems with larger interrow distances will be more suitable in Northern countries , being more competitive, while elevated systems with larger coverage ratios have a vast potential in the South as crop protection system.
Op hoogte geplaatste agrivoltaics systemen boven akkerland hebben het voordeel dat de afstand tussen de rijen zonnepanelen min of meer vrij kan worden gekozen op basis van de hoeveelheid licht die de onderliggende gewassen nodig hebben. De optimale Ground Coverage Ratio (zonnepaneeloppervlakte per landoppervlakte) is echter afhankelijk van onder meer locatie, hoeveelheid zonne-instraling en type gewas.
In een theoretische studie werd de ideale GCR doorheen Europa onderzocht voor drie verschillende gewastypen: schaduwgewassen, schaduwtolerante en schaduwintolerante gewassen met als belangrijkste bevindingen:
i. De GCR neemt aanzienlijk toe voor schaduwtolerantere gewassen en plaatsen met een hoog instralingsniveau;
ii. Gewassen in een vast agrivoltaics gewasrotatiesysteem moeten zorgvuldig geselecteerd worden op basis van hun schaduw(in)tolerantie. Een bepaalde hoeveelheid licht kan namelijk aanvaardbaar zijn voor het ene gewas, maar nefast zijn voor een ander type gewas;
iii. Agrivoltaics installaties zijn financieel aantrekkelijker voor schaduwgewassen, waardoor het risico ontstaat dat landbouwers hun productiesysteem veranderen en minder schaduwintolerante gewassen gaan telen;
iv. Agrivoltaics systemen zijn meer randabel in het zuiden door de hogere capaciteitsfactor en de hogere GCR (meer zonnestraling en kleinere schaduwfracties).
v. In de noordelijke landen is de GCR van agrivoltaics installaties over het algemeen laag. Agrivoltaics systemen op de grond met grotere afstanden tussen de rijen zullen financieel interessanter zijn in de noordelijke landen, terwijl op hoogte geplaatste systemen met grotere GCRs een enorm potentieel hebben in het zuiden als systeem voor gewasbescherming.
By definition, stakeholder analysis (SHA) is a process used in project management and business strategy to identify and assess the individuals or groups that have an interest in a project or business decision. Within the HyPErFarm project, the aim is to portray a community of active entities within the field of farm decarbonisation through agrivoltaics. These entities will be potentially interested in the HyPErFarm project outcomes.
The HyPErFarm SHA adopts a value chain approach, suitable for farmers, to facilitate the implementation of producing renewable energy on farms and its local deployment. The HyPErFarm SHA is conducted systematically using a data-driven methodology developed by PNO Innovation Belgium. The entities are identified, selected, and categorized into three main groups: Innovators (entities with active research and innovation activities related to HyPErFarm); Investors (entities active in patenting innovations relevant to HyPErFarm); and Potential Business Drivers (entities seen as potential market end-users of the project outcomes).
Until now, the HyPErFarm SHA has identified approximately 110 potential organizations within the project's scope that could benefit from the HyPErFarm project results and technologies, especially in the fields of photovoltaic applications, robotics, and hydrogen production from renewable sources. However, as the concept grows in popularity, it's vital to consider the influence of regional policies, incentives, and market dynamics on its adoption rate. This transforms in an increasing number of entities focusing on dual land applications. Harvesting Sunlight, Cultivating Sustainability: The Future is Agrivoltaic!
By definition, stakeholder analysis (SHA) is a process used in project management and business strategy to identify and assess the individuals or groups that have an interest in a project or business decision. Within the HyPErFarm project, the aim is to portray a community of active entities within the field of farm decarbonisation through agrivoltaics. These entities will be potentially interested in the HyPErFarm project outcomes.
The HyPErFarm SHA adopts a value chain approach, suitable for farmers, to facilitate the implementation of producing renewable energy on farms and its local deployment. The HyPErFarm SHA is conducted systematically using a data-driven methodology developed by PNO Innovation Belgium. The entities are identified, selected, and categorized into three main groups: Innovators (entities with active research and innovation activities related to HyPErFarm); Investors (entities active in patenting innovations relevant to HyPErFarm); and Potential Business Drivers (entities seen as potential market end-users of the project outcomes).
Until now, the HyPErFarm SHA has identified approximately 110 potential organizations within the project's scope that could benefit from the HyPErFarm project results and technologies, especially in the fields of photovoltaic applications, robotics, and hydrogen production from renewable sources. However, as the concept grows in popularity, it's vital to consider the influence of regional policies, incentives, and market dynamics on its adoption rate. This transforms in an increasing number of entities focusing on dual land applications. Harvesting Sunlight, Cultivating Sustainability: The Future is Agrivoltaic!
Agrivoltaic constructions require burying high-voltage DC cables. These cables can pose various potential risks and hazards. It is crucial to manage these dangers effectively to ensure the safety of all involved.
Implementing a cable protection system is vital to safeguard buried cables from various hazards. One common approach is the installation of conduit systems. Conduits physically shield the cables from damage caused by equipment, animals, and natural elements. These conduits should be made of durable materials such as HDPE or metal, providing adequate strength and resistance to environmental stressors. To further enhance cable protection, an appropriate burial depth is crucial. Adequate depth helps protect cables from extreme weather conditions, and potential agricultural activities that may occur above the buried cables. Another critical aspect of managing the risks associated with buried cables is implementing proper shutoff systems and warning labels. It is crucial that personnel be made aware of the presence of buried cables. Clearly visible warning markers should be installed to indicate their presence. Adequate training and awareness programs should be implemented to educate workers and farmers about the potential risks and the necessary precautions to be taken. In the event of cable damage or faults, a comprehensive emergency response plan should be in place.
