project - Research and innovation

SolACE - Solutions for improving Agroecosystem and Crop Efficiency for water and nutrient use
SolACE - Solutions for improving Agroecosystem and Crop Efficiency for water and nutrient use

Ongoing | 2017 - 2022 France
Ongoing | 2017 - 2022 France
Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Objectives

The goal of SolACE is to help European agriculture face major challenges, notably increased rainfall variability and reduced use of N and P fertilizers for both economic and ecological purposes. SolACE will design solutions (strategies and tools) that combine novel crop genotypes and agroecosystem management innovations to improve water and nutrient use efficiency. It will look at a range of agricultural contexts across pedo-climatic regions and farming systems of Europe.

Objectives

The goal of SolACE is to help European agriculture face major challenges, notably increased rainfall variability and reduced use of N and P fertilizers for both economic and ecological purposes. SolACE will design solutions (strategies and tools) that combine novel crop genotypes and agroecosystem management innovations to improve water and nutrient use efficiency. It will look at a range of agricultural contexts across pedo-climatic regions and farming systems of Europe.

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Ort
Main geographical location
Hérault

€ 7192148

Total budget

Total contributions including EU funding.

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

15 Practice Abstracts

Problem

Using high levels of nitrogen fertilizers in wheat crops can cause negative environmental impacts, such as nutrient leaching and contamination of local and ground water supplies or greenhouse gas emission. Additionally, nitrogen fertilizers are costly for farmers. However, nitrogen stress can cause problems with yield losses and lower quality grains.



Solution

A pre-crop is any crop grown before a succeeding crop within a rotation. Pre-crops can be selected to improve nitrogen nutrition and soil structure for the subsequent crop. Using appropriate pre-crops can reduce the need for water and nitrogen fertilizer inputs by fixing atmospheric N (in the case of legume pre-crops) and building soil organic matter for moisture retention and better soil structure.



Practical recommendation

Benefits from pre-crops will depend on environmental factors and multiple variables are associated with choosing appropriate pre-crops for wheat (Figure 1). The criteria set out in Figure 2 can help with selecting an appropriate pre-crop for winter wheat. Use the Decision Tree (Figure 3) as a guide in selecting pre-crops suitable for specific farming contexts. This guide breaks down decisions problem by identifying relevant criteria in Figure 2 to choose an appro-priate pre-crop for a specific farming context, increasing the chances to improve crop yield and optimize resource use efficiency.



For more information please see https://zenodo.org/record/6866317

Problem

Arbuscular mycorrhizal fungal (AMF) root colonization is traditionally measured by microscopy. Roots are first stained and then carefully mounted on a glass slide before examination on the microscope to identify and count fungal structures inside the roots. But microscopy is labor-intensive, and results depend on the observer.



Solution

Methods such as, quantitative polymerase chain reaction (qPCR) can improve quantification and analysis of AMF. This practice abstract provides a short protocol describing qPCR as a method to quantify AMF in plant roots.



For more information please see https://zenodo.org/record/6873877

Problem

In Hungary, organic potato production is mainly based on commercially available varieties bred for the convention-al, high-input sector. There is a lack of availability, information, and guidance for organic growers to select appropri-ate potato varieties for their production systems. There are risks involved in testing conventional varieties under organic conditions on a large scale, because their performance may be different from official variety descriptions. Moreover, farmers usually do not have always the skills or equipment to accurately measure yield differences among varieties.



Solution

Analysis of qualitative and quantitative attributes of a wide range of varieties on a small scale can be carried out by farmer themselves, to better understanding of the most appropriate varieties for organic systems. As an example, on-farm testing for determining quantitative and qualitative parameters of 13 well-known potato varieties have been carried out on 12 organic farms in Hungary.



Practical recommendation

• Before selecting varieties for organic production, test varieties bred under conventional conditions on a smaller area first: for arable farms plant one or half a row; for horticultural farms 10 m² is enough to test the perfor-mance.

• Pests and disease are highly important factors in organic production. Therefore, resistance in varieties is im-portant and it is advised to grow locally bred varieties as they are better adapted to local conditions, as op-posed to imported varieties (Figure 2).



