project - Research and innovation

AGROinLOG - Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe
AGROinLOG - Demostración de centros lógisticos integrados de biomasa innovadores para el sector agroindustrial en Europa

Affichage actuel du contenu de la page dans la langue maternelle, si disponible

Objectives

AGROinLOG aims to implement and demonstrate the technical, environmental and economic feasibility of Integrated Biomass Logistics Centers (IBLCs) for food and non-food products into existing agro-industries.

An IBLC takes advantage of the facilities of an agro-industry, its network of contacts and its waste or non-used local resources to create new activities and obtain new bio products such as biomass, biofuels or raw materials for other sectors

Objectives

AGROinLOG pretende implementar y demostrar la viabilidad técnica, medioambiental y econόmica de los Centros Logísticos de Biomasa Integrados (IBLCs) para la obtenciόn de productos alimenticios y no alimenticios en las agroindustrias. Un IBLC aprovecha las instalaciones de una agroindustria, su red de contactos y sus residuos o recursos no explotados para diversificar su actividad regular y obtener nuevos bio-productos tales como biomasa, bio-combustibles líquidos o materias primas para otros sectores.

Activities

An IBLC integrated into an agro-industry refers to the start of a new biomass activity, integrating a new non-food value chain into the existing food chain. The new activity involves field harvesting, collection and procurement of the biomass resources towards the agro-industry, the use of residues, and their transformation into bio-commodities and intermediate bio-products for new markets. AGROinLOG will test the IBLC concept in 3 agro-industries (Fodder, olive oil and cereal) sectors that are willing to deploy new business lines in their facilities to open new markets in bio-commodities (energy, transport and manufacturing) and intermediate bio-products (transport and biochemicals).

Activities

Un IBLC integrado en una agroindustria persigue la puesta en marcha de una nueva actividad en relaciόn a la biomasa, integrando una nueva cadena de valorizaciόn no alimentaria en la cadena alimenticia actual. La nueva actividad implica llevar los recursos biomásicos de la recolecciόn en campo a la agroindustria, el uso de los residuos, y su transformaciόn en bio-productos o bio-compuestos intermedios para nuevos mercados. AGROinLOG testará el concepto IBLC en 3 agroindustrias piloto (Industria forrajera, aceite de oliva, cerealista) que desea desarrollar nuevas líneas de negocio en sus instalaciones para abrir nuevos mercados de bio-productos y bio-compuestos intermedios.

Additional information

Τhese pilots will develop new logistics chains and will adapt the

existing equipment to the new production. AGROinLOG will evaluate the technical, financial and environmental feasibility of their new activity and the final quality of the new products. Afterwards, the replication potential of AGROinLOG business model will be studied in other 7 agro-industries of different sectors. The project will prepare and evaluate the business models for the new IBLCs deployment

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Emplacement
Main geographical location
Zaragoza

€ 6385661

Total budget

Total contributions including EU funding.

Ressources

Affichage actuel du contenu de la page dans la langue maternelle, si disponible

45 Practice Abstracts

The developed step-by-step approach is to maximize the likelihood of acceptance and implementation of an IBLC. It is constructed in such a way that all relevant aspects are reviewed There is not a predefined sequence of the topics that need to be dealt with when implementing an IBLC. Steps need to be taken on different topics that are grouped by the pathway of a value chain containing an IBLC:

Feedstock: Assess and estimate the theoretical, technical and economic potential and quality of the biomass.

Logistics: Consider the whole logistics chain, diversify suppliers of an IBLC, optimize the transportation chain and align it with the planning of the harvest and consider storage at field.

IBLC: Assess the available resources and the idle time in the current facility and asses the facility and the equipment technically. Determine the maturity of the existing technology and use existing capacity as much as possible.

The implementation process of an ILBC can be long and does not always develop optimally. In each stage, a technically and economically feasible project can be delayed or even rejected. Therefore, in the AGROinLOG project a step-by-step approach was developed to maximize the likelihood of acceptance and implementation of an IBLC. This works in such a way that all relevant aspects are reviewed. Therefore, it is a guide to ensure companies that everything is brought to attention during the process towards the possible development of an IBLC.