By implementing proper cable selection, employing cable protection systems, and maintaining appropriate burial depths, the potential dangers can be effectively managed and minimized. It is essential for agrivoltaic system developers, installers, and operators to prioritize safety, ensuring the protection of personnel and livestock.
Agrivoltaics constructies vereisen het ingraven van hoogspannings gelijkstroom kabels. Deze kabels kunnen verschillende potentiële risico's en gevaren met zich meebrengen. Het is van cruciaal belang om deze gevaren effectief te managen.
Ten eerste is een kabelbeschermingssysteem essentieel om ondergrondse kabels te beschermen. Buizen of gesloten goten beschermen de kabels tegen fysieke schade door apparatuur, dieren en omgevingscondities. Deze kabelgoten moeten van duurzame materialen zoals HDPE of metaal gemaakt zijn, die voldoende resistent zijn. Ondergrondse trajecten moeten bovendien voldoende diep worden uitgevoerd. Een adequate diepte beschermt de kabels tegen extreme weersomstandigheden en potentiële landbouwactiviteiten. Een ander belangrijk aspect van het risicomanagement van begraven kabels is het implementeren van juiste cutoff systemen en waarschuwingslabels. Het is van cruciaal belang dat alle personeel op de hoogte is van de begraven kabels. Duidelijk zichtbare waarschuwingsmarkeringen moeten worden geïnstalleerd om de aanwezigheid hiervan aan te geven. Adequate trainings- en bewustzijnsprogramma's moeten worden toegepast om werknemers en boeren bewust te maken van de mogelijke risico's en de noodzakelijke voorzorgsmaatregelen. In geval van kabelschade of storingen moet er een uitgebreid noodresponsplan klaarliggen.
Door het selecteren van geschikte kabels, het implementeren van beschermingssystemen en het handhaven van de juiste begraven diepte kunnen de potentiële gevaren effectief worden beheerd en geminimaliseerd. Het is essentieel dat zowel installateurs en exploitanten veiligheid als prioriteit stellen.
When people give their opinion on renewable energy innovations such as agrivoltaics, they often mention negative feelings & concerns. The social acceptance of such installations is crucial to reach the green transition in time. Therefore, one can either make agrivoltaics look less ugly. Or one can make people better understand the needs & benefits of having such installations in the first place.
To address specifically the visual appearance of installations, we found the following recommendations that influence their look:
• Higher acceptance for installations out of sight or covered by hedges or trees
• No installations on slopes to maintain countryside views
• Using existing installations such as hail nets to be replaced with no additional visual impact
Regarding influencing the perception and overall assessment, we collected the following recommendations on how to make people potentially think & feel better about agrivoltaics:
• Addressing the dual land use idea while convincingly ensuring the focus on food production
• A perceived fairness in the local planning and decision-making process
• Smaller project sizes instead of massive installations
• A perceived fairness in distributing the benefits ( e.g., with a community-based owner structure or by including financial support for community projects)
• Individual benefits for citizens nearby
• Convincingly addressing that dual land use approaches provide additional income for farmers
• Addressing fears of citizens nearby about losing the value of their property
• Addressing the environmental impact of the installation
• Not communicating the projects as stand-alone but in comparison with alternative projects and the consequences of not building them
When people give their opinion on renewable energy innovations such as agrivoltaics, they often mention negative feelings & concerns. The social acceptance of such installations is crucial to reach the green transition in time. Therefore, one can either make agrivoltaics look less ugly. Or one can make people better understand the needs & benefits of having such installations in the first place.
To address specifically the visual appearance of installations, we found the following recommendations that influence their look:
• Higher acceptance for installations out of sight or covered by hedges or trees
• No installations on slopes to maintain countryside views
• Using existing installations such as hail nets to be replaced with no additional visual impact
Regarding influencing the perception and overall assessment, we collected the following recommendations on how to make people potentially think & feel better about agrivoltaics:
• Addressing the dual land use idea while convincingly ensuring the focus on food production
• A perceived fairness in the local planning and decision-making process
• Smaller project sizes instead of massive installations
• A perceived fairness in distributing the benefits ( e.g., with a community-based owner structure or by including financial support for community projects)
• Individual benefits for citizens nearby
• Convincingly addressing that dual land use approaches provide additional income for farmers
• Addressing fears of citizens nearby about losing the value of their property
• Addressing the environmental impact of the installation
• Not communicating the projects as stand-alone but in comparison with alternative projects and the consequences of not building them
The granulation of biochar-based fertilizers is a way to ease biochar application on a larger scale. In this way, the fertilizer is applied in a biochar matrix, which further benefits the positive properties of the biochar, e.g., the regulation of nutrient provision in the soil. By combined granulation, the biochar and fertilizer can be applied to the field in one working step by using common agricultural machinery. In HyPErFarm, a granulated biochar-based fertilizer consisting of 65% biochar and 25% mineral fertilizer mixture (dry matter equivalents) was produced. The mineral fertilizers added are urea, patentkali and mono-potassium phosphate. Adjustments of these mass ratios and fertilizer components are of course possible, though they might affect the granulation process and the needed amount of binding agents. Before granulation, all components need to be milled to a particle size <500 µm, in our case in a collard mill. The milled biochar and fertilizers were granulated in a granulating Eirich-mixer. Water was added continuously via a sprayer nozzle for 35 minutes. When the granules almost reached the desired particle size range (2-4 mm), a 0.8% concentrated methyl cellulose solution (binding agent) was added via the sprayer nozzle to finish the granulation. In our case, a total of 4 kg water and 0.6 kg methyl cellulose solution were added per 20 kg of dry matter equivalent of biochar-fertilizer mixture. The granules were then air dried or dried in an oven at 90°C until sufficient mechanical stability was reached. The granules were further sieved to the desired particle size range and packed in plastic bags. Any necessary precautions with regard to explosion protection during grinding and mixing of unmoistened components must be clarified.