For more information see https://zenodo.org/record/6866349

Problem: Failure to generate meaningful and positive knowledge exchange between scientists and agricultural practitioners can be a setback to progress for both the agricultural and scientific industries. The lack of knowledge exchange can limit the uptake and upscaling of new innovations in farming, as designed, produced and supported through scientific research. Conversely, failure to exchange knowledge can inhibit the capacity of scientists to capture practical knowledge and valuable information from farmers.



Solution: To facilitate knowledge exchange between scientists and agricultural practitioners, cross-sector communication, both individually and in groups, is essential. It can be facilitated in a number of ways, including online webinars and workshops, open forums, consultations and in-person events. This contributes to effective and high-quality knowledge exchange between people that tend not to interact very often, while trying to fulfil the same goal.



More information: https://zenodo.org/record/6044162

Problem: Many agronomic experiments, such as those carried out in the SolACE Project, are designed to vary a single factor, with all other conditions being equal. This can be limiting in what can be measured in one experiment, at one time. Opposingly, an agroecological approach is based on using and measuring several factors in the same field, adapted to various pedoclimatic conditions and objectives. This is also a limitation, as pedoclimates can often vary across short distances on-farm, at different times during the year.



Solution: The “Diagchamp method” is a diagnostic, holistic approach to identify and hierarchize the limiting factors of final crop yield directly in the farmer’s fields by comparing crop growth to a climatic potential. The user of this method can compare results from agronomic experiments against agronomic diagnoses. Retrieving an agronomic diagnosis is done by choosing a sample field and assessing multiple agronomic factors. This creates a baseline that suggests what the potential output of the field could be, based on the field data taken previously, which can then be compared with the actual production yields.



Benefits: The acquired agronomic diagnosis is adapted to site-specific contexts (soil, climate, management practices, etc.) of different farmers who use the method. Applying this method can help to identify technical improve-ments and by comparing performances of plots in the same system. The method can be used by one farmer orgroups of farmers from the same region. The method can enable farmers to make economic comparisons between varying factors when comparing the agro-nomic diagnosis and field results or production yields.



More information: https://zenodo.org/record/6044262

Problem: Breeding and seed-multiplication can be slow processes in conventional potato breeding. Due to complex genetics, difficulties in targeting specific sites and unpredictable breeding, there is a lack of genetic gain in potato yield. As conventional potato breeding relies on bulky seed tubers, which makes obtaining clean starting material difficult and practically inefficient, this adds another limitation.



Solution: Hybrid breeding of diploid potato is a solution to breed faster and provide clean starting material. Simpler genetics allow for faster combination of beneficial traits through breeding. Specific desired traits, such as late blight resistance, can be introduced relatively quickly through natural crossing. Multiplication through true seeds allows for the bulk up of millions of disease-free seeds within two years.



Benefits: Hybrid-true-seeds bring many advantages compared toseed tubers as starting material (Figure 2). It ispossible to stack multiple desired traits in one hybridtrue seed. For example, Solynta developed late blight-resistant hybrids in two years’ time, that were demonstrated to be resistant to late-blight in phytophthora-inoculated field trials(Su et al., 2019). True hybrid seeds are very small; 25 g of seeds is enough to fill a whole hectare, compared to 2500 kg seed tubers, enabling faster up-scaling. True seeds can be stored for several years, while seed tubers need to be used in thenext season. True seeds are disease free, so starting material is always clean.New hybrids can be brought to the market faster (2-4 years compared to >15 years).Fast introduction of resistant hybrids, which means less pesticides are required.



More information: https://zenodo.org/record/6044355

Probleem: Veredeling en vermeerdering van pootgoed kunnen trage processen zijn in de conventionele aardappelveredeling. Als gevolg van de complexe genetica, de moeilijkheid om specifieke locaties aan te wijzen en de on-voorspelbaarheid van de veredeling, is er een gebrek aan genetische winst in aardappelopbrengst. Aangezien de con-ventionele aardappelveredeling afhankelijk is van volumineuze pootknollen, wat het verkrijgen van schoon uitgangs-materiaal moeilijk en praktisch inefficiënt maakt, komt daar nog een beperking bij.