The step-by-step approach focuses from a company’s point of view on the implementation of an IBLC to use the existing (idle) processing, storage and personnel capacity. When developing towards an IBLC, a company must consider for every technical and non-technical aspect which critical components deserve attention.

In the step-by-step approach these aspects are placed 'centrally' as starting points for the company so that it is able to start asking the right questions. The method helps to avoid missing the parts that are important for the success of the transition into an IBLC. However, there is not a predefined sequence of the topics that need to be dealt with when implementing an IBLC.

Solutions - Specific handling systems were a solution to health problems. Furthermore, awareness of competing use for the feedstocks is an important point to consider and market development is necessary in some cases. An economic solution is to find (internal) customers for produced heat in the IBLC. Social acceptance can be improved by information campaigns and starting dialog with the stakeholders. Collaborative innovation and networks around the IBLC will strengthen the whole value chain and will shorten the time to market. One should not assume that underutilized biomass will be obtained at "0" cost. All the stakeholders involved should benefit.

Recommendations - It is recommended to secure the market for the (intermediate) biobased product first, before investing in the IBLC. Production that is focused on both energy and material recycling of local biomass resources is considered a sustainable way forward. An economic recommendation is to promote newly developed innovative business lines in an IBLC as a business for other companies as well. Collaboration of the stakeholders in the value chain (farmers, cooperatives, agro-industry, etc.) is considered a very important social aspect of establishing an IBLC. Support from administration is needed through regulative or incentive aspects. And there is a need for policies, norms, and values in society that support the development of the IBLC. Finally, a sustainability implementation potential needs to be secured.

Successes - Residues for power and heat production were an interesting business option. Achieving more competitiveness was seen as a success. This was achieved e.g. by cost savings, but also by collaboration. Factors that influenced the costs were energy savings, obtaining carbon credits, costs of feedstocks and production costs. The increase in equipment investments in a region was seen as an economic success. From the social point of view, an increase of local employment opportunities, building alliances and knowledge transfer to customers was identified as a success. A sustainability success was the reduction of greenhouse gas and toxic gas emissions.

Difficulties - Difficulties occur due to competitions with alternative products, immature markets and unprofitable biobased products. Economic aspects are related to the significant investments that could be needed to set-up an IBLC, and the fear that it will take a long time for the IBLC to reach a mature stage. Although collaboration was mentioned as a success in some case studies it was also often mentioned as a difficulty, since the willingness and capacity to cooperate is not always there. Aligning all actors is perceived as a challenging task. Rules & regulations are also given as barriers for implementing an IBLC, e.g. waste legislation. Furthermore, norms and values in society are critical for success. Public opposition can easily lead to failure.

Regarding the big biomass potential in the Šumadija region of Republic of Serbia, there is an interest in the development and implementation of IBLC concept in the wine sector. However, the awareness of small producers should be increased about the possible IBLCs implementation which could contribute to overcome the traditional habits for using the waste from grape, fruit and wine production. Also, the small producers, associations, and cooperatives should be considered as key actors for the implementation of the proposed approach. The Lapovo municipality expressed a great interest in the possible implementation of the proposed concept especially due to its good location as it is near the main regional highway - Koridor 10. The key opportunities for the selected region are related to a large amount of good quality pruning residues that are not contaminated with exogenous materials or stones. The construction of biomass plants using available residues for heating schools, churches, kindergartens, sports halls are very attractive for the Lapovo municipality. Also, there is an opportunity for utilization of prunings for the production of compost which could contribute to decrease the price of mushroom production. The recognized barriers associated to the development of IBLCs were the lack of legal regulation that could support related activities (regulation in agriculture, energy sector, etc). Also, the infrastructure of the local roads in the Lapovo region should be improved to facilitate and reduce the costs regarding logistical aspects, additional problems with biomass waste storage, should be overcome. The interest in agri-business of young people is low due to low awareness of improved agricultural logistical issues as well as regulatory restrictions regarding the minimum planting area.