Die Herstellung von granulierten, Pflanzenkohle(PK)-basierten Düngemitteln ist eine Möglichkeit, die Ausbringung von PK in größerem Maßstab zu erleichtern. Auf diese Weise wird der Dünger in einer PK-Matrix ausgebracht, was positive Eigenschaften der PK, z.B. die Regulierung der Nährstoffversorgung im Boden, weiter begünstigt. Durch die kombinierte Granulierung können die PK und der Dünger in einem Arbeitsgang mit üblichen Landmaschinen im Feld ausgebracht werden. In HyPErFarm wurde ein granulierter Dünger auf PK-Basis hergestellt, der zu 65 % aus PK und zu 25 % aus einer Mineraldüngermischung besteht (Bezug TS). Bei den zugesetzten Mineraldüngern handelt es sich um Harnstoff, Patentkali und Monokaliumphosphat. Anpassungen dieser Anteile und Düngemittel sind möglich, könnten aber den Granulierungsprozess und die Bindemittelmenge beeinflussen. Vor der Granulierung müssen die Komponenten auf eine Partikelgröße <500 µm gemahlen werden, z.B. in einer Kollermühle. Die gemahlene PK und Düngemittel wurden in einem Eirich-Granuliermischer granuliert. Über eine Sprühdüse wurde 35 Minuten lang kontinuierlich Wasser hinzugegeben. Als das Granulat nahezu die gewünschte Korngröße (2-4 mm) erreicht hatte, wurde eine 0,8%ige Methylcelluloselösung (Bindemittel) eingesprüht, um die Granulierung abzuschließen. Es wurden insgesamt 4 kg Wasser und 0,6 kg Methylcelluloselösung pro 20 kg Trockensubstanzäquivalent der PK-Dünger-Mischung zugegeben. Das Granulat wurde an der Luft oder bei 90 °C getrocknet (Erhöhung Stabilität) und anschließend gesiebt und verpackt. Notwendige Vorkehrungen hinsichtlich des Explosionsschutzes bei der Vermahlung und Vermischung der nicht befeuchteten Komponenten sind abzuklären.
Agrivoltaics is a concept with the potential to couple new interdisciplinary and cross-sectoral technologies in order to find solutions to the nexus between energy, water, and food. However, agrivoltaics present their own design challenges, particularly in the mounting structure design, which should allow for modern machinery to harvest underneath or between the solar panels. This implies an increase in material use and, consequently, an increase in environmental burdens compared to conventional photovoltaic energy. Therefore, for innovative projects with a long life, such as agrivoltaics, it is critical to analyze their potential environmental performance in order to make informed decisions regarding this technology. Life Cycle Assessment (LCA) is performed to evaluate the environmental performance of agrivoltaic systems. This is based on data from mounting structures of pilot systems carried out as part of the HyPErFarm research project. The results attempt to indicate the potential environmental benefits or impacts of different agrivoltaic system configurations. Additionally, an analysis is proposed and applied to evaluate and compare the potential environmental burdens of combined electricity and wheat production. This study proposes a methodology for comparing agrivoltaic technology and separate production of electricity and crops.
Knowledge about environmental impact assessments forms the basis for improving the design of agrivoltaic systems. This evaluation could be relevant for LCA professionals, government decision-making processes, farmers, and decision-makers regarding compensations associated with the development of agrivoltaic technology.
Agrivoltaics is a concept with the potential to couple new interdisciplinary and cross-sectoral technologies in order to find solutions to the nexus between energy, water, and food. However, agrivoltaics present their own design challenges, particularly in the mounting structure design, which should allow for modern machinery to harvest underneath or between the solar panels. This implies an increase in material use and, consequently, an increase in environmental burdens compared to conventional photovoltaic energy. Therefore, for innovative projects with a long life, such as agrivoltaics, it is critical to analyze their potential environmental performance in order to make informed decisions regarding this technology. Life Cycle Assessment (LCA) is performed to evaluate the environmental performance of agrivoltaic systems. This is based on data from mounting structures of pilot systems carried out as part of the HyPErFarm research project. The results attempt to indicate the potential environmental benefits or impacts of different agrivoltaic system configurations. Additionally, an analysis is proposed and applied to evaluate and compare the potential environmental burdens of combined electricity and wheat production. This study proposes a methodology for comparing agrivoltaic technology and separate production of electricity and crops.
Knowledge about environmental impact assessments forms the basis for improving the design of agrivoltaic systems. This evaluation could be relevant for LCA professionals, government decision-making processes, farmers, and decision-makers regarding compensations associated with the development of agrivoltaic technology.
Vertically placed bifacial solar panels, due to their vertical orientation and large surface area, can effectively act as a windbreak when placed in an open area. They can reduce wind speed and change the wind direction, creating a protected microclimate that can be beneficial for crops, livestock, or other outdoor activities. In addition to providing wind protection, solar panels can also generate electricity, making them a dual-purpose solution for reducing wind impact and generating renewable energy. If the main wind direction is from the east or west, the advantage of positioning the solar panels north-south is that the electricity is generated in the morning and afternoon, extending the period of electricity production over the day.