Oplossing: Hybrideveredeling van diploïde aardappel is een oplossing om sneller te veredelen en schoon uitgangs-materiaal te verkrijgen. Eenvoudiger genetica maakt een snellere combinatie van gunstige eigenschappen door ver-edeling mogelijk. Specifieke gewenste eigenschappen, zoals resistentie tegen Phytophthora, kunnen relatief snel worden ingebracht door natuurlijke kruising. Vermenigvuldiging via echt zaad maakt het mogelijk om binnen twee jaar miljoenen ziektevrije zaden te produceren.

Problem: Both water and nitrogen stress in crops is a problem for agriculture across Europe and beyond. If irrigation cannot be scheduled, dry seasons lead to water stress in potato crops, resulting in yield losses and lower tuber quality. Furthermore, nitrogen stress can also cause similar problems on yields and lower tuber quality for potato crops. Nitrogen stress and deficiency in crops can be caused by excessive irrigation and heavy rains, because of nutrient leaching. The latter can also potentially contaminate local and ground water.



Solution: Pre-crops are used to improve soil structure and fertilization for the subsequent crops planted in the same field area. Using adequate pre-crops require less water and nitrogen fertilizer input. In west Switzerland, rye and soybean pre-crops for following potato crops have been tested, in very sandy, well-draining soils, where water use efficiency can be low. It was observed that yield losses were minimized with the pre-crops planted before.



Benefits: Choosing to use pre-crops can bring multiple benefits to farmer. Soil cover and organic matter can be thereby in-creased, while roots provide adequate structureand po-rosity. Additionally, water is a limited resource. With pre-crops, less water needs to be applied. In some circum-stances, pre-crops, such as soybean, can provide some livestock grazing. With improved nitrogen and water availability in soils due to pre-crops, financial costs of nitrogen fertilizer and till-age can be reduced. This, in conjunction with minimized yield losses, increases gross margins for farmers.



More infomation: https://zenodo.org/record/6045102

Problem: Intensive tillage-based agriculture is a major cause of soil degradation leading to surface runoff, soil erosion, soil organic matter decline and compaction. Soil management practices need to develop to ensure more sustainable and efficient use of resources.



Solution: Conservation agriculture is based on practices that minimise soil disturbance through no-tillage, maintain permanent soil cover with organic residues, and use a diverse range of crop species to ultimately improve both water conservation and nutrient efficiency in agricultural soils.



Benefits:

• Minimum soil disturbance and no-till crop establishment can considerably reduce the need for labour, machinery and fuel.

• Improved trafficability of undisturbed soils allows for the timely performance of field operations and the best tim-ing for the application of agrochemicals thus reducing the amounts necessary to apply.

• Permanent soil cover, increased soil organic matter content (Figure 1), higher aggregate stability and a more fa-vourable pore size distribution under conservation agriculture improve infiltration and available water retention while decreasing water losses through evaporation (Figures 2 and 4).



More information: https://zenodo.org/record/6045144

Problem

Intensive Ackerbaukulturen sind eine der Hauptursachen für die Degradierung der Böden, die zu Oberflächenabfluss, Bodenerosion, Rückgang der organischen Substanz und Verdichtung führen. Um eine nachhaltigere und effizientere Ressourcennutzung zu gewährleisten, müssen Bodenbewirtschaftungsmethoden weiter entwickelt werden.



Lösung

Die konservierende Landwirtschaft basiert auf Praktiken, die den Boden möglichst wenig stören. Hierzu gehören der weiterstmögliche Verzicht auf Bodenbearbeitung, eine dauerhafte Bodenbedeckung mit organischen Rückständen und eine Vielzahl von Kulturen zu verwenden, um letztlich sowohl den Wasserhaushalt als auch die Nährstoffeffizienz in landwirtschaftlichen Böden zu verbessern.



Praktische Empfehlungen

• Prüfen Sie Ihr Bodenprofil mit einem Penetrometer, um festzustellen, ob eine Bodenbearbeitung erforderlich ist.

• Stören Sie den Boden so wenig wie möglich, um eine maximale Bodenbedeckung zu ermöglichen (Abbildung 3).

• Möglicherweise müssen Sie Ihre Unkrautbekämpfungsstrategie bei der Anwendung von Direktsaat ändern; die Applikation von Herbiziden vor der Aussaat statt nach Pflanzenaufgang kann notwendig werden.

• Lassen Sie sich beraten, welche Direktsaatgeräte für Ihre Bodenbedingungen, Ihre Kulturen und Ihr Anbausystem am besten geeignet sind, z. B. kommen Scheibenseche besser mit größeren Mengen an Ernterückständen zurecht. Erwägen Sie eine Anpassung Ihrer Düngestrategien auf der Grundlage von Bodenanalysen und den Anforderungen der Kulturen/Böden.

• Planen Sie Ihre Fruchtfolge und die Bewirtschaftung von Ernterückständen sorgfältig und ziehen Sie den Einsatz von Deckfrüchten in Betracht.



https://zenodo.org/record/6563184

Problem: Application of nitrogen (N) fertilizer in excess of crop requirements is a common practice in agriculture, to ensure maximum production. However, this usually incurs an additional cost to farmers and increases environmental risk due to N losses.



Solution: Optical sensors can detect the nutritional status of crops before serious nutrient deficiencies become a growth limitation and be used to adjust N fertilizer rate and timing to meet crop requirements. This method has been developed for several crops (e.g., wheat, maize and potato) and under various environmental conditions. Optical sensors are available to buy or rent for carrying out measurements (Figure 1), although this is an additional cost for the farmer, in the long-term, they will benefit financially for saving N fertilizer costs. To mitigate varietal and environmental effects, it is advisable to have a reference band in the field with the recommended N rate. This will require an additional N fertilizer application to apply the recommended rate.



Benefits:

- Reduction of N fertilizer application with respect to the recommended rate with minimal risk of yield decrease.

- Reduced N fertilizer costs, resulting in improved profit margins.

- Improved timing of N fertilizer application to meet crop requirements.

- Improved nitrogen-use-efficiency, as the optimum fertilizer rate (i.e., maximum benefit) is ensured versus the maximum yield.

- N surplus is reduced, also reducing the risk of N losses that are harmful to the environment

Problema: La aplicación de fertilizantes de nitrógeno (N) por encima de las nece-sidades de los cultivos es una práctica agrícola común para garantizar la máxima producción. Sin embargo, suele ocasionar un coste adicio-nal a los agricultores y un aumento del riesgo ambiental debido a las pérdidas de N.



Solución: Los sensores ópticos pueden detectar el estado nutricional de los cultivos antes de que las deficiencias graves de nutrientes limiten su crecimiento. Además, permiten ajustar la dosis y el momento de fer-tilización para cumplir con las necesidades del cultivo. Este método ha sido desarrollado para varios cultivos (p. ej., trigo, maíz y patata) y bajo diversas condiciones ambientales. Los sensores ópticos se pue-den comprar o alquilar para realizar medidas (Figura 1), aunque supo-ne un coste adicional para el agricultor, a largo plazo se benefician económicamente por el ahorro de fertilizantes. Para mitigar los efec-tos de variedades y ambientales, es aconsejable tener una banda de referencia en campo con la dosis recomendada de N. Esto requiere un aporte adicional de N para conseguir la tasa recomendada.



Beneficios:

- Reducción de la aplicación de fertilizantes nitrogenados con un riesgo mínimo en la disminución del rendimiento.

- Reducción del coste de los fertilizantes nitrogenados, lo que se refleja en mayores márgenes de beneficio.

- Mejora en el momento de la aplicación del fertilizante para cumplir con las necesidades del cultivo.

- Mayor eficiencia del uso del N, ya que se garantiza la do-sis óptima de fertilizante (i.e., el máximo beneficio) frente al rendimiento máximo.

- Reducción del excedente de N y así también del riesgo de pérdidas de N perjudiciales para el medio ambiente.

Problem: Ploughing can cause negative effects, especially when water or nutrients are restricted. Specifically, ploughing destroys the soil aggregate and capillary structure, increases the mineralisation of soil organic matter and causes soil compaction, all impacting soil health and functions.



Solution: Mulch sowing is a method of reduced soil tillage, based on sowing a main crop into the crop residues of the previous crop or catch crop. The soil is loosened, but not turned, and only an upper, shallow layer is mixed thoroughly.



Benefits: The organic material remaining on the soil surface pro-tects the soil from crusting/sealing and erosion. The decomposing organic matter in the upper soil layer enriches the soil with humus. The lack of soil in-version preserves the soil structure, improving soil environment and thus the bearing capacity and water retention of the soil, as well as increasing the earthworm population. Reduced-till-age methods also usually reduce costs, including those re-lated to fossil fuel consumption, compared to ploughing.



Practical recommendations:

o Selection of suitable crops that are less susceptible to weeds as well as high-growth, nitrogen-efficient varieties.

o Plant winter grain legumes, cereals or oilseed rape after cereals, potatoes or other root vegetables.

o Apply green manure/intermediate crop for forage after silage maize, potatoes or cereals. (e.g. vetch- oats-peas mixture, mustard, cereal-grain legumes mixtures).

o Suitable machines for reduced tillage are a cultivator with wing-shares or over-lapping swing shares (i.e. disc harrow) and, for heavy clay soils, a stubble plough. Use a working depth of at least 10cm.



More information: https://zenodo.org/record/5211681

Problem: communication is an inherent part of scientific work. The greatest challenge is to reach the targeted audience. Today’s audience is shifting more and more towards nonconventional information sources on particular scientific issues and moving away from traditional online news media.



Solution: Twitter is becoming the ‘media of choice’ for the general public as well as scientists. This platform is an emporium of information where they can follow other users they are interested in, hear and share ideas, information and either scientific or empirical knowledge.



Benefits: A recent study (Côté and Darling, 2018) showed that below the threshold of 1000 followers, scientists are mainly followed by scientists as represented in Figure 1. In this case, the scientific audience is usually in-formed about recent scientific publications first in terms of funding and policies opportunities. Accounts with more than 1000 followers tend to attract a broader audience, including non-scientists such as farmers, farme advisors and other agricultural stakeholders, policy makers, and citizens. Non-scientific users can induce policy changes since decision-makers are particularly paying attention to public awareness.



More information: https://zenodo.org/record/5211675

Problème: La communication fait partie intégrante du travail scientifique. Le plus grand défi est d'atteindre le public ciblé. Aujourd’hui, le public se tourne de plus en plus vers des sources d'information non conventionnelles sur des questions scientifiques particulières et s'éloigne des médias d'information en ligne traditionnels.



Solution: Twitter est devenu le "média de prédilection" du grand public et des scientifiques. Cette plateforme accueille un grand reservoir d’informations et permet à chacun de suivre d'autres utilisateurs qui l’intéressent, d’entendre et de partager des idées, des informations et des connaissances, qu’elles soient scientifiques ou empiriques.



Advantages: Une étude récente (Côté et Darling, 2018) a montré qu'en dessous du seuil de 1000 followers, les scienti-fiques sont principalement suivis par d’autres scientifiques (figure 1). Dans ce cas, le public scientifique est généralement informé en premier lieu au travers de publications en lien avec des opportunités de financement et d’actualités politiques. Les comptes de plus de 1000 followers ont tendance à attirer un public plus large, comprenant des non-scientifiques tels que des agriculteurs, des conseillers agricoles et d'autres acteurs du monde agricole, des décideurs politiques et des citoyens. Les utilisateurs non-scientifiques peuvent induire des changements de politique puisque les décideurs sont particulièrement attentifs aux opinions publiques.



Pour plus d'informations: https://zenodo.org/record/6045255

Problem: European agriculture is challenged by the need to produce more crops using less fertilizer inputs (mainly nitrogen and phosphorus) and with more frequent or intense periods of drought.



Solution: Microbial inoculants are agricultural amendments containing beneficial microorganisms (bacteria or fungi) that pro-mote plant health or growth. Within the SolACE project, microbial inoculants have been selected for improving growth of bread wheat and potato crops under combined nutrient and water shortages. Carriers adapted to the selected microbial inoculants were developed to ensure survival over time and easy application by the farmers. DCM Minigran® technology has been used to develop granular carriers of these selected microbial inoculants.



Benefits: DCM Minigran® technology allows to:

• develop granular microbial inoculant formulations with complex consortia of fungi and bacteria for synergistic effects on plants,

• optimize microbial shelf life by a specifically engineered Minigran® composition and formulation,

• apply all selected microbial inoculants in a single appli-cation step and close to the seeds or seed tubers, reduc-ing the number of microorganisms needed,

• employ existing machinery such as microgranule spreaders,

• comply with European Union regulation of organic farming,

• and grow more resilient plants under nutrient-stress and drought conditions.



More information: https://zenodo.org/record/5159671

Probleemstelling: Door de stijgende vraag naar meer duurzame landbouw met minder meststoffen (stikstof en fosfor) en door toenemende perioden van langdurige droogte, staat de Europese landbouw momenteel voor grote uitdagingen.



Oplossing: Microbiële inoculatiemiddelen zijn bodemverbeteraars en/of biostimulanten met nuttige micro-organismen (bacteriën of schimmels) die vooral in de biologische landbouw gebruikt worden om de groei en gezondheid van planten te bevorderen. In het kader van het SolACE project werden microbiële inoculatiemiddelen geselecteerd op basis van hun capaciteit om plantengroei te bevorderen onder gecombineerde droogte- en nutriëntenstress bij broodtarwe en aardappel. D.m.v. de DCM Minigran® technologie (Fig. 1) werden korrelvormige dragers ontwikkeld om de werkzaamheid van de microbiële inoculatiemiddelen gedurende langere tijd te kunnen waarborgen en een gebruiksvriendelijke toepassing in de praktijk mogelijk te maken.



Voordelen:

•Korrelvormige formuleringen van microbiële inoculatie-middelen te ontwikkelen met complexe consortia van schimmels en bacteriën die een synergetisch effect op de plant kunnen hebben. •De houdbaarheid van de micro-organismen te optimalise-ren dankzij de specifiek ontwikkelde Minigran® samenstel-ling en formulering. •Alle microbiële inoculatiemiddelen in één stap aan te brengen, dicht bij het zaad of bij de knollen, waardoorminder product nodig is.



Voor meer informatie: https://zenodo.org/record/6045326

Problem: Mycorrhizal products offered as bio-fertilizers and plant strengtheners by many companies are rather expensive and often lack quality con-trol.



Solution: This practice abstract provides an easy-to-follow guide describing the process on how to produce home-made mycorrhizal inoculants and how they can be applied as bio-fertilizers in the nursery and during field transplantation of crop plants.



Outcome: Application of mycorrhizal fungi is a simple technique for im-proving the growth as well as tolerance against biotic and abiotic stresses of a wide range of crop plants. In addition, they can help to improve the soil structure and to prevent nutrient leaching.



Recommendations:

• Propagation unit: Depending on the required amount of mycorrhizal inocula, different types of propagation units can be established: container, pot or concrete units. Container units consist of a plastic beaker with holes at the bottom (to allow water passage) (figure 1a), concrete units consists of a tank made e.g. from cement or PVC tubes (figure 1b), and pot units of two pots with a garden fleece in between (to prevent inoculate leakage) (figure 1c). Beaker and pot units should be placed on a hard surface (e.g. stone, wood or a saucer) to prevent roots growing through. Units should be placed in a wind and rain protected place.

• Propagation substrate: The propagation substrate consists of 1 part sand mixed with 9 parts co-substrate such as Perlite or Vermiculite. Light co-substrate are recommended in order to facilitate the handling and transport. For fertilization urea (100 mg nitrogen per kg substrate) and/or mature, pathogen-free compost (1% of the sub-strate) is mixed into the substrate.



More information: https://zenodo.org/record/3385633

Problem: Mykorrhizaprodukte, die von vielen Unternehmen als Biodünger und Pflanzenstärkungsmittel angeboten werden, sind recht teuer und unterliegen oft keiner Qualitätskontrolle.



Lösung: Dieser Praxistipp enthält eine praxisorientierte Anleitung für die Herstellung von eigenen Mykorrhiza-Impfstoffen und ihre Verwendung als Biostimulanzien in Baumschulen und bei der Verpflanzung von Nutzpflanzen.



Vorteile: Der Einsatz von Mykorrhizapilzen ist eine einfache Methode zur Verbesserung des Wachstums und der Toleranz gegenüber biotischen und abiotischen Stressfaktoren bei einer Vielzahl von Kulturpflanzen. Daneben können sie dazu beitragen, die Bodenstruktur zu verbessern und die Auswaschung von Nährstoffen zu verhindern.



Gyakorlati tanácsok

Szaporítóedény: A szükséges mikorrhizált oltóanyag mennyiségétől függően vödröt, betonedényt vagy műanyag cserepeket lehet alkalmazni. A vödrös verzió egy alul (a túlcsorgó víz kifolyása érdekében) lyukakkal ellátott műanyag vödör (1a ábra), a betonedények betonból készített tartályok (1b ábra), a műanyag cserepesek pedig két cserépből állnak, amelyek között fátyolfólia található az oltóanyag szivárgásának megelőzése érdekében (1c ábra). A vödröt, illetve a cserepekből álló egységeket gyökerek által át nem járható szilárd felületre kell helyezni, szél- és esővédett helyen.

Közeg: A közeg 1 rész homokból és 9 rész segédanyagból (pl. perlit vagy vermikulit) áll, amelyeket összekeverünk. Könnyű segédanyag használata javasolt a kezelés és a szállítás megkönnyítése érdekében. Tápanyag-utánpótlásként egy kevés (1%), kórokozóktól mentes érett komposztot adjunk a közeghez.



https://zenodo.org/record/6557495

Problem: Dry periods after harvesting cereals increase the difficulty of sowing a new ley. The tradition of sowing in July/August can therefore be risky.



Solution: Sowing a grass-clover ley into the cereal crop in March/April uses the residual soil moisture from winter for the establishment of the ley. In most cases, the sowing is successful. Under the shade of the cereal crop, the ley develops without becoming a competitor or interfering with the harvest. After removing the straw, the undersown ley quickly develops, forming a dense sward.



Advantages:

• Higher yields in grass-clover leys due to earlier devel-opment

• Better establishment in dry summers

• Seamless transition from cereals to grass-clover ley without ploughing or other soil tillage.

• A few weeks after cereal harvest the fully-grown ley can be used for cutting or grazing.

• Rather good suppression of annual weeds



Disadvantages:

• Presence of perennial weeds, such as docks, is increased due to a lack of stubble cultivation.

• Mechanical weed control is no longer possible.

• It is not possible to restore the soil once it has been compacted by the harvester.

• Uneven establishment of grass-clover leys due to soil compaction from heavy harvesters



Practical recommendations:

• The ley is undersown in spring (March/April), between tillering and bolting of the cereal (preferably be-fore a wet period, as the crop cannot be rolled).

• The ley is best sown with a seeder for grass-clover, in combination with a harrow passage.

• Several clover mixtures are possible; farms without livestock may also use only white or red clover.



More information: https://zenodo.org/record/3529114

Expected results from SolACE are:

New crop varieties, especially hybrids of bread wheat and potato, and agronomical innovations to cope with combined water and nutrient stresses;

Better knowledge and use of N derived from legumes for the next crop in a rotation;

Better understanding of below-ground responses to water and nutrient limitations;

Tools for the training of farmers and farm advisors on the importance of below- and above-ground processes / traits for resource use efficiency;

Below-ground traits introduced as a novel concept for breeders;

Co-creation, and co-evaluation of plant material and agroecological innovations with small and large companies;

Identification of barriers / drivers for the uptake of agroecological innovations, including at regulatory /legislative levels.

Expected results from SolACE are:

New crop varieties, especially hybrids of bread wheat and potato, and agronomical innovations to cope with combined water and nutrient stresses;

Better knowledge and use of N derived from legumes for the next crop in a rotation;

Better understanding of below-ground responses to water and nutrient limitations;

Tools for the training of farmers and farm advisors on the importance of below- and above-ground processes / traits for resource use efficiency;

Below-ground traits introduced as a novel concept for breeders;

Co-creation, and co-evaluation of plant material and agroecological innovations with small and large companies;

Identification of barriers / drivers for the uptake of agroecological innovations, including at regulatory /legislative levels.

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Contacts

Project coordinator

  • Project coordinator

Project partners

  • Project partner