Sections
project - Research and innovation
AGROinLOG - Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe
AGROinLOG - Demostración de centros lógisticos integrados de biomasa innovadores para el sector agroindustrial en Europa
Objectives
AGROinLOG aims to implement and demonstrate the technical, environmental and economic feasibility of Integrated Biomass Logistics Centers (IBLCs) for food and non-food products into existing agro-industries.
An IBLC takes advantage of the facilities of an agro-industry, its network of contacts and its waste or non-used local resources to create new activities and obtain new bio products such as biomass, biofuels or raw materials for other sectors
Objectives
AGROinLOG pretende implementar y demostrar la viabilidad técnica, medioambiental y econόmica de los Centros Logísticos de Biomasa Integrados (IBLCs) para la obtenciόn de productos alimenticios y no alimenticios en las agroindustrias. Un IBLC aprovecha las instalaciones de una agroindustria, su red de contactos y sus residuos o recursos no explotados para diversificar su actividad regular y obtener nuevos bio-productos tales como biomasa, bio-combustibles líquidos o materias primas para otros sectores.
Activities
An IBLC integrated into an agro-industry refers to the start of a new biomass activity, integrating a new non-food value chain into the existing food chain. The new activity involves field harvesting, collection and procurement of the biomass resources towards the agro-industry, the use of residues, and their transformation into bio-commodities and intermediate bio-products for new markets. AGROinLOG will test the IBLC concept in 3 agro-industries (Fodder, olive oil and cereal) sectors that are willing to deploy new business lines in their facilities to open new markets in bio-commodities (energy, transport and manufacturing) and intermediate bio-products (transport and biochemicals).
Activities
Un IBLC integrado en una agroindustria persigue la puesta en marcha de una nueva actividad en relaciόn a la biomasa, integrando una nueva cadena de valorizaciόn no alimentaria en la cadena alimenticia actual. La nueva actividad implica llevar los recursos biomásicos de la recolecciόn en campo a la agroindustria, el uso de los residuos, y su transformaciόn en bio-productos o bio-compuestos intermedios para nuevos mercados. AGROinLOG testará el concepto IBLC en 3 agroindustrias piloto (Industria forrajera, aceite de oliva, cerealista) que desea desarrollar nuevas líneas de negocio en sus instalaciones para abrir nuevos mercados de bio-productos y bio-compuestos intermedios.
Additional information
Τhese pilots will develop new logistics chains and will adapt the
existing equipment to the new production. AGROinLOG will evaluate the technical, financial and environmental feasibility of their new activity and the final quality of the new products. Afterwards, the replication potential of AGROinLOG business model will be studied in other 7 agro-industries of different sectors. The project will prepare and evaluate the business models for the new IBLCs deployment
Project details
- Main funding source
- Horizon 2020 (EU Research and Innovation Programme)
- Type of Horizon project
- Multi-actor project
Location
- Main geographical location
- Zaragoza
EUR 6 385 661.00
Total budget
Total contributions including EU funding.
Project keyword
45 Practice Abstracts
But, what does an IBLC do? An IBLC takes advantage of the facilities of an agro-industry, its network of contacts and its own residues or non-used local resources, to create new activities and obtain new bio products, such as biomass, biofuels or raw materials for other sectors.
AGROinLOG tested the IBLC concept in three real experimental plants. In Spain at a fodder industry, in Greece at an olive oil industry, and in Sweden inside a grain-milling industry.
With these pilots, a new logistics chain was developed and the existing equipment was adapted to the new production. In addition, the technical, financial, and environmental feasibility of the new activity and the final quality of the new products was evaluated.
After analysing these three industries, the project studied how to replicate the IBLC business model in other agro-industries from different sectors.
As a result of these measures, European agro-industries may be able to create a new activity with lower investment, stabilizing their annual activity (avoiding idle periods) and maintaining or creating new jobs
Pero, ¿qué hace un IBLC? Un IBLC aprovecha las infraestructuras de una agroindustria, su red de contactos, sus residuos o los recursos de su entorno no utilizados para crear nuevas actividades y obtener nuevos bioproductos, como biomasa, biocombustibles o materias primas para otros sectores.
AGROinLOG testará el concepto de IBLC en 3 instalaciones piloto reales. En España en una industria de forraje, en Grecia en una de aceite de oliva, y en Suecia en una de cereal.
En estos pilotos se desarrollará una nueva cadena logística y se adaptarán los equipos existentes a la nueva producción. Además, se evaluará la viabilidad técnica, económica y medioambiental de la nueva actividad y la calidad final de los nuevos productos.
Después de analizar estos tres sectores se estudiará cómo reproducir el modelo de negocio de un IBLC en otras 6 agro-industrias de sectores diferentes.
Gracias a estas medidas las agroindustrias podrán crear una nueva actividad con una inversión inferior, consiguiendo ahorros económicos de 1-2 millones de euros/año durante la primera década.
Pero lo más importante: se generarán nuevas líneas de negocio aumentando sus ingresos en más de un 12%, estabilizando su actividad anual (evitando periodos de inactividad) y manteniendo o creando puestos de trabajo.
In the case of the olive oil and wine sectors, a wide range of by-products are generated during the extraction processes in wine cellars and olive mills. These by-products are treated respectively in distilleries and olive pomace oil industries, which own fully compatible equipment with the processing of biomass. This means less investment would be needed in these agro-industries at the time of starting-up a new IBLC. Moreover, these sectors have very close access to agricultural waste such as the vineyard and olive groves prunings, that are usually burnt or left in the field without any valorisation.
Despite the overall good potential of the wine sector, due to the economic crisis, investment in innovation over the last years has been very low. This aspect should be addressed to encourage diversification within wine industries and expand their current activities.
Due to the vast amount of by-products that olive oil sector produce, the good market opportunities, the synergies, and the possibility of finding solutions for the logistical barriers identified, this sector was found to be the most promising one to start-up IBLC's in Greece.
In the case of the olive oil and wine sectors, a wide range of by-products are generated during the extraction processes in wine cellars and olive mills. These by-products are treated respectively in distilleries and olive pomace oil industries, which own fully compatible equipment with the processing of biomass. This means less investment would be needed in these agro-industries at the time of starting-up a new IBLC. Moreover, these sectors have very close access to agricultural waste such as the vineyard and olive groves prunings, that are usually burnt or left in the field without any valorisation.
Despite the overall good potential of the wine sector, due to the economic crisis, investment in innovation over the last years has been very low. This aspect should be addressed to encourage diversification within wine industries and expand their current activities.
Due to the vast amount of by-products that olive oil sector produce, the good market opportunities, the synergies, and the possibility of finding solutions for the logistical barriers identified, this sector was found to be the most promising one to start-up IBLC's in Greece.
The grain chain and vegetable oil extraction sectors are dominant as they generate significant amounts of by-products and residues, both during the primary production and the industrial processing, that can be used as feedstock for solid biofuels (e.g. agro pellets). Recent development of pellet production and specialized combustion equipment for this type of fuel have opened the opportunities for utilization of these agro residues.
Besides, in the sector of vegetable oil extraction it exists a constant surplus in processing capacities, which also constitutes a potential opportunity for IBLC implementation, however, logistics is an obstacle for market development.
The sugar industry sector generates two residues and by-products: sugar beet and molasses. However, at this moment there are no capacities in Serbia for the production of either biogas from sugar beet press or bioethanol from molasses. Moreover, EU quota regime raise uncertainty on market prices and revenues.
Wine sector was found as a suitable one for establishing IBLC, although logistic bottlenecks should be overcome as well as a differentiation between low and high added value products.
The feed and fodder sector has not biomass related residues, but has a significant surplus of processing capacities that could be used for processing grain and vegetable biomass feedstock, generated by other sectors, into solid biofuels.
Thus, the Serbian agro-industry has potential for implementing the IBLC concept in vegetable oil extraction sector, wine sector, sugar industry and grain sector.
The grain chain and vegetable oil extraction sectors are dominant as they generate significant amounts of by-products and residues, both during the primary production and the industrial processing, that can be used as feedstock for solid biofuels (e.g. agro pellets). Recent development of pellet production and specialized combustion equipment for this type of fuel have opened the opportunities for utilization of these agro residues.
Besides, in the sector of vegetable oil extraction it exists a constant surplus in processing capacities, which also constitutes a potential opportunity for IBLC implementation, however, logistics is an obstacle for market development.
The sugar industry sector generates two residues and by-products: sugar beet and molasses. However, at this moment there are no capacities in Serbia for the production of either biogas from sugar beet press or bioethanol from molasses. Moreover, EU quota regime raise uncertainty on market prices and revenues.
Wine sector was found as a suitable one for establishing IBLC, although logistic bottlenecks should be overcome as well as a differentiation between low and high added value products.
The feed and fodder sector has not biomass related residues, but has a significant surplus of processing capacities that could be used for processing grain and vegetable biomass feedstock, generated by other sectors, into solid biofuels.
Thus, the Serbian agro-industry has potential for implementing the IBLC concept in vegetable oil extraction sector, wine sector, sugar industry and grain sector.
For instance, olive pomace oil industries, distilleries and fodder dehydration industries own fully compatible equipment with the processing of biomass, have access to agricultural by-products and have experience with biomass valorisation (mainly for energy purposes). Some others, such as the vegetable oil extractors and grain dehydrators have partially compatible equipment that can be suitable to process some types of biomass. In the case of wine cellars and oil mills, although they do not possess compatible equipment, they have other assets such as storage sites and workforce, that could be very useful for the IBLC activity.
Therefore, in terms of the analysed sectors olive oil and wine sectors have been identified as the most favourable ones for establishing an IBLC due to the large volume of agricultural by-products and the good market opportunities already known and established.
Despite the fact that many bioproducts have been identified as feasible alternatives for diversification, low market activity together with the high investments that most of these agro-industries would need to afford to start-up an IBLC are consider to be the main barriers that prevent many of them to implement biomass valorisation activities.
For instance, olive pomace oil industries, distilleries and fodder dehydration industries own fully compatible equipment with the processing of biomass, have access to agricultural by-products and have experience with biomass valorisation (mainly for energy purposes). Some others, such as the vegetable oil extractors and grain dehydrators have partially compatible equipment that can be suitable to process some types of biomass. In the case of wine cellars and oil mills, although they do not possess compatible equipment, they have other assets such as storage sites and workforce, that could be very useful for the IBLC activity.
Therefore, in terms of the analysed sectors olive oil and wine sectors have been identified as the most favourable ones for establishing an IBLC due to the large volume of agricultural by-products and the good market opportunities already known and established.
Despite the fact that many bioproducts have been identified as feasible alternatives for diversification, low market activity together with the high investments that most of these agro-industries would need to afford to start-up an IBLC are consider to be the main barriers that prevent many of them to implement biomass valorisation activities.
In the vegetable oil sector rapeseed is the most common crop. Oil extraction process does not generate large amounts of residues and extraction industries do not usually have idle periods since they have a continued activity all over the year.
Grain processing industry is currently researching on increasing value from residues such as husks. These are usually incinerated in boilers for steam and heat production demanded by the surrounding houses. Researches on bioplastics from brans are being carried out too.
Biomass residues produced at feed and fodder industries are low to none and mostly reused in feedstuff products. If animal production decreases and, consequently, surplus capacity is increased, this situation may benefit the establishment of IBLC.
Therefore, Swedish grain and sugar sectors have an interesting potential, both from the production and market point of view. In vegetable oil and feed and fodder the opportunities are limited due to the lack of market opportunities and low volume of residues.
In the vegetable oil sector rapeseed is the most common crop. Oil extraction process does not generate large amounts of residues and extraction industries do not usually have idle periods since they have a continued activity all over the year.
Grain processing industry is currently researching on increasing value from residues such as husks. These are usually incinerated in boilers for steam and heat production demanded by the surrounding houses. Researches on bioplastics from brans are being carried out too.
Biomass residues produced at feed and fodder industries are low to none and mostly reused in feedstuff products. If animal production decreases and, consequently, surplus capacity is increased, this situation may benefit the establishment of IBLC.
Therefore, Swedish grain and sugar sectors have an interesting potential, both from the production and market point of view. In vegetable oil and feed and fodder the opportunities are limited due to the lack of market opportunities and low volume of residues.
Sugar industry sector generates primarily two residues and by-products: sugar beet and molasses, used for producing biogas (sugar beet) and bioethanol (molasses). Moreover, some industries have experience in using it for powering the sugar plants. For sugar beet, it is used in their own plant due to difficulties in transporting it, and molasses can be stored, transported, and processed in the distilleries which have surplus processing capacity.
The feed and fodder sector has not biomass related residues, but has a significant surplus of processing capacities that could be used for dehydrating or granulating biomass feedstock generated by other sectors. On the contrary, grain sector industries were found to generate significant amounts of by-products and residues that can be used as feedstock for solid biofuels (e.g. straw pellets).
The vegetable oil extraction sector generates significant amounts of by-products and residues, both during the primary production and the industrial processing. In this sector exists a constant surplus in processing capacities, which constitutes a great potential opportunity for IBLC concept implementation, since the logistics seems to be the main obstacle for further development of this market. However, more investment in innovation at vegetable oil extraction industries would probably encourage them to implement alternative activities in their facilities.
Solid biofuels show an increasing demand in Ukraine over the last years, therefore, there are good market opportunities that agro-industries should try to exploit.
Sugar industry sector generates primarily two residues and by-products: sugar beet and molasses, used for producing biogas (sugar beet) and bioethanol (molasses). Moreover, some industries have experience in using it for powering the sugar plants. For sugar beet, it is used in their own plant due to difficulties in transporting it, and molasses can be stored, transported, and processed in the distilleries which have surplus processing capacity.
The feed and fodder sector has not biomass related residues, but has a significant surplus of processing capacities that could be used for dehydrating or granulating biomass feedstock generated by other sectors. On the contrary, grain sector industries were found to generate significant amounts of by-products and residues that can be used as feedstock for solid biofuels (e.g. straw pellets).
The vegetable oil extraction sector generates significant amounts of by-products and residues, both during the primary production and the industrial processing. In this sector exists a constant surplus in processing capacities, which constitutes a great potential opportunity for IBLC concept implementation, since the logistics seems to be the main obstacle for further development of this market. However, more investment in innovation at vegetable oil extraction industries would probably encourage them to implement alternative activities in their facilities.
Solid biofuels show an increasing demand in Ukraine over the last years, therefore, there are good market opportunities that agro-industries should try to exploit.
NUTRIA is an olive oil refinery plant that produces standardized olive oil, olive pomace oil and seed oils. Farmers collect olives from late October until December and the olive milling operates on a seasonal basis as well (October – March).
NUTRIA looked at starting a new business line taking advantage of the idle periods and idle equipment (e.g., dryers) and of some residues or wastes, as follows:
• Use of olive tree pruning resources as a supplementary feedstock for the production of solid biofuels (pellets and chips) for the energy market (heating) or bio-commodities for the production of particle boards.
• Extraction of useful chemicals from residual streams for application in the pharmaceutical or cosmetics industry.
This passed through the use of a pomace mill facility for Two Phase Olive Mill Waste (TPOMW) and the development of a logistics chain for the utilization of biomass from pruning.
NUTRIA is an olive oil refinery plant that produces standardized olive oil, olive pomace oil and seed oils. Farmers collect olives from late October until December and the olive milling operates on a seasonal basis as well (October – March).
NUTRIA looked at starting a new business line taking advantage of the idle periods and idle equipment (e.g., dryers) and of some residues or wastes, as follows:
• Use of olive tree pruning resources as a supplementary feedstock for the production of solid biofuels (pellets and chips) for the energy market (heating) or bio-commodities for the production of particle boards.
• Extraction of useful chemicals from residual streams for application in the pharmaceutical or cosmetics industry.
This passed through the use of a pomace mill facility for Two Phase Olive Mill Waste (TPOMW) and the development of a logistics chain for the utilization of biomass from pruning.
APS is dedicated to the production of dehydrated forage in bales or pellet formats. The main raw material used for their core activity is lucerne. This activity takes place mainly between the months from April to November, since the arrival of the loose raw material is what mainly defines the timeframe of the production. The pelletization line operates the whole year according to customers’ needs and electrical tariffs although between the months of December to March the production capacity is reduced.
APS looked at starting a new business line taking advantage of the idle period of the equipment in their plant from December to March. During this time, biomass pellets were produced for different purposes, mainly energy but also other applications such as bio boards, adsorbent, thermoplastics among others.
It was estimated that APS can work in an alternative business line between 615 to 2050 hours/year depending on the year, without interrupting their current activity.
APS se dedica a la producción de forraje deshidratado en formato paca o pellet, siendo la principal materia prima utilizada la alfalfa. Esta actividad se lleva a cabo principalmente entre los meses de abril a noviembre, ya que la llegada de la materia prima es lo que define principalmente el plazo de producción. La línea de peletización opera todo el año de acuerdo con las necesidades de los clientes y las tarifas eléctricas, aunque entre los meses de diciembre a marzo la capacidad de producción se reduce.
APS consideró comenzar una nueva línea de negocio aprovechando el período de inactividad de los equipos en su planta de diciembre a marzo. Durante este tiempo, los pellets de biomasa se produjeron para diferentes objetivos, principalmente para uso energético, pero también para otras aplicaciones como producción de biotableros, adsorbentes, y termoplásticos reforzados con fibras naturales, entre otros.
Se estimó que APS puede trabajar en una línea de negocio alternativa entre 615 y 2050 horas / año, dependiendo del año, sin interrumpir su actividad actual.
Lantmännen integrates around 29.000 farmers working from August to October and delivering 1.2 Mt/year of grain to the plant to produce flour for food, animal feed and bioethanol. Apart from the grain, the Swedish farmers produce straw, which is partially harvested and used for feed or bedding. However, a significant part has no use today and is ploughed down into the soil.
Lantmännen looked at starting a new business line based on the use of the cereal straw as a non-food feedstock in the current process of producing bioethanol, ensuring that the bioethanol plant is working throughout the year at its maximum capacity. The challenge was to handle the by-product, a lignin rich residue that has a high value if refined into a product such as liquid fuel or bio-material. The profitability of the straw value chain increases by producing both, ethanol and products of higher value from the lignin (Sulphur free bio-oil to be used as biodiesel enhancer). Another challenge was to create a new logistics chain in order to deliver straw along the year, as straw is a seasonal resource.
Lantmännen integrates around 29.000 farmers working from August to October and delivering 1.2 Mt/year of grain to the plant to produce flour for food, animal feed and bioethanol. Apart from the grain, the Swedish farmers produce straw, which is partially harvested and used for feed or bedding. However, a significant part has no use today and is ploughed down into the soil.
Lantmännen looked at starting a new business line based on the use of the cereal straw as a non-food feedstock in the current process of producing bioethanol, ensuring that the bioethanol plant is working throughout the year at its maximum capacity. The challenge was to handle the by-product, a lignin rich residue that has a high value if refined into a product such as liquid fuel or bio-material. The profitability of the straw value chain increases by producing both, ethanol and products of higher value from the lignin (Sulphur free bio-oil to be used as biodiesel enhancer). Another challenge was to create a new logistics chain in order to deliver straw along the year, as straw is a seasonal resource.
Lantmännen has good IBLC preconditions to widen its current business model with production of second-generation ethanol. It has well-established contacts with farmers and suppliers, a sales organisation for straw and ethanol, etc.
Lantmännen can produce ethanol from straw and has successfully learned to produce biooil with high yield from the lignin fraction remaining after ethanol production. Wastewater from the production can be utilised for biogas production. Thus, the profitability of the business model is based on three products (ethanol, biooil and biogas), thereby spreading the risks.
There are a wide range of possible markets and applications for the biooil. For most applications, however, the biooil needs to be upgraded to some extent, which significantly increases the investment costs. No market for the biochar produced in the project has been identified, mainly due to the high ash content.
The current business model for the demonstration case is estimated to give a net profit, although not enough to be economically viable. The major challenges are the high cost of straw, enzymes for hydrolysis and operation of the biooil unit. Scaling up the biooil unit and possibly also introducing an additional raw material source might help to improve the economic viability of the business model.
Lantmännen har goda IBLC-förutsättningar för att utvidga sin nuvarande affärsmodell med produktion av andra generationens etanol. De har väletablerade kontakter med jordbrukare och leverantörer, en försäljningsorganisation för halm och etanol, etc.
Lantmännen kan producera etanol från halm och har framgångsrikt lärt sig att producera bioolja med högt utbyte från den ligninrest som återstår efter etanolproduktion. Avloppsvatten från produktionen kan användas för biogasproduktion. Således bygger affärsmodellens lönsamhet på tre produkter (etanol, bioolja och biogas) och därmed sprids riskerna.
Det finns flera möjliga marknader och applikationer för biooljan. För de flesta applikationer måste dock biooljan uppgraderas till viss del, vilket avsevärt ökar investeringskostnaderna. Ingen marknad har identifierats för den biokol som produceras, främst på grund av det höga askinnehållet.
Den nuvarande affärsmodellen för demonstrationsfallet beräknas ge en nettovinst, men inte tillräckligt för att vara ekonomiskt hållbar. De stora utmaningarna är de höga kostnaderna för halm, enzymer för hydrolys och drift av biooljaenheten. Att skala upp biooljaenheten och eventuellt införa en ytterligare råvara kan bidra till att förbättra affärsmodellens ekonomiska livskraft.
Thus, an IBLC is defined as a business strategy for agro-industries to take advantage of available capacities (in terms of facilities, equipment, waste, non-used local resources and staff) as a resource for the processing of biomass as renewable feedstock for bioenergy and/or biorefinery markets.
For existing agro-industries, there are three important drivers to develop an IBLC:
1. diversification of inputs: by using extra feedstock types (not only food or feed but also non-food biomass residues);
2. optimization of available and new capacity: by optimizing its existing processing capacity that already has fixed (capital) costs or by expanding its processing capacity with extra (pre-treatment) capacity with low additional investment costs;
3. diversification of outputs: by obtaining extra revenues from delivering new output types; not only food or feed but also supplying biobased (intermediate) products such as bioenergy (electricity and heat), biofuels, biomaterials and biochemicals to new markets.
Así, un IBLC se define como una estrategia de negocio para un aprovechamiento más eficiente por parte de las agroindustrias de su capacidad disponible (en términos de instalaciones, equipos, residuos, recursos locales no utilizados y personal), a través del procesamiento de biomasa residual renovable destinada a los mercados de bioenergía y/o biorrefinería.
Tres factores a tener en cuenta por las agroindustrias a la hora de desarrollar un IBLC son:
1. Diversificación de los insumos: mediante la utilización de biomasa residual para otros usos;
2. Optimización de la capacidad disponible: a través de un aprovechamiento más eficiente de las inversiones ya realizadas en instalaciones y equipos y/o complementarlas con capacidad adicional a menor coste;
3. Diversificación de la producción: obtención de ingresos adicionales por la fabricación de nuevos productos como los bio-compuestos, biocarburantes, biomasa sólida para la producción de bioenergía (electricidad y calor) y productos bioquímicos a otros mercados.
HTL is a thermal depolymerising process used to convert wet biomass into liquid oil, sometimes called bio-oil or bio-crude. The process takes place at high pressure and temperature (i.e. 200 bar, 300 degrees Celsius) in a water medium. This process was studied already in the 1920’s and has been considered interesting as supplement to the use of crude oil.
The process is based on wheat straw which is pre-treated to release the cellulose, hemicellulose and lignin. The hydrolysis of the pre-treated material releases individual sugars from the carbohydrates, which ferment then into ethanol (26% yield). The lignin remaining after this process (ca. 50% yield) undergone the Hydrothermal Liquification (HTL) which result to bio-oil (55% yield of the lignin fraction) and biochar (3% yield of the lignin fraction).
The HTL process has some technical challenges that need to be solved and to ensure its profitability, markets for the bio-oil and bio-char produced should also be identified.
Hydrotermisk förvätskning (HTL) är en termisk depolymeriseringsprocess som används för att omvandla våt biomassa till flytande olja - ibland kallad bioolja eller biocrude. Processen sker under höga tryck och temperaturer (tex 200 bar, 300 grader C) i vattenmedia. Processen undersöktes redan under 1920-talet och har ansetts intressant som komplement till användning av råolja.
Processen utgår från vetehalm som förbehandlas för att frigöra cellulosa, hemicellulosa och lignin. Hydrolys av förbehandlat materialet frigör enskilda sockerarter från kolhydrater, dessa fermenteras sedan till etanol (26% utbyte). Ligninresten (ca. 50% utbyte) genomgår en hydrotermisk förvätskning (HTL) som ger bioolja (55% utbyte av ligninfrkation) och biokol (3% utbyte av ligning fraktion).
Processen har en del tekniska utmaningar som måste lösas och för att få ekonomisk nytta så måste tillämpningar för de producerade oljorna också identifieras.
• • Innovative bio-composites boards: Their characteristics are within the suitable range for bioboards but a little bit worse than the current material used. Thus, the manufacturer was only willing to pay a price which is much lower than the production cost of these pure herbaceous pellets, so no feasible by now.
• Thermoplastics reinforced with natural fibres: The herbaceous pellets are processable by injection with Polypropylene. The bending mechanical tests revealed that the wheat-derived materials support more strength than the materials with corn, while in the tensile mechanical tests no significant differences were observed. Polypropylene with 20 wt. % wheat fibre was found to be the most suitable material.
• Adsorbent for hydrocarbons: Corn samples showed higher mass adsorbency values than wheat samples, with no significant differences. The advantages when compared with commercial adsorbents are: lower production costs, similar adsorbency properties and 100 % natural products. By contrast, they present greater volumes and a very careful handling is required to avoid any risks.
• Activated carbon for supercapacitors: Highly microporous materials were obtained from agro-waste biomass with very good electrochemical properties as supercapacitors. Best results at the conditions evaluated were found for the corn-derived biomass prepared by slow pyrolysis and CO2 activation at 800°C.
• Biotableros: sus características están en el rango adecuado para los biotableros. El fabricante solo estaba dispuesto a pagar un precio que es mucho más bajo que el coste de producción de estos pellets herbáceos puros, por lo que ahora no es factible.
• Termoplásticos reforzados con fibras naturales: los pellets herbáceos son procesables por inyección con polipropileno. Los ensayos mecánicos de flexión revelan que los materiales derivados del trigo soportan más resistencia que los materiales con maíz, mientras que en las pruebas mecánicas de tracción no se observan diferencias significativas. Se demostró que el material más adecuado es polipropileno con 20% de peso de fibra de trigo.
• Adsorbente para hidrocarburos: las muestras de maíz mostraron valores de adsorción de masa más altos que las muestras de trigo, sin diferencias significativas. Ventajas respecto a adsorbentes comerciales: menores costos de producción, propiedades de adsorción similares y productos 100% naturales. Al contrario, presentan mayor volumen y requiere manejo cuidadoso para evitar riesgos.
• Carbón activado para supercondensadores: se obtienen materiales altamente microporosos a partir de biomasa de residuos agrícolas con buenas propiedades electroquímicas como supercondensadores. Se encontraron los mejores resultados en las condiciones evaluadas para la biomasa derivada del maíz preparada por pirólisis lenta y activación de CO2 a 800 ° C.
Levulinic acid can be used in chemical and pharmaceutical industries: herbicides, plasticisers, cross-linker, fuel additives, coatings, solvent and cosmetics. Furfural and its derivatives can be used in plastics, pharmaceutical and agrochemical industries. Both chemicals have growth expectancy in the market.
A process was chosen in which lignocellulosic biomass is impregnated with acid, drained and subsequently subjected to a flow of hot steam in a pressure reactor. The lignocellulose complex is degraded, (hemi)cellulose is hydrolysed to monosaccharides and the monosaccharides are further dehydrated to yield furfural and hydroxy-methylfurfural (HMF). The C5 carbohydrates are converted into furfural and the C6 carbohydrates into HMF that is subsequently converted into levulinic acid and formic acid.
The business case analysis of this combined production process showed that the process for the production of furfural and levulinic acid from wheat straw could be economically viable. This viability is linked to competition with other biomass sources (corn cobs, bagasse/ sugar, starch) and the potential scale of operation. The competition with food is avoided when using straws (wheat, rice) instead of sugar and starch. The combined production of levulinic acid and furfural is advantageous as both bio-commodities can be produced and the herbaceous biomass can be fully exploited.
El ácido levulínico se puede utilizar en industrias químicas y farmacéuticas: herbicidas, plastificantes, aditivos para combustibles, recubrimientos, solventes y cosméticos. El ácido furfural y derivados se pueden utilizar en industrias plásticas, farmacéuticas y agroquímicas. Se espera un crecimiento de ambos productos en el mercado.
En el proceso elegido, la biomasa lignocelulósica se impregna con ácido, se drena y se somete a un flujo de vapor caliente en un reactor a presión. El complejo de lignocelulosa se degrada, la celulosa se hidroliza a monosacáridos y los monosacáridos se deshidratan adicionalmente para producir furfural e hidroximetilfurfural (HMF). Los carbohidratos C5 se convierten en furfural y los carbohidratos C6 en HMF que posteriormente se convierten en ácidos levulínico y fórmico.
El análisis negocio de este proceso productivo mostró que la producción de ácido furfural y levulínico a partir de paja de trigo podía ser viable económicamente. Esta viabilidad está vinculada a la competencia con otras fuentes de biomasa (mazorcas de maíz, bagazo / azúcar, almidón) y la potencial escalabilidad de operación. Se evita la competencia con los alimentos cuando se usa paja (trigo, arroz) en lugar de azúcar y almidón. La producción combinada de ácido levulínico y furfural es ventajosa ya que se pueden producir ambos bioproductos y la biomasa herbácea se aprovecha por completo.
First in CIRCE’s combustion facilities, in a fixed bed reactor and an industrial boiler based on a grill burner. Good CO emissions were obtained with all blends tested, being lower than 500 mg/ Nm3 d. b., as per the limit established by the standard for this kind of installation (between 150-500 kW).
When comparing these biofuels to the reference fuel (100 % forestry wood pellet), the main drawback was related to sintering and deposition problems associated to the ash. As a result, it was concluded that the new fuels should be design in order to reduce the ash content, low Si content and high Ca+Mg content; also a low percentage of ash, few fines and a low content of S and Cl.
Finally, the blend selected was the one with 60 % wheat straw and 40 % forestry wood, since it achieved a good behaviour compared to the reference fuel (100 % wood), in terms of emissions, yield, sintering and deposition phenomena, satisfying also the ISO standard. In economic terms, the selling price, was also quite competitive compared to industrial woody pellets.
Moreover, the new products were validated with several industrial end-users including two agro-industries, one domestic user and one boiler manufacturer.
All the validators qualified the tests performed as “satisfactory” or “very satisfactory”, as they did not have any problems with the operation of the boiler. The only inconvenient was the quantity of ashes generated, but the automatic cleaning system was able to remove the ashes in all cases, so no problems ocurred during operation. All the validators indicated that they would be interested in the new products if the purchasing price was more competitive than their current biofuel in terms of €/kWh
Primero en las instalaciones de CIRCE, en un reactor de lecho fijo y en una caldera industrial con quemador. Se obtuvieron emisiones de CO por debajo de 500mg/NM3 d.b con todas las mezclas utilizadas (por debajo de los límites establecidos por los estándares para este tipo de instalaciones).
Al comparar estos biocombustibles con el combustible de referencia (pellet 100% astilla forestal), el principal inconveniente es el problema de sinterización y de deposición de cenizas. Así, se concluyó que se debían diseñar nuevos combustibles que reduzcan la cantidad de cenizas, disminuyan el contenido de Si e incrementen la cantidad de Ca+Mg.
La mezcla seleccionada contenía 60% paja de trigo y 40% astilla forestal pues conseguía buen comportamiento frente al combustible de referencia en términos de emisiones, rendimiento, sinterización y deposición, satisfaciendo los estándares ISO. Económicamente, el precio de venta es competitivo comparado con los pellets industriales.
Los productos se validaron con múltiples usuarios finales industriales incluyendo dos agroindustrias, un usuario doméstico y un fabricante de calderas.
Todos los validadores calificaron las pruebas como satisfactorias, ya que no tuvieron problemas con la operación de las calderas. El único inconveniente fue la cantidad de cenizas generadas, pero los sistemas de limpieza automáticos fueron capaces de retirarlas, evitando problemas durante la operación. Todos los validadores estarían interesados en el nuevo producto si el precio de compra fuese más competitivo (€/kWh) que los actuales biocombustibles.
An important barrier is the high investment needed in some cases linked to machinery acquisition. So it is key to identify the equipment needed and possible use of already existing equipment for the new production line. Also, to identify the valorisation scheme (biofuels production for the energy market, self-consumption…)
Another barrier is the fluctuation of the prices and market conditions, so it is key to find the right business model. Nevertheless, stakeholders believe there is spare biomass to be used as raw material for other applications, and agro-industries could easily establish pluriannual contracts with the suppliers. In this sense the IBLC scheme allows a high flexibility compared to a usual pellet plant.
Blend pellets could be an interesting alternative to cover heat demand of the agro-industry. But there is still a reduced number of boilers able to operate pellets based on agro-residues. So, the best alternative by now is to commercialize these pellets in industrial facilities with biomass boilers of 100-550 kWh, which usually have more appropriate burners and prefer biomass with high energy density due to storage area limitations.
Alternative uses of pure herbaceous pellets are the production of thermoplastics reinforced with natural fibers and the adsorbents for hydrocarbons spills. Although these markets are still under development, the use of biomass to produce high-value products should be promoted.
The existing real examples should be disseminated in order to raise awareness in the sector. Regarding the legal framework, common supporting EU policies and regulations, and the reclassification of some “waste” as by-products would facilitate long-term investments for the implementation of the IBLCs scheme.
Una barrera es la inversión necesaria para adquisición de maquinaria en algunos casos. Por tanto, es clave identificar el equipo necesario y aprovechar equipos existentes para la nueva línea de producción. Asimismo, identificar el esquema de valorización (producción de biocombustibles para mercado energético, autoconsumo,...)
Otra barrera es la fluctuación de precios y condiciones del mercado, por lo que es clave encontrar el modelo de negocio adecuado. Sin embargo, los agentes del sector creen que hay suficiente biomasa para su uso como materia prima en otras aplicaciones, y las agroindustrias podrían establecer contratos plurianuales con proveedores. Así, el esquema IBLC permite alta flexibilidad comparado con una planta de pellets habitual.
Los pellets mezcla podrían ser una alternativa para cubrir la demanda de calor de la agroindustria. Pero aún hay un número reducido de calderas capaces de operar pellets basados en residuos agrícolas. Por tanto, la mejor alternativa por ahora es comercializar estos pellets en instalaciones industriales con calderas de biomasa de 100-550 kWh, que tienen quemadores más apropiados y prefieren biomasa con alta densidad debido a las limitaciones de almacenamiento.
Los usos alternativos de pellets herbáceos puros son producción de termoplásticos reforzados con fibras naturales y adsorbentes para derrames de hidrocarburos. Aunque estos mercados aún están en desarrollo, se debe promover el uso de biomasa para producir productos de alto valor.
The aim with an IBLC is to create a supportive environment for more actors in the value chain to add value to the unused resources. In turn, this will facilitate the development of new products and the market growth linked to the industry.
The grain mills in Skåne have a great potential to develop into IBLCs. The supply of bran is relatively constant over the year which is an advantage for industrial processes. Moreover, as bran is produced centrally in four different mills, the logistics would be rather simple, even if one or more plants further process the bran fraction. The mills were not interested to further process the bran fraction themselves as it would require new competences and skills, but also large investments. Therefore, a new actor is needed to drive the development process as well as the processing of bran. Moreover, it is not yet determined which process should be used and which product should be delivered. Different markets are of interest: biomaterials, bio-based chemicals, biofuels and food. In parallel with the design of the bran processing, further research on the availability of other regional by-products to include to the process should be carried out.
Read more about the different measures that were suggested and the common vision that was developed in RISE report 2020:39. ISBN: 978-91-89167-21-6
Syftet med ett integrerat logistikcentrum för biomassa är att skapa förutsättningar för att fler aktörer i värdekedjan kan ta del av outnyttjade resurser. Detta för att främja produktutveckling och marknadstillväxt kopplat till branschen.
Det finns stor potential för kvarnindustrin i Skåne att utvecklas till ett IBLC. Tillförseln av kli är relativt konstant över året vilket är en fördel för industriella processer. Kli produceras centralt i fyra olika kvarnar i Skåne vilket gör att logistiken skulle vara relativt enkel även om en eller flera fabriker processar klifraktionen vidare. Kvarnarna var inte själva intresserade av att processa klifraktionen vidare då detta skulle kräva nya kompetenser och stora investeringar. Därför behövs en ny aktör som kan driva utvecklingsprocessen och vidareförädlingen av klifraktionen. Dessutom är det ännu inte fastställt vilken process som ska användas och vilken biobaserad produkt som ska levereras. Olika marknader är intressanta: biomaterial, biobaserade kemikalier, biobränslen och livsmedel. Parallellt med utformningen av förädlingsprocessen av klifraktionen bör ytterligare forskning genomföras kring tillgängligheten av andra regionala biprodukter som skulle kunna användas i processen.
Läs mer om åtgärdarna som föreslås och den genmensam vision på RISE rapport 2020:39. ISBN: 978-91-89167-21-6
The sugar sector could potentially benefit from IBLC business models. For example, some coproducts from the sugar sector are currently utilised while others may offer commercial opportunities within an IBLC. Residues from the sugar extraction, such as beet fibers and molasses, are now used in animal feed or bioenergy production but the utilization can be further exploited. The beet leaves and tops are generally ploughed in the soil, and there is a possibility to harvest them.
Sugar beet pulp and molasses can be used as feedstock for production of biobased chemicals such as lactic acid, levulinic acid, bioethanol and succinic acid. With anaerobic digestion, sugar beet pulp can be processed into biogas. Protein extraction from beet leaves may offer a commercial output for this material. The beet leaves can also work as a substrate for biogas production.
*EC (2019), EU agricultural outlook for markets and income, 2019-2030. European Commission, DG Agriculture and Rural Development, Brussels
Sockersektorn kan potentiellt dra nytta av IBLC-konceptets affärsmodeller. Till exempel används vissa biprodukter från sockersektorn för närvarande medan andra kan användas för att skapa nya möjligheter vid en implementering av ett IBLC-koncept. Restströmmar från sockerextraktionen, såsom betfibrer och melass, används idag till djurfoder eller produktion av bioenergi, men användningen skulle kunna utvecklas ytterligare. Betblasten och -huvudet plöjs vanligtvis ner i jorden, men det är möjligt att skörda dem.
Betmassan och melassen kan användas som råvara för produktion av biobaserade kemikalier så som mjölksyra, levulinsyra, bioetanol och bränstenssyra. Betmassan kan även användas som substrat till anaerob rötning för att producera biogas. Proteinextraktion från betblasten kan skapa en inkomst och användning av denna idag outnyttjade resurs. Betblasten kan även den användas som substrat för biogasproduktion.
*EC (2019), EU agricultural outlook for markets and income, 2019-2030. European Commission, DG Agriculture and Rural Development, Bryssel
Recommendations - It is recommended to secure the market for the (intermediate) biobased product first, before investing in the IBLC. Production that is focused on both energy and material recycling of local biomass resources is considered a sustainable way forward. An economic recommendation is to promote newly developed innovative business lines in an IBLC as a business for other companies as well. Collaboration of the stakeholders in the value chain (farmers, cooperatives, agro-industry, etc.) is considered a very important social aspect of establishing an IBLC. Support from administration is needed through regulative or incentive aspects. And there is a need for policies, norms, and values in society that support the development of the IBLC. Finally, a sustainability implementation potential needs to be secured.
Recommendations - It is recommended to secure the market for the (intermediate) biobased product first, before investing in the IBLC. Production that is focused on both energy and material recycling of local biomass resources is considered a sustainable way forward. An economic recommendation is to promote newly developed innovative business lines in an IBLC as a business for other companies as well. Collaboration of the stakeholders in the value chain (farmers, cooperatives, agro-industry, etc.) is considered a very important social aspect of establishing an IBLC. Support from administration is needed through regulative or incentive aspects. And there is a need for policies, norms, and values in society that support the development of the IBLC. Finally, a sustainability implementation potential needs to be secured.
The opportunities to extract ethanol and bio-crude from straw were studied for Lantmännen’s Agroetanol plant in Norrköping. The study investigated the possibility to supply 80,000 tonnes of winter wheat straw annually from the three neighbouring counties for the production of biofuels. The study’s main goal was to achieve a sustainable removal of straw with no negative impact on the long-term fertility of arable land. The arable land in the counties in question generally has a high organic content and collecting 80,000 tonnes of autumn wheat straw annually is feasible.
A survey was sent to farmers around the country in collaboration with LRF (Federation of Swedish Farmers) to investigate the conditions for collecting larger quantities of straw for the bio-based industry. Based on the 1000+ responses, the survey showed among others that 36% of respondents harvest straw from less than 20% of their cereal fields. This represents a large potential for increasing the harvest of straw. The responses also showed that most farmers want contracts for the delivery of straw directly with Lantmännen and not through an intermediary, and would prefer a one-year contract.
På Lantmännen Agroetanols anläggning i Norrköping har möjligheterna att utvinna etanol och bioolja ur halm undersökts. I studien utreddes möjligheten att leverera 80 000 ton höstvetehalm årligen för produktion av biodrivmedel från de tre länen runt Norrköping. Utgångspunkten var ett hållbart uttag av halm utan negativ påverkan på åkermarkens bördighet på lång sikt. Åkermarken i de aktuella länen har i allmänhet högt organiskt innehåll och att samla in denna mängd höstvetehalm årligen kommer att vara möjligt.
En enkät skickades till lantbrukare runtom i landet i samarbete med LRF för att undersöka förutsättningarna för att samla större mängder halm för den biobaserade industrin. De över 1000 svaren visade bland annat att 36% av de som svarade på enkäten skördar halm från mindre än 20% av sin spannmålsareal. Detta representerar den största potentialen för ökat halmuttag. Vidare visade svaren att en majoritet av lantbrukarna vill ha kontrakt för leverans av halm direkt med Lantmännen och inte via en mellanhand samt föredrar ettåriga kontrakt.
Difficulties - Difficulties occur due to competitions with alternative products, immature markets and unprofitable biobased products. Economic aspects are related to the significant investments that could be needed to set-up an IBLC, and the fear that it will take a long time for the IBLC to reach a mature stage. Although collaboration was mentioned as a success in some case studies it was also often mentioned as a difficulty, since the willingness and capacity to cooperate is not always there. Aligning all actors is perceived as a challenging task. Rules & regulations are also given as barriers for implementing an IBLC, e.g. waste legislation. Furthermore, norms and values in society are critical for success. Public opposition can easily lead to failure.
Difficulties - Difficulties occur due to competitions with alternative products, immature markets and unprofitable biobased products. Economic aspects are related to the significant investments that could be needed to set-up an IBLC, and the fear that it will take a long time for the IBLC to reach a mature stage. Although collaboration was mentioned as a success in some case studies it was also often mentioned as a difficulty, since the willingness and capacity to cooperate is not always there. Aligning all actors is perceived as a challenging task. Rules & regulations are also given as barriers for implementing an IBLC, e.g. waste legislation. Furthermore, norms and values in society are critical for success. Public opposition can easily lead to failure.
The use of herbaceous material implies to take care of some properties, like ash and chlorine, which have a huge variability associated to the area where these crops are cultivated and to other parameters like the management of the crop or climate conditions. For this reason, a traceability assessment should be performed by the agro-industries in order to identify the best raw materials that may guarantee the production of a blend pellet with the maximum amount of herbaceous material without compromising the quality of the final product. The less wood used in the blend, the lower the cost operation, since in general working with wood implies reducing the moisture content (drying) and the pre-milling of the material, steps than can be avoided when using herbaceous biomass.
In the case of the Spanish demo, a traceability assessment of the wheat straw and corn stalk was carried out. To this aim APS’ main suppliers were identified, and the corresponding main storages areas studied. Additionally, representative samples were taken from different areas in order to analyse the quality of these raw materials (proximate analysis, ultimate analysis and ash composition).
Before starting the supply of the raw material each new season, it is highly recommended to carry out this analysis and see if there is any change in the quality of the raw material from the best areas previously identified. It is necessary to verify that their characteristics are still appropriate to minimize the percentage of wood in the blend while fulfilling the standard ISO 17225-6.
El uso de material herbáceo implica cuidar algunas propiedades, como las cenizas y el cloro, que tienen una gran variabilidad asociada al área donde se cultivan estos cultivos y a otros parámetros como el manejo del cultivo o las condiciones climáticas. Por ello, las agroindustrias deben realizar una evaluación de trazabilidad para identificar las mejores materias primas que pueden garantizar la producción de una mezcla de pellets con la máxima cantidad de material herbáceo sin comprometer la calidad del producto final. Cuanta menos madera se use en la mezcla, menor será el costo de operación, ya que en general trabajar con madera implica reducir su humedad (secado) y la molienda previa del material, pasos que pueden evitarse al usar biomasa herbácea.
En el caso del demostrador español, se realizó una evaluación de trazabilidad de la paja de trigo y el cañote de maíz. Con este objetivo, se identificaron los principales proveedores de APS y se estudiaron las áreas de almacenamiento principales. Además, se tomaron muestras representativas de diferentes áreas para analizar la calidad de estas materias primas (análisis próximo, análisis final y composición de cenizas).
Antes de comenzar el suministro de la materia prima en cada nueva temporada, se recomienda realizar este análisis y ver si hay algún cambio en la calidad de la materia prima de las mejores áreas previamente identificadas. Es necesario verificar que sus características siguen siendo apropiadas para minimizar el porcentaje de madera en la mezcla y cumplir con la norma ISO 17225-6
This agro-industry produces animal feed products based on lucerne. This activity is seasonal what means that the existing production lines are underused along the year, mainly from December to March.
APS started a new business line in order to take advantage of the facilities during this idle period. It consisted on producing new pellets for the energy market as well as bio-commodities for new applications in other sectors.
The first step of the process was to assess the harvesting of herbaceous biomass (wheat straw and corn stalk), and the procurement of new feedstock, like forestry wood to the plant. An Integrated logistics was key to improve the performance of the supply chain, and also the traceability assessment of the raw materials in order to ensure that the quality and cost of the new pellets were competitive in the market.
Next steps were pre-processing and storage. The facilities were adapted in order to integrate the new production line. Being able to use part of the existing equipment, reduced the investment costs. Once the line was set, many tests followed in order to optimize the production costs. Also to determine the preparatory operation time that is needed in order to confirm there is no contamination and establish the protocol to ensure quality of the products once restarting the production of pellets for the feed market or viceversa.
As a result, it is demonstrated that this agro-industry could annually produce between 2.000 and 5.000 tons of the new pellets at a competitive price, diversifying their business and avoiding seasonality.
Esta agroindustria produce pienso animal basado en alfalfa. Esta actividad es estacional por lo que sus líneas de producción están infrautilizadas principalmente de diciembre a marzo.
APS ha comenzado una nueva línea de negocio para aprovechar sus instalaciones en este periodo: producir nuevos pellets para el mercado energético, así como bioproductos para aplicaciones en otros sectores.
El primer paso fue evaluar la recolección de biomasa herbácea (paja de trigo y cañote de maíz), y la adquisición de nueva materia prima, como astilla forestal. Realizar una logística integrada es esencial para mejorar el rendimiento de la cadena de suministro. También lo es el estudio de la trazabilidad de las materias primas para asegurar que la calidad y el coste de los nuevos pélets sean competitivos en el mercado.
Los siguientes pasos son el almacenamiento y el pre-tratamiento de la biomasa.Las instalaciones se adaptaron para integrar la nueva línea de producción. Utilizar parte del equipo existente permitió reducir la inversión. Una vez instalada, se llevaron a cabo numerosas pruebas para optimizar los costes de producción,y determinar los tiempos de preparación de la producción, para garantizar que no hay contaminación y para establecer protocolos que aseguren la calidad de los productos cuando se reanude la producción de piensos y viceversa.
Se demuestra que esta agroindustria puede producir anualmente entre 2.000 y 5.000 toneladas de nuevos pellets a un precio competitivo, diversificando así su negocio y evitando la estacionalidad.
The results of the emission measurement campaign highlight the importance of choosing a modern combustion system, compatible with this type of biofuels that has all the necessary automations that will ensure a high efficiency and low emissions (lamda sensors, cyclone/ESP) and ease of use (automatic ash extraction).
The fuel properties of the olive tree prunings are similar and even better that other industrial fuels. Although OTP pellets could compete with other industrial fuels, in terms of combustion efficiency and emissions, their cost is considerably higher, making them an unattractive substitute of these fuels. However, their price is very competitive compared to domestic solid biofuels, and these pellets could, in certain circumstances, be used in the domestic market.
The use of OTP hog fuel seems to be a promising solution, as it is more competitive due to its reduced cost. However, it faces several challenges as well, as the need of a suitable fuel feeding system. OTP hog fuel has significantly lower (energy) density compared to pellets, thus increasing the transportation costs. In this light, its targeted end users should be in close range from the IBLC.
An alternative use of OTP pellets was also validated through their use as bedding for rodents, with positive feedback. The user found the use of OTP pellets more attractive compared to wood pellets and is willing to pay a higher price.
Τα αποτελέσματα των μετρήσεων εκπομπών καυσαερίων τονίζουν την σημασία της επιλογής ενός μοντέρνου συστήματος καύσης, συμβατού με αυτό το είδος στερεών βιοκαυσίμων που περιλαμβάνει όλους τους απαραίτητους αυτοματισμούς που εξασφαλίζουν υψηλή απόδοση και χαμηλές εκπομπές (αισθητήρας λ, κυκλώνας/ηλεκτροστατικά φίλτρα) και ευκολία χρήσης (αυτόματη εξαγωγή τέφρας).
Οι ιδιότητες καυσίμου των κλαδεμάτων ελιάς είναι παρόμοιες ή και καλύτερες σε σχέση με άλλα βιομηχανικά καύσιμα. Αν και τα πέλλετ από κλαδέματα ελιάς είναι ανταγωνιστικά με άλλα βιομηχανικά καύσιμα, ως προς την απόδοση και τις εκπομπές κατά την καύση, το κόστος τους είναι σημαντικά υψηλότερο, με αποτέλεσμα να μην είναι ελκυστικό υποκατάστατο αυτών των καυσίμων. Ωστόσο, η τιμή τους είναι πολύ ανταγωνιστική σε σχέση με οικιακά στερεά βιοκαύσιμα και αυτά τα πέλλετ θα μπορούσαν, υπό προϋποθέσεις, να χρησιμοποιηθούν στην οικιακή αγορά.
Η χρήση τεμαχισμένων κλαδεμάτων ελιάς δείχνει να είναι μια πολλά υποσχόμενη λύση, καθώς είναι πιο ανταγωνιστικό λόγω του μειωμένου κόστους του. Παρ’ όλα αυτά, υπάρχουν και σε αυτή την περίπτωση δυσκολίες καθώς απαιτείται κατάλληλο σύστημα για την τροφοδοσία του καυσίμου. Τα τεμαχισμένα κλαδέματα έχουν σημαντικά μικρότερη (ενεργειακή) πυκνότητα σε σχέση με τα πέλλετ, και συνεπώς και αυξημένα κόστη μεταφοράς. Υπό το πρίσμα αυτό, οι τελικοί χρήστες θα πρέπει να είναι σε κοντινή απόσταση από το ΟΚΕΒ.
Μια εναλλακτική χρήση των πέλλετ από κλαδέματα ελιάς που δοκιμάστηκε ήταν η χρήση τους σαν στρωμνή για τρωκτικά, με θετικά σχόλια. Ο χρήστης βρήκε προτιμότερη την χρήση πέλλετ από κλαδέματα ελιάς σε σχέση με πέλλετ ξύλου και θα ήταν διατεθειμένος να τα αγοράσει σε υψηλότερη τιμή.
Feedstock: Assess and estimate the theoretical, technical and economic potential and quality of the biomass.
Logistics: Consider the whole logistics chain, diversify suppliers of an IBLC, optimize the transportation chain and align it with the planning of the harvest and consider storage at field.
IBLC: Assess the available resources and the idle time in the current facility and asses the facility and the equipment technically. Determine the maturity of the existing technology and use existing capacity as much as possible.
Feedstock: Assess and estimate the theoretical, technical and economic potential and quality of the biomass.
Logistics: Consider the whole logistics chain, diversify suppliers of an IBLC, optimize the transportation chain and align it with the planning of the harvest and consider storage at field.
IBLC: Assess the available resources and the idle time in the current facility and asses the facility and the equipment technically. Determine the maturity of the existing technology and use existing capacity as much as possible.
The step-by-step approach focuses from a company’s point of view on the implementation of an IBLC to use the existing (idle) processing, storage and personnel capacity. When developing towards an IBLC, a company must consider for every technical and non-technical aspect which critical components deserve attention.
In the step-by-step approach these aspects are placed 'centrally' as starting points for the company so that it is able to start asking the right questions. The method helps to avoid missing the parts that are important for the success of the transition into an IBLC. However, there is not a predefined sequence of the topics that need to be dealt with when implementing an IBLC.
The step-by-step approach focuses from a company’s point of view on the implementation of an IBLC to use the existing (idle) processing, storage and personnel capacity. When developing towards an IBLC, a company must consider for every technical and non-technical aspect which critical components deserve attention.
In the step-by-step approach these aspects are placed 'centrally' as starting points for the company so that it is able to start asking the right questions. The method helps to avoid missing the parts that are important for the success of the transition into an IBLC. However, there is not a predefined sequence of the topics that need to be dealt with when implementing an IBLC.
Contacts
Project coordinator
-
Project coordinator
FUNDACIÓN CIRCE - CENTRO DE INVESTIGACIÓN DE RECURSOS Y CONSUMOS ENERGÉTICOS circe@fcirce.es Researcher
Project partners
-
Project partner
FUNDACIÓN CIRCE - CENTRO DE INVESTIGACIÓN DE RECURSOS Y CONSUMOS ENERGÉTICOS circe@fcirce.es Researcher -
Project partner