However, it is important to note that the exact windbreak effect of solar panels depends on several factors such as panel height, spacing, and orientation. In some cases, the panels may not provide a sufficient windbreak or may even increase wind speeds in certain directions (turbulence). Therefore, careful consideration and design of the solar panel array are required to ensure optimum windbreak performance. This will also be further investigated in the HyPErFarm project.
Vertically placed bifacial solar panels, due to their vertical orientation and large surface area, can effectively act as a windbreak when placed in an open area. They can reduce wind speed and change the wind direction, creating a protected microclimate that can be beneficial for crops, livestock, or other outdoor activities. In addition to providing wind protection, solar panels can also generate electricity, making them a dual-purpose solution for reducing wind impact and generating renewable energy. If the main wind direction is from the east or west, the advantage of positioning the solar panels north-south is that the electricity is generated in the morning and afternoon, extending the period of electricity production over the day.
However, it is important to note that the exact windbreak effect of solar panels depends on several factors such as panel height, spacing, and orientation. In some cases, the panels may not provide a sufficient windbreak or may even increase wind speeds in certain directions (turbulence). Therefore, careful consideration and design of the solar panel array are required to ensure optimum windbreak performance. This will also be further investigated in the HyPErFarm project.
Soil structure plays an important role in crop performance and yields. Sadly, one of the side-effects of agrivoltaic system construction may be a deterioration of this soil structure. If no mitigating measures are taken during construction, such as road plates or specific tire selection, subsequent crop yields may suffer. As a first guideline, whenever possible, construction works should take place when some form of cover, be it grass or otherwise, is on the field and should be postponed when the soil is very wet. Ideally, construction should take place in summer. Despite this, works are likely planned in the off-season or winter period and compaction may occur as a result. At the HyPErFarm pilot site of TRANSfarm, two main mitigating operations have been employed: subsoiling and the use of a cover crop. Alternatively, other non-inversion tillage methods can be employed to loosen up soil structure such as spading cultivators, but using some form of intermediate crop before the start of commercial cultivation is recommended. In the case of TRANSfarm, a late-sown crop of spring wheat was put in place. This crop served as a first indicator of soil compaction (emergence was delayed in highly compacted areas) and gave a first indication of arable crop yield under agrivoltaics. We observed a relatively low impact of soil compaction on crop stance but did note a significant decrease in yield under agrivoltaics production as compared to the control plots. Due to the late planting date and the exceptionally hot and dry summer of 2022, the control plots underperformed equally, and it is unclear what the yield implications would be for a more traditional cropping season.
De bodemstructuur heeft een belangrijke invloed op de prestaties en de opbrengsten van gewassen. Helaas kan de aanleg van agrivoltaics systemen een verslechtering van deze bodemstructuur veroorzaken. Wanneer er tijdens de bouw geen preventieve maatregelen worden genomen, zoals rijplaten of specifieke bandenselectie, kunnen de gewasopbrengsten hieronder lijden. Als eerste richtlijn geldt dat de bouw zoveel mogelijk moet plaatsvinden wanneer er enige vorm van bedekking, al dan niet met gras, op het veld aanwezig is en dat deze werken moeten worden uitgesteld wanneer de bodem erg nat is. Desondanks worden de werkzaamheden in vele gevallen buiten het teeltseizoen of in de winter gepland, met verdichting als gevolg. Op de HyPErFarm-proeflocatie van TRANSfarm zijn twee mitigerende bewerkingen toegepast: diepwoelen en het gebruik van een ‘cover crop’. Als alternatief kunnen niet-kerende grondbewerkingsmethoden zoals spitmachines worden toegepast om de bodem los te maken. Het gebruik van een tussenteelt vóór het begin van de commerciële uitbating wordt sterk aanbevolen. In het geval van TRANSfarm werd zomertarwe ingezaaid na de werken. Dit gewas gaf een eerste indicatie van de bodemverdichting (opkomst was vertraagd in verdichte gebieden) en gaf een indruk van de opbrengst onder agrivoltaics. We constateerden een relatief geringe invloed van de bodemverdichting op de gewasstand, maar zagen wel een daling van de opbrengst bij agrivoltaics productie in vergelijking met de controlepercelen. Door de late plantdatum en de uitzonderlijk warme en droge zomer van 2022 presteerden de controlepercelen evenwel ook slecht, en het is onduidelijk wat de gevolgen voor de opbrengst zouden zijn voor een traditioneler teeltseizoen.
During the construction of agrivoltaic systems, the soil might be at risk for severe and irreversible compaction. To assess the vehicle-based risk for soil compaction, a case study analysis has been performed for a research pilot in Bavaria in the scope of the HyPErFarm research project. Findings suggest that the risk for soil compaction is especially high in the headlands close to the field entrance and exit and in the driving lanes due to expected high traffic intensities of construction vehicles. In the headlands, traffic intensities of up to 56 passes with cumulative loads of more than 334 tons were estimated. Additionally, driving aisles are exposed to traffic intensities of up to 10 passes with cumulative loads of 66 tons. However, the risk for soil compaction is rather low in the crop zones.