S obzirom na veliki potencijal biomase u regionu Šumadije u Repulici Srbiji, postoji interesovanje za razvoj i primenu IBLC koncepta u sektoru proizvodnje vina. Međutim, trebalo bi povećati svest malih proizvođača o mogućim IBLC-ima koji bi mogli prevazići tradicionalne navike upotrebe ostataka od proizvodnje grožđa, voća i vina. Takođe, mali proizvođači, udruženja i zadruge treba da budu ključni akteri za sprovođenje predloženog pristupa. Opština Lapovo pokazala je veliko interesovanje za moguću realizaciju predloženog koncepta, posebno zbog njene dobre lokacije u blizini glavnog regionalnog autoputa (Koridor 10). Ključne mogućnosti za odabrani region su povezane sa dobijanjem velike količine ostataka rezidbe visokog kvaliteta koji nisu kontaminirani drugim materijalima ili kamenjem. Izgradnja postrojenja na biomasu koja bi koristila sve ostatke za grejanje škola, crkvi, vrtića, sportskih dvorana bi bila veoma atraktivna za opštinu Lapovo. Takođe, kao mogućnost predloženo je da se ostaci rezidbe koriste za proizvodnju komposta što bi moglo smanjiti cenu proizvodnje pečuraka. Prepoznate barijere za razvoj IBLC-a su u nedostatku zakonske regulative koja bi mogla da podrži odgovarajuće aktivnosti (regulativa u poljoprivredi, energetskom sektoru itd.). Takođe, treba poboljšati lokalnu putnu infrastrukturu u regionu Lapova kako bi se olakšali i smanjili troškovi logistike, kao i problemi sa skladištenjem otpada iz biomase. Interesovanje mladih za biznis u poljoprivredi je nisko zbog slabe svesti o savremenim logističkim rešenjima u poljoprivredi, kao I zbog regulatornih ograničenja koja se odnose na minimalne površine sadnje.

Another goal of the AGROinLOG project was to deliver solutions well adapted to the actual circumstances in which selected sectors present a high potential for replicability of IBLC concept. In Greece the region of Crete and more specifically the county of Chania was selected for the replicability of IBLC in the sector of Olive Oil. Concerning the size of the olive oil sector in Greece and after some contacts, it was decided to study the IBLC concept on a pomace mill in Chania. The IBLC implementation considered the exploitation of olive tree prunings by the pomace mill and the synergy with the pomace dryer during its idle time. In this sense, the harvested olive tree prunings are dried in the pomace drier and then upgraded into pellets. Interviews with agro-industries and high-level contacts in the selected region on regional potential have been implemented, in order to check their opinions about the potential replicability of IBLC in the selected agro-industry. From these meetings barriers and incentives for the IBLC implementation allowed to extract valuable information regarding these topics. In addition, three different show cases with the proposed harvesting solution (mechanized harvesting of kiwi, olive tree and vineyard prunings with an integrated harvesting/shredding system) have been implemented in multiple Greek regions in order to promote the IBLC concept, in terms of agro-residues exploitation. In overall, from all the above mentioned events, all the attendees agreed that the IBLC concept could be encouraged in the case that there was an economic benefit, or at least no loss, for all the stakeholders of the value chain and could have a positive impact on the rural communities.

Ένας άλλος στόχος του έργου AGROinLOG ήταν να προσφέρει λύσεις προσαρμοσμένες στις πραγματικές συνθήκες στις οποίες επιλεγμένοι τομείς παρουσιάζουν υψηλές δυνατότητες αναπαραγωγής της κεντρικής ιδέας ενός ΟΚΕΒ. Στην Ελλάδα η περιοχή της Κρήτης και πιο συγκεκριμένα ο νομός Χανίων επιλέχθηκε για την αναπαραγωγή του ΟΚΕΒ στον τομέα του ελαιολάδου. Λόγω του μέγέθους του τομέα του ελαιολάδου στην Ελλάδα και μετά από κάποιες επαφές, αποφασίστηκε να μελετηθεί η ιδέα του ΟΚΕΒ σε έναν πυρηνελουργείο στα Χανιά. Η εφαρμογή του ΟΚΕΒ εξέτασε την εκμετάλλευση των κλαδεμάτων ελιάς από το πυρηνελουργείο και τη συνέργεια με τον ξηραντήρα του πυρηνελουργείου κατά τη διάρκεια του χρόνου αδράνειας του. Υπό αυτήν την έννοια, τα συλλεχθέντα κλαδέματα ελιάς ξηραίνονται στο ξηραντήριο του πυρηνελουργείου και στη συνέχεια αναβαθμίζονται σε πελλέτες. Διάφορες συνεντεύξεις με αγρο-βιομηχανίες και υψηλού επιπέδου επαφές της περιφέρειας πραγματοποιήθηκαν στην επιλεγμένη περιοχή, προκειμένου να ελεγχθούν οι απόψεις τους σχετικά με την πιθανή δυνατότητα αναπαραγωγής ενός ΟΚΕΒ στην επιλεγμένη αγροτο-βιομηχανία. Αυτές οι συναντήσεις, όπου συζητήθηκαν εμπόδια αλλά και κίνητρα για την εφαρμογή του ΟΚΕΒ, οδήγησαν στην εξαγωγή χρήσιμων συμπερασμάτων. Επιπλέον, τρεία παραδείγματα με επίδειξη της προτεινόμενης λύσης συγκομιδής (μηχανοποιημένη συγκομιδή ακτινίδιων, κλαδεμάτων ελιάς και αμπελώνων με ενσωματωμένο σύστημα συγκομιδής / τεμαχισμού) πραγματοποιήθηκαν σε διάφορες ελληνικές περιοχές προκειμένου να προωθηθεί η ιδέα του ΟΚΕΒ, όσον αφορά την εκμετάλλευση των αγροτικών υπολειμμάτων. Εν κατακλείδι από όλα τα προαναφερθέντα γεγονότα, όλοι οι συμμετέχοντες συμφώνησαν ότι η ιδέα του ΟΚΕΒ θα μπορούσε να πραγματοποιηθεί σε περίπτωση που υπάρχει οικονομικό όφελος, ή τουλάχιστον καμία ζημία για όλους τους συμμετέχοντες στην αλυσίδα αξίας και θα μπορούσε να έχει θετικό αντίκτυπο στις αγροτικές κοινότητες.

The milling industry can play an important role in the bioeconomy. Therefore, RISE and Lantmännen had a dialogue with the actors from the industry in Skåne to discuss which hinders and drivers they see to develop the mills to an IBLC (Integrated Biomass Logistics Centre).

The aim with an IBLC is to create a supportive environment for more actors in the value chain to add value to the unused resources. In turn, this will facilitate the development of new products and the market growth linked to the industry.

The grain mills in Skåne have a great potential to develop into IBLCs. The supply of bran is relatively constant over the year which is an advantage for industrial processes. Moreover, as bran is produced centrally in four different mills, the logistics would be rather simple, even if one or more plants further process the bran fraction. The mills were not interested to further process the bran fraction themselves as it would require new competences and skills, but also large investments. Therefore, a new actor is needed to drive the development process as well as the processing of bran. Moreover, it is not yet determined which process should be used and which product should be delivered. Different markets are of interest: biomaterials, bio-based chemicals, biofuels and food. In parallel with the design of the bran processing, further research on the availability of other regional by-products to include to the process should be carried out.

Read more about the different measures that were suggested and the common vision that was developed in RISE report 2020:39. ISBN: 978-91-89167-21-6

Kvarnindustrin kan komma att spela en viktig roll i bioekonomin. RISE och Lantmännen har därför haft en dialog med olika aktörer inom spannmålssektorn i Skåne för att ta reda på vilka hinder och drivkrafter de ser för att kunna utveckla dagens kvarnar till ett integrerat logistikcentrum för biomassa (på engelska Integrated Biomass Logistic Centres, IBLC) i regionen.



Syftet med ett integrerat logistikcentrum för biomassa är att skapa förutsättningar för att fler aktörer i värdekedjan kan ta del av outnyttjade resurser. Detta för att främja produktutveckling och marknadstillväxt kopplat till branschen.



Det finns stor potential för kvarnindustrin i Skåne att utvecklas till ett IBLC. Tillförseln av kli är relativt konstant över året vilket är en fördel för industriella processer. Kli produceras centralt i fyra olika kvarnar i Skåne vilket gör att logistiken skulle vara relativt enkel även om en eller flera fabriker processar klifraktionen vidare. Kvarnarna var inte själva intresserade av att processa klifraktionen vidare då detta skulle kräva nya kompetenser och stora investeringar. Därför behövs en ny aktör som kan driva utvecklingsprocessen och vidareförädlingen av klifraktionen. Dessutom är det ännu inte fastställt vilken process som ska användas och vilken biobaserad produkt som ska levereras. Olika marknader är intressanta: biomaterial, biobaserade kemikalier, biobränslen och livsmedel. Parallellt med utformningen av förädlingsprocessen av klifraktionen bör ytterligare forskning genomföras kring tillgängligheten av andra regionala biprodukter som skulle kunna användas i processen.



Läs mer om åtgärdarna som föreslås och den genmensam vision på RISE rapport 2020:39. ISBN: 978-91-89167-21-6

The sugar sector is going through a transition period following the removal of quotas on 2017, which is affecting the competition and sugar production. In addition, a trend to less sweetener consumption is observed (EC 2019*). Global production surplus contributed to lower sugar prices and some sugar factories are closing. The strategy followed by sugar companies is to concentrate processing on a certain number of factories and run these factories to their limit (EC 2019*). The largest sugar producing EU countries: France, Germany and Poland are expected to maintain a stable production regardless of factory closures.

The sugar sector could potentially benefit from IBLC business models. For example, some coproducts from the sugar sector are currently utilised while others may offer commercial opportunities within an IBLC. Residues from the sugar extraction, such as beet fibers and molasses, are now used in animal feed or bioenergy production but the utilization can be further exploited. The beet leaves and tops are generally ploughed in the soil, and there is a possibility to harvest them.

Sugar beet pulp and molasses can be used as feedstock for production of biobased chemicals such as lactic acid, levulinic acid, bioethanol and succinic acid. With anaerobic digestion, sugar beet pulp can be processed into biogas. Protein extraction from beet leaves may offer a commercial output for this material. The beet leaves can also work as a substrate for biogas production.

*EC (2019), EU agricultural outlook for markets and income, 2019-2030. European Commission, DG Agriculture and Rural Development, Brussels

Sockersektorn genomgår en omställning efter borttagandet av kvoterna 2017, vilket påverkar konkurrensen och sockerproduktionen. Dessutom ser man en trend med minskad konsumtion av sötningsmedel (EC 2019 *). Ett globalt överskott från produktionen har bidragit till lägre sockerpriser och några sockerfabriker stängs ner. Strategin för sockerfabrikerna är att koncentrera produktionen till ett visst antal fabriker och att låta fabrikerna gå på maximal produktion (EC 2019 *). De största sockerproducerande EU-länderna: Frankrike, Tyskland och Polen förväntas upprätthålla en stabil produktion oavsett fabriksstängningar.

Sockersektorn kan potentiellt dra nytta av IBLC-konceptets affärsmodeller. Till exempel används vissa biprodukter från sockersektorn för närvarande medan andra kan användas för att skapa nya möjligheter vid en implementering av ett IBLC-koncept. Restströmmar från sockerextraktionen, såsom betfibrer och melass, används idag till djurfoder eller produktion av bioenergi, men användningen skulle kunna utvecklas ytterligare. Betblasten och -huvudet plöjs vanligtvis ner i jorden, men det är möjligt att skörda dem.

Betmassan och melassen kan användas som råvara för produktion av biobaserade kemikalier så som mjölksyra, levulinsyra, bioetanol och bränstenssyra. Betmassan kan även användas som substrat till anaerob rötning för att producera biogas. Proteinextraktion från betblasten kan skapa en inkomst och användning av denna idag outnyttjade resurs. Betblasten kan även den användas som substrat för biogasproduktion.

*EC (2019), EU agricultural outlook for markets and income, 2019-2030. European Commission, DG Agriculture and Rural Development, Bryssel

Aragon was the Spanish region chosen to evaluate the replication potential of the IBLC concept in the fodder sector. By means of interviews and workshops with relevant stakeholders, AGROinLOG identified both drivers and barriers towards its replication:

An important barrier is the high investment needed in some cases linked to machinery acquisition. So it is key to identify the equipment needed and possible use of already existing equipment for the new production line. Also, to identify the valorisation scheme (biofuels production for the energy market, self-consumption…)

Another barrier is the fluctuation of the prices and market conditions, so it is key to find the right business model. Nevertheless, stakeholders believe there is spare biomass to be used as raw material for other applications, and agro-industries could easily establish pluriannual contracts with the suppliers. In this sense the IBLC scheme allows a high flexibility compared to a usual pellet plant.

Blend pellets could be an interesting alternative to cover heat demand of the agro-industry. But there is still a reduced number of boilers able to operate pellets based on agro-residues. So, the best alternative by now is to commercialize these pellets in industrial facilities with biomass boilers of 100-550 kWh, which usually have more appropriate burners and prefer biomass with high energy density due to storage area limitations.

Alternative uses of pure herbaceous pellets are the production of thermoplastics reinforced with natural fibers and the adsorbents for hydrocarbons spills. Although these markets are still under development, the use of biomass to produce high-value products should be promoted.

The existing real examples should be disseminated in order to raise awareness in the sector. Regarding the legal framework, common supporting EU policies and regulations, and the reclassification of some “waste” as by-products would facilitate long-term investments for the implementation of the IBLCs scheme.

Aragón fue la región española elegida para evaluar el potencial de replicación del concepto IBLC en el sector del forraje. Mediante entrevistas y talleres con agentes del sector, AGROinLOG identificó tanto impulsores como barreras para su replicación:

Una barrera es la inversión necesaria para adquisición de maquinaria en algunos casos. Por tanto, es clave identificar el equipo necesario y aprovechar equipos existentes para la nueva línea de producción. Asimismo, identificar el esquema de valorización (producción de biocombustibles para mercado energético, autoconsumo,...)

Otra barrera es la fluctuación de precios y condiciones del mercado, por lo que es clave encontrar el modelo de negocio adecuado. Sin embargo, los agentes del sector creen que hay suficiente biomasa para su uso como materia prima en otras aplicaciones, y las agroindustrias podrían establecer contratos plurianuales con proveedores. Así, el esquema IBLC permite alta flexibilidad comparado con una planta de pellets habitual.

Los pellets mezcla podrían ser una alternativa para cubrir la demanda de calor de la agroindustria. Pero aún hay un número reducido de calderas capaces de operar pellets basados en residuos agrícolas. Por tanto, la mejor alternativa por ahora es comercializar estos pellets en instalaciones industriales con calderas de biomasa de 100-550 kWh, que tienen quemadores más apropiados y prefieren biomasa con alta densidad debido a las limitaciones de almacenamiento.

Los usos alternativos de pellets herbáceos puros son producción de termoplásticos reforzados con fibras naturales y adsorbentes para derrames de hidrocarburos. Aunque estos mercados aún están en desarrollo, se debe promover el uso de biomasa para producir productos de alto valor.

IBLCs replication potential at the olive oil sector was analysed in the Castilla-La Mancha Region. Several factors were identified as drivers of this replication during a series of interviews held with relevant agents and agro-industries of the sector. Policies will be increasingly environmental, promoting circular economy in business models. Regulations should prioritize the availability of biomass generated by farmers; burning should not be strictly prohibited, but alternative management should be encouraged. Considering sector’s wastes as by-products would facilitate the administrative procedures that olive oil mills must carry out to manage it, thus facilitating its use. There is a great availability and potential for the exploitation of by-products in this sector. Besides logistic development, an adequate research strategy based on process optimization and cost reduction seems fundamental to achieve successful projects resulting in high value products. The implementation of a biomass management system will contribute to reactivate the economic activity in rural areas and fix the population, these facts that should encourage the administration to support and encourage this type of projects. Other valorisation alternatives are being sought for by-products (olive pulp mixed with earthworms could be used as high-quality organic fertiliser). These initiatives are very valued by society, as they improve the environmental performance of the activity and generate value from a material for which there was no prior expectation other than to burn it. Formulas to bring together agents of different sectors will be important. Cooperatives have a great potential to become essential elements in the supply and by-product processing chain.

Se analizó el potencial de replicación de IBLCs en el sector del aceite de oliva en Castilla-La Mancha. Se identificaron varios factores como impulsores de ello en entrevistas a agentes y agroindustrias del sector. Las políticas serán cada vez más ambientales, promoviendo la economía circular en los modelos de negocio. La normativa deberá dar prioridad a la disponibilidad de biomasa generada por los agricultores; no prohibiéndose estrictamente su quema, pero sí fomentando su gestión alternativa. Considerar los residuos del sector como subproductos facilitaría los trámites administrativos que deben realizar las almazaras para gestionarlos, favoreciando así su uso. Existe una gran disponibilidad y potencial para la explotación de sus subproductos. Además del desarrollo logístico, será fundamental una estrategia de investigación adecuada basada en la optimización de procesos y reducción de costes para lograr proyectos exitosos que resulten en productos de alto valor. La implantación de un sistema de gestión de la biomasa reactivará la actividad económica en zonas rurales y fijará población, lo que deberá animar a la administración a su apoyo y fomento. Se están buscando otras alternativas de valorización de los subproductos (pulpa de aceituna mezclada con lombrices de tierra podría usarse como abono orgánico de alta calidad). Estas iniciativas son muy valoradas por la sociedad, porque mejoran el rendimiento ambiental de la actividad y generan valor a partir de un material para el que no había expectativas previas, salvo quemarlo. Serán importantes fórmulas para reunir a agentes de diferentes sectores. Las cooperativas tienen un gran potencial para convertirse en elementos esenciales en el suministro y procesamiento de subproductos.

Castilla - La Mancha was the Spanish region chosen to evaluate the replication potential of IBLC concept in the wine sector. Interaction with relevant agents and different agro-industries of this sector allowed the identification of some factors that could favour this replication. The current and future policies and production paradigm will be based on the circular economy and the efficient use of resources. Regulations should prioritize the availability of biomass generated by farmers; burning should not be strictly prohibited, but alternative management should be encouraged instead. However, the definition of "waste" in the Waste Framework Directive will need to be clarified, as well as the reclassification of some wastes as by-products. There is great interest in the wine sector despite logistical challenges. Distilleries consider that they have manufacturing capacity to increase the added value of their by-products, which could represent an opportunity for the sector in the development of the IBLC concept, but also for rural areas. Great potential for staff retention and job creation, contributing to fix the population in these areas. However, it would be necessary to provide training to farmers and agribusinesses in specific circular economy activities (avoiding the usual burning practices, showing the potential of their by-products, overcoming conservative thinking, etc.). It will also be crucial to look for formulas to bring together agents of different sectors. Cooperatives have a great potential to become essential elements in the supply and by-product processing chain. One of the most important aspects to encourage replicability will be to increase the visibility of success stories in IBLC's business models.

Castilla-La Mancha fue la región elegida para evaluar el potencial de replicación del concepto IBLC en el sector del vino. La interacción con agentes relevantes y diferentes agroindustrias de este sector permitió identificar algunos factores que podrían favorecer esta replicación. Las actuales y futuras políticas y paradigmas de producción se basarán en la economía circular y el uso eficiente de los recursos. La normativa deberá priorizar la disponibilidad de biomasa generada por los agricultores; no prohibiendo estrictamente su quema, pero sí fomentando su gestión alternativa. Sin embargo, será necesario aclarar la definición de "residuo" en la Directiva Marco de residuos, así como la reclasificación de algunos residuos como subproductos. Existe un gran interés en el sector a pesar de las dificultades logísticas. Las destilerías consideran que tienen capacidad productiva para aumentar el valor añadido de sus subproductos, pudiendo representar una oportunidad para el sector en el desarrollo del concepto IBLC, pero también para zonas rurales. Hay un gran potencial para la retención de personal y la creación de empleo, fijando población. Sin embargo, sería necesario formar a agricultores y agroindustrias en actividades dirigidas a la economía circular (evitando prácticas habituales de quema, mostrando el potencial de sus subproductos, superando el pensamiento conservador, etc). También será crucial buscar fