Kontext
The region of Osona is one of the areas most heavily affected by the problem of livestock manure. In this region, the direct application of slurry to the soil for fertilisation has been the most extensively used alternative for the management of livestock manure. Unfortunately, the product's high moisture content makes transportation and application to other nearby areas where soils are low in nutrients unfeasible. This has led to the development and implementation of new technologies for the treatment of livestock waste aimed at stabilising organic matter, concentrating and/or eliminating nutrients and producing energy. However, none of these technologies has focused on the reuse of water, or considered comprehensive systems valorising all the effluents obtained based on the concept of "zero waste".
To provide a solution to this problem, nitrification-denitrification (NDN) systems have been connected to electrodialysis (ED) and ozonation technologies in the treatment of liquid effluents, obtaining high quality water that can be reused in the same industrial/agricultural process or for environmental purposes. A composting process was also carried out with the solid fractions (the solid fraction from the separator and dehydrated sludge) obtained from the NDN treatment units, in order to valorise all the effluents obtained in the process.
Objectives
This project aims to provide a solution to one of the main limitations of NDN technology, by connecting NDN systems with electrodialysis and ozonation technologies to treat the liquid effluents obtained.
Apart from recovering the solid fractions by composting, the aim is to recover the liquid effluents from livestock manure by ED treatment and ozonation, thereby obtaining a high quality water without any pollutants, salts nor nutrients that could be reused on the farm itself, or used for recharging aquifers and other environmental services.
Objectives
El presente proyecto quiere dar solución a una de las principales limitaciones de la tecnología NDN, mediante el acoplo de los sistemas NDN con las tecnologías de electrodiálisis y ozonización para tratar los efluentes líquidos obtenidos.
El objetivo que se persigue, a parte de valorizar las fracciones sólidas mediante compostaje, es el de valorizar los efluentes líquidos de las deyecciones ganaderas mediante el tratado por ED y ozonización y de esta forma obtener un agua de calidad sin contaminantes, sales ni nutrientes, que pueda ser reutilizada en la misma granja o utilizarse para recarga de acuíferos y otros servicios ambientales.
Activities
In order to achieve the objectives established, this project was divided into 5 main activities:
- Activity 1: Design and construction of the ED pilot plant.
- Activity 2: Treatment of NDN effluents by ED.
- Activity 3: Treatment of ED effluents by ozonation.
- Activity 4: Treatment of solid fractions and sludge by composting.
- Activity 5: Technical, environmental and economic assessment of the process using life cycle analysis (LCA) and cost cycle analysis techniques.
Activities
Para alcanzar los objetivos establecidos, este proyecto se ha estructurado en 5 actividades principales:
- Actividad 1: Diseño y construcción de la planta piloto de ED.
- Actividad 2: Tratamiento de efluentes NDN a través de ED.
- Actividad 3: Tratamiento de efluentes de ED mediante ozonización.
- Actividad 4: Tratamiento de fracciones sólidas y lodos mediante compostaje.
- Actividad 5: Evaluación técnica, ambiental y económica del proceso mediante técnicas deanálisis de ciclo de vida y análisis de ciclo de costes.
Project details
- Main funding source
- Rural development 2014-2020 for Operational Groups
- Rural Development Programme
- 2014ES06RDRP009 Spain - Rural Development Programme (Regional) - Cataluña
Ort
- Main geographical location
- Barcelona
EUR 135716.91
Total budget
Total contributions from EAFRD, national co-financing, additional national financing and other financing.
Project keyword
1 Practice Abstracts
The electrodialysis process for treatment of NDN effluent showed high efficiency in reducing conductivity and potassium content, with a reduction under optimal operational conditions of between 60% and 70%, respectively. The recovery percentages of treated water reached up to 85%.
The 2 technologies, electrodialysis and ozonisation, when applied in sequence make it possible to reduce the load of emerging organic compounds by around 99%, while the
use of electrodialysis alone would achieve reduction percentages of only 50%. The large residual organic load present in the output of the electrodialysis process makes it difficult
for microorganisms to be completely eliminated, which prevents the water from having the necessary quality to be repurposed for animal use.
Under the conditions studied, ozonation would make it possible to achieve a final product with sufficient quality to be reused as cleaning water in the facilities according to current
regulations.
The co-composting process of the solid fraction generates a biostabilised compost that is suitable for agriculture and avoids transport of the concentrated fraction from the electrodialysis process, thereby reducing some of the management costs.
The life cycle analysis shows that the carbon footprint of the current treatment is lower than when implementing the recommended technologies. This carbon footprint is significantly reduced when using renewable energies as an energy source.
The suggested technologies where the water is returned to the riverbed or reused for cleaning purposes would have a much lower impact on the depletion of water resources, with a reduction in impact of almost 75%.
El proceso de electrodiálisis para el tratamiento del efluente de NDN mostró una alta eficiencia en la reducción de la conductividad y el contenido de potasio, con una reducción en condiciones óptimas de operación de entre el 60% y el 70%, respectivamente. Los porcentajes de recuperación del agua tratada alcanzaron hasta el 85%.
Las 2 tecnologías, la electrodiálisis y la ozonización, aplicadas secuencialmente, permiten reducir la carga de compuestos orgánicos emergentes en aproximadamente un 99%, mientras que la el uso solo de electrodiálisis alcanzaría porcentajes de reducción de sólo el 50%. La gran carga orgánica residual presente en la salida del proceso de electrodiálisis dificulta para que los microorganismos sean eliminados por completo, lo que impide que el agua tenga la calidad necesaria para ser reutilizada para uso animal.
En las condiciones estudiadas, la ozonización permitiría conseguir un producto final con calidad suficiente para ser reutilizado como agua de limpieza en las instalaciones según la normativa vigente.
El proceso de co-compostaje de la fracción sólida genera un compost bioestabilizado apto para la agricultura y evita el transporte de la fracción concentrada procedente del proceso de electrodiálisis, reduciendo así parte de los costes de gestión.
El análisis del ciclo de vida muestra que la huella de carbono del tratamiento actual es menor que al implementar las tecnologías recomendadas. Esta huella de carbono se reduce significativamente cuando se utilizan energías renovables como fuente de energía.
Las tecnologías sugeridas en las que el agua se devuelve al lecho del río o se reutiliza para fines de limpieza tendrían un impacto mucho menor en el agotamiento de los recursos hídricos, reduciendo el impacto un 75%.
Contacts
Project coordinator
-
GRANGES TERRAGRISA, SL
Project coordinator