To avoid and mitigate soil compaction, the following recommendations are given: Construction should be planned for dry summer months and designed flexible to react to rainfall events. The agrivoltaic system should be aligned to the headlands and field working directions because the areas adjacent to the system are likely to be highly trafficked; Permanent driving aisles for agricultural field operations should be used by construction vehicles whenever possible. A traffic plan helps to reduce unnecessary traffic. If possible, machinery should operate from the headlands. EPC companies should be aware of the risk of soil compaction and be equipped with light vehicles with adapted tires. Tire inflation pressures should be controlled regularly. A crop cover of grass or clover or mobile driveways can help to protect the soil during the construction. Plowing and deep-rooting intercrops help to remediate the soil after construction.
Beim Bau von A-PV besteht die Gefahr, dass der Boden stark und irreversibel verdichtet wird. Um das fahrzeugbedingte Risiko für Bodenverdichtungen zu bewerten, wurde im HyPErFarm Projekt eine Analyse für eine Pilotanlage in Bayern durchgeführt: das Risiko in den Vorgewenden nahe der Feldein- und -ausfahrt und in den Fahrspuren aufgrund der zu erwartenden hohen Verkehrsintensität der Baufahrzeuge ist besonders hoch. Im Vorgewende wurde eine Verkehrsintensität von bis zu 56 Überfahrten mit einer kumulierten Last von mehr als 334T geschätzt. Zusätzlich sind die Fahrgassen einer Verkehrsintensität von bis zu 10 Überfahrten mit einer kumulierten Belastung von 66T ausgesetzt. Das Risiko ist in den Anbauzonen jedoch eher gering.
Um Bodenverdichtungen zu vermeiden, werden folgende Empfehlungen gegeben: Die Bauarbeiten sollten für trockene Sommermonate geplant. Das A-PV system sollte auf die Arbeitsrichtung des Feldes ausgerichtet sein und an Vorgewende angrenzen, da die an die Anlage angrenzenden Bereiche beim Bau stark befahren werden. Nach Möglichkeit sollten Baufahrzeuge vor allem auf vorhandenen oder geplanten permanenten Fahrgassen fahren. Ein Verkehrsplan hilft unnötigen Verkehr zu vermeiden. Maschinen sollten möglichst vom Vorgewende aus arbeiten. Bauunternehmen sollten sich des Risikos der Bodenverdichtung bewusst sein und leichte Fahrzeuge mit angepassten Reifen einsetzen. Der Reifendruck sollte regelmäßig kontrolliert werden. Eine Pflanzendecke aus Gras oder Klee oder mobie Arbeitsstraßen können dazu beitragen, den Boden während der Bauarbeiten zu schützen. Pflügen und tiefwurzelnde Zwischenfrüchte helfen, den Boden nach dem Bau zu sanieren.
Talking to people about agrivoltaics, we learned that the successful adoption of agrivoltaics depends on five characteristics: (1) Relative advantage is to which degree agrivoltaics are perceived to have an advantage over existing energy sources. Most people compare agrivoltaics with other placements of photovoltaics, like rooftops, or with who owns the land, like industrial, public, or private. People compare agrivoltaics with alternative energy sources installed on farmland (wind, biogas). (2) Compatibility is to which degree agrivoltaics fit the practices of a farmer working with specific machines or crops. One concern was reduced land use flexibility due to the long-term life of photovoltaics, and another was an insecure legal situation. (3) Complexity is how challenging agrivoltaics are to understand or use. Connecting two well-established and familiar systems, namely crop cultivation and photovoltaics, was perceived as sound and clever, a win-win situation. However, some were afraid that it is quite complicated in reality. (4) Trialability to which degree agrivoltaics can be visited and experienced. So far, few agrivoltaic installations exist, mostly pilot installations and not commercial ones. This is problematic because people want proof, successful examples, and business cases. (5) Communicability is to which degree the outcome of the innovation is visible to others. How colleagues, friends, and the neighbourhood think about it is crucial to enhance the likelihood that people will adopt agrivoltaics. In a nutshell: The better agrivoltaics address the raised concerns and strengthen the opportunities, the likelier farmers, landowners, or project developers are becoming interested in a dual land use approach.
Talking to people about agrivoltaics, we learned that the successful adoption of agrivoltaics depends on five characteristics: (1) Relative advantage is to which degree agrivoltaics are perceived to have an advantage over existing energy sources. Most people compare agrivoltaics with other placements of photovoltaics, like rooftops, or with who owns the land, like industrial, public, or private. People compare agrivoltaics with alternative energy sources installed on farmland (wind, biogas). (2) Compatibility is to which degree agrivoltaics fit the practices of a farmer working with specific machines or crops. One concern was reduced land use flexibility due to the long-term life of photovoltaics, and another was an insecure legal situation. (3) Complexity is how challenging agrivoltaics are to understand or use. Connecting two well-established and familiar systems, namely crop cultivation and photovoltaics, was perceived as sound and clever, a win-win situation. However, some were afraid that it is quite complicated in reality. (4) Trialability to which degree agrivoltaics can be visited and experienced. So far, few agrivoltaic installations exist, mostly pilot installations and not commercial ones. This is problematic because people want proof, successful examples, and business cases. (5) Communicability is to which degree the outcome of the innovation is visible to others. How colleagues, friends, and the neighbourhood think about it is crucial to enhance the likelihood that people will adopt agrivoltaics. In a nutshell: The better agrivoltaics address the raised concerns and strengthen the opportunities, the likelier farmers, landowners, or project developers are becoming interested in a dual land use approach.
Monitoring the crop environment in an agrivoltaic setting is highly informative. Some EU member states mandate this environmental monitoring as a prerequisite for planning permissions. Nonetheless, a close follow-up of the crop’s microclimate gives valuable insights into its potential. The primary environmental parameter is irradiance. From a crop’s perspective, light between 400nm and 700nm, the so-called PAR radiation, is the principal driver of photosynthesis. A sensor with a ‘full spectrum’ PAR response should be selected. Secondly, ambient temperature and thirdly, the associated relative humidity of the air play an important role in steering the crop’s transpiration. It has been shown that agrivoltaic systems modify temperature and humidity under the solar system. A resolution of 0.1°C or 0.5%RH is desired for these sensors. Ambient and relative humidity sensors are to be adequately provided with a (compact) weather/Stevenson screen to protect against precipitation and deviation by direct irradiance. Sensors should be deployed in the canopy and be moved with the growth of the crop making sure the PAR sensor is not obscured by leaves. For comparison’s sake, a duplicate sensor unit should be deployed in a parallel 'control' field near the agrivoltaic site. Using a reliable, weatherproof datalogger is key. While the brand selection is unimportant, proper calibration is essential. A battery backup system is desirable. Lastly, setting up a wired sensor system also requires special care for said wiring. Protecting the wiring from physical damage and making sure that the cable conduit is chemically resistant merits special attention. Any wiring should be positioned in such a way as to not impede regular crop maintenance.
In kaart brengen van de gewasomgeving in een agrivoltaics systeem is zeer leerrijk. Sommige EU-lidstaten schrijven dit zelfs voor als voorwaarde voor vergunningen. Evenwel kunnen deze omgevingsparameters belangrijke inzichten geven in de prestaties van de gewassen. De belangrijkste gewasparameter is de instraling. Vanuit gewasstandpunt is het licht tussen 400nm en 700nm het belangrijkst voor de fotosynthese. Dit noemen we het PAR licht bereik. Een ‘full spectrum” PAR sensor vormt het eerste deel van een agrivoltaic sensorsysteem. Vervolgens is aangeraden ook de omgevingstemperatuur en de relatieve luchtvochtigheid in de gewaslagen (canopy) te bestuderen. Een resolutie van 0.1°C en 0.5%RH is aangewezen. Omgevingssensoren moeten beschermd worden door een compacte weerhut, die de sensor afschermt van rechtstreekse instraling en neerslag. Alle sensoren moeten in de bulk van de canopy geplaatst worden en mee opschuiven met de gewasgroei. PAR sensoren mogen niet worden afgedekt door gebladerte. Om een goede vergelijking met de standaardcondities te maken is een parallel sensorsysteem in een controleveld, nabij de agrivoltaics site, aangewezen. Het gebruik van een betrouwbare datalogger is essentieel. Een juiste kalibratie en een batterij back-up vormen onderdeel van een goed systeem. Ook vereist een bedraad systeem extra aandacht voor deze bekabeling. Door de bedrading adequaat te beschermen in buizen of kabelrails kan schade voorkomen worden. Tenslotte moet men er op letten dat de sensoren en logboxen op een dergelijke manier geplaatst worden dat ze de teeltpraktijken niet hinderen.
The use of biochar is an important tool to improve soil fertility, reduce negative environmental impacts of agriculture, and build up terrestrial carbon sinks. Recent studies show that biochar is more likely to increase crop yields when applied in combination with nutrients to prepare biochar-based fertilizers. As part of this HyPErFarm project, a greenhouse pot experiment on white cabbage (variety Sunta F1) was conducted and different biochar-based fertilizers were applied in the root-zone to evaluate their effect on crop yields. To prepare the biochar-based fertilizer, a solution containing a nitrogen (N) fertilizer (urea or ammonium-nitrate) was soaked up by pure biochar, representing N-enhanced biochar. This biochar-based fertilizer was compared with the amendment of pure biochar to the pots along with a susequent addition of a fertilizer solution to the pots (same total N fertilization as with N-enhanced biochar. The biochar/biochar-based fertilizer was either applied as a hotspot underneath the seedling (10 cm below soil-surface in the pot, 10-15 cm in the field would be recommended) or it was mixed with the soil in the pot, representing a mixture of biochar and soil in the planting basin of white cabbage. For both fertilizer types, the hotspot application of the N-enhanced biochar below the seedling showed consistent positive cabbage head yield increases (dry matter) of 15% to 20% compared to the control without a biochar amendment but with the same fertilizer dosage. In general, the concentrated application of the biochar below the seedling tended to generate higher cabbage head yields than the homogeneous mixture of the soil and the biochar. The full-text study can be found here: https://www.mdpi.com/2311-7524/8/4/307.
Die Verwendung von Pflanzenkohle (PK) ist ein wichtiges Mittel zur Verbesserung der Bodenfruchtbarkeit, zur Verringerung negativer Umweltauswirkungen der Landwirtschaft und zum Aufbau terrestrischer Kohlenstoffsenken. Jüngste Studien zeigen, dass Pflanzenkohle die Ernteerträge eher erhöht, wenn sie in Kombination mit Nährstoffen angewendet wird. Im Rahmen dieses Projekts wurde ein Gewächshausversuch mit Weißkohl (Sorte Sunta F1) durchgeführt und verschiedene Düngemittel auf PK-Basis in der Wurzelzone ausgebracht, um ihre Wirkung auf die Ernteerträge zu bewerten. Zur Herstellung des PK-basierten Düngers wurde die PK in eine Lösung eingelegt, die einen Stickstoffdünger (Harnstoff oder Ammoniumnitrat). Dieser Dünger auf der Grundlage von Pflanzenkohle wurde mit der Applikation einer unbehandelten PK in die Töpfe verglichen, die die Stickstoffdüngung ausschließlich über das Gießwasser erhielten (gleiche Gesamt-N-Düngung wie bei der N-angereicherten PK). Die PK wurde entweder als Hotspot unter dem Keimling ausgebracht (10 cm unter der Bodenoberfläche im Topf, 10-15 cm im Feld wären empfehlenswert) oder sie wurde mit der Erde im Topf vermischt, was einer Mischung aus PK und Erde im Pflanzloch-Bereich des Weißkohls entspricht. Bei beiden Düngemitteltypen führte die Hotspot-Ausbringung der N-angereicherten PK unterhalb des Setzlings zu einer konsistenten positiven Steigerung des Kohlkopf-Ertrags (Trockenmasse) von 15 % bis 20 % im Vergleich zur Kontrolle ohne PK-Uusatz. Im Allgemeinen führte die konzentrierte Ausbringung der PK unter dem Setzling tendenziell zu höheren Kohlkopferträgen als die homogene Mischung aus Boden und PK. Die Studie im Volltext finden Sie hier: https://www.mdpi.com/2311-7524/8/4/307.
Refuelling locally-produced renewable hydrogen in a tractor is a HyPErFarm goal. Hydrogen panels, developed by KUL, will produce hydrogen from sunlight and ambient humidity and be connected to a small refuelling station (compression, storage and dispensing). We defined technical requirements for the dispenser so hydrogen gas can be refuelled on-farm in a safe and cost-efficient way. Common working pressures for hydrogen refuelling are 350 and 700 bar. Refuelling at 700 bar requires cooling and thus higher investment and operational costs. 350 bar is the choice for a small scale station.
Sensors/components that should be integrated:
- A tilt switch sensor recognizes when the position of the dispenser is skewed.
- Emergency stop
- A hydrogen detector can detect concentrations 10x lower than the explosion/fire limit, before a flammable mixture occurs.
- Hydrogen flames are invisible: a flame detector measuring temperature of infrared radiation is needed.
- Driving away with the refuelling hose still attached, is the main safety accident in stations. A break-away coupling releases the hose with no risk of a hydrogen leak.
- A pressure relieve valve releases hydrogen when the pressure in the system threatens to become too high due to rise in ambient temperature or malfunction of the compressor.
Other components are pressure and temperature sensors and a controlled valve or orifice to manage the mass flow of the hydrogen. A valve is expensive (10 k€), therefore a dispenser with an orifice has been chosen in the project.
It was examined that assembling the dispenser ourselves did not lead to a cheaper one. Therefore, a commercial dispenser, with CE certification and all the required safety equipment, was selected for the HyPErFarm project.
Balancing Photovoltaic (PV) or hydrogen (H2) output with crop yields in an agrivoltaic (AV) production system is done on several levels. Starting during the design phase, an estimation of the crop’s response to dynamic shading is made based on various boundary conditions. By adjusting construction type, exposure, solar panel density and transparency degree, a first assessment of the crop yield and corresponding system efficiency is made. However, both the sites location as well as variable weather conditions can influence system performance across the years.
Growers are the leading local experts on their crops. AV setups represent a new and different environment and may result in altered cop performance when coupled to existing growing practices or cultivar selections. Accurately monitoring AV crop performance is therefore essential for system optimization after installation. Merely visually comparing crop performance can however prove unreliable.
By taking into account the following recommendations, one can accurately assess AV crop performance and adapt management practices to this novel production system:
-Only compare to a crop of similar age and on the same site.
-Select a number of small plots in both the AV plot and the standard reference area (control) under traditional cultivation.
-For each plot, monitor yield, harvest time and quality separately.
-Assess the variability between the control plots to judge natural variations in the field.
-Assess the difference in productivity between control and AV systems and see if this outweighs the variability.
-Offset this yield difference by the additional gains from PV / H2 yield.
-Adapt management strategy to compensate for the observed growth variation.
Het balanceren van fotovoltaïsche (PV) of waterstof (H2) output met gewasopbrengsten in een agrivoltaics (AV) productiesysteem gebeurt op verschillende niveaus. Reeds in de ontwerpfase wordt op basis van verschillende randvoorwaarden een inschatting gemaakt van de gewasopbrengst onder dynamische beschaduwing. Zowel de locatie van de site als variabele weersomstandigheden door de jaren heen kunnen het systeem echter beïnvloeden.
Telers zijn de locale experten op het gebied van hun gewassen. AV-opstellingen vertegenwoordigen een nieuwe en andere omgeving en kunnen afwijkende gewasprestaties met zich meebrengen. Nauwkeurige monitoring van AV-gewasprestaties is daarom essentieel voor systeemoptimalisatie na installatie. Het louter visueel vergelijken van de opbrengst is echter weinig betrouwbaar.
Door rekening te houden met de volgende aanbevelingen kan men de AV-gewasprestatie nauwkeurig inschatten en het management aanpassen aan dit nieuwe productiesysteem:
-Vergelijk alleen met een identiek gewas van vergelijkbare leeftijd en op dezelfde locatie.
-Selecteer een aantal kleine zones in zowel het AV-perceel als in het standaard referentiegebied (controle) onder traditionele teelt.
-Volg voor elk perceel afzonderlijk de opbrengst, de oogsttijd en de kwaliteit op.
-Bepaal de variabiliteit tussen de controlepercelen om de natuurlijke variaties in het veld te beoordelen.
-Bepaal het verschil in produktiviteit tussen het controle- en het AV-systeem en ga na of dit verschil groter is dan de variabiliteit.
-Compenseer dit opbrengstverschil door de extra winst van PV/H2-opbrengst in rekening te brengen.
-Maak aanpassing aan de beheersstrategie om de waargenomen groeivariatie te compenseren.
Interest in agrivoltaic systems (the combination of agriculture and photovoltaics (PV)) is growing. Many small-scale installations show the possible benefits for both the agricultural and energy sector. At this moment, the decision process for various stakeholders (farmers, policymakers, PV installers, …) remains very complex. It is difficult for each specific stakeholder to assess the risks for crop growth, the benefits of the energy yield and their mutual impact. In order to further deploy this technology, and to make new business models, there is clearly a need for a simple and easy-to-use simulation tool that makes it possible to have a first idea about the energy and crop impact. For this reason, we designed the, as far as we know, first, free, online agrivoltaic webtool that can be accessed through a publicly available web interface.
The webtool asks for a limited amount of input parameters from the geometrics and location of the agrivoltaic system as an input from the user. As output, the webtool returns six important performance indicators that provide essential information in terms of energy production, crop impact and economic viability of the investment.
We hope that the webtool can be useful for stakeholders (farmers, policy makers, investors,...) to get a first impression of the agrivoltaics installation and that it can be used as a decision-making tool for future agrivoltaics projects.
De belangstelling voor agrivoltaics systemen (de combinatie van landbouw en fotovoltaïsche energie (PV)) neemt toe. Vele kleinschalige installaties tonen de mogelijke voordelen aan voor zowel de landbouw- als de energiesector. Op dit moment is het besluitvormingsproces voor de verschillende belanghebbenden (landbouwers, beleidsmakers, PV-installateurs, ...) nog zeer complex. Het is voor elke specifieke belanghebbende moeilijk om de risico's voor de gewasgroei, de voordelen van de energieopbrengst en hun wederzijdse impact in te schatten. Om deze technologie verder in te zetten, en om nieuwe business modellen te maken, was er duidelijk nood aan een eenvoudig en gebruiksvriendelijk simulatie-instrument dat het mogelijk maakt om een eerste idee te krijgen over de energie- en gewasimpact. Daarom hebben wij de, voor zover wij weten, eerste, gratis, online agrovoltaics webtool ontworpen die toegankelijk is via een webinterface.
De webtool vraagt een beperkt aantal invoerparameters van de geometrie en locatie van het agrivoltaics systeem als invoer van de gebruiker. Als output geeft de webtool zes belangrijke prestatie-indicatoren die essentiële informatie verschaffen in termen van energieproductie, gewasimpact en economische levensvatbaarheid van de investering.
We hopen dat de webtool nuttig kan zijn voor belanghebbenden (landbouwers, beleidsmakers, investeerders,...) om een eerste indruk te krijgen van de agrivoltaïsche installatie en dat het kan gebruikt worden als beslissingsinstrument voor toekomstige agrivoltaics projecten.
The idea of agrivoltaics is still unknown by many people, and such an innovative approach is therefore in the development process.
To support a customer-oriented view in the development process of agrivoltaics, we used "personas". Personas are known from user experience design, where they represent a fictive consumer. Personas are crafted based on different information, such as interviews, workshops, or consumer behavior statistics. By crafting personas, one designs one or more fictive characters that represent typical customer characteristics of someone who would need or like to buy the product in the future.
In the case of agrivoltaics, we designed different personas that represent the most typical stakeholders and their motivations, needs, goals, and frustrations concerning agrivoltaics. These personas can support those who develop agrivoltaics to avoid failure in the product development process.
Our personas are meant to be of high practical support for those who want to understand the different stakeholders' views on agrivoltaics and those who wish to use a customer-oriented approach when designing and offering agrivoltaic installations. Last but not least, they can be a valuable input for policymakers that decide if and how agrivoltaics might become an approach to contribute to more sustainable farming.
Qualitative data can be collected through interviews or focus groups. Such data is often a lot of text: Conversations are recorded, noted down, and prepared for analysis.
Qualitative research is chosen when we do not know much about a specific topic in advance. We do not simply want to ask if somebody likes or dislikes an innovation. Instead, we want to learn and understand the reasons behind it. We chose qualitative interviews to gain rich and meaningful information, especially in the case of an innovation that is not known by many, such as agrivoltaics. A simple "yes or no," as often answered in a survey, does not tell about a person's thoughts or feelings. Therefore, we openly asked "how and why" questions: How do you perceive agrivoltaics? Why do you think dual land use can be a good [or a bad] idea?
We purposefully decided on who to interview. To better understand the perception of agrivoltaics, we talked with farmers, politicians, journalists, researchers, farmer and nature organizations, municipalities, or photovoltaic producers. Due to the pandemic, all interviews were conducted online. The online interviews were perceived as participant-friendly because of the flexibility to arrange them because participants felt more relaxed in their familiar environment, and it allowed us to interview in Belgium, Germany, and Denmark at almost no costs.
Due to this intensive approach, one can not talk to hundreds of people simply due to time and financial restrictions. We stopped after 27 interviews when no new topics arose. Therefore qualitative information is not claimed to be representative of the whole population. Instead, qualitative research offers intense information and detailed insights into how key stakeholders perceive agrivoltaics.
Contacts
Project coordinator
-
Project coordinator
Project partners
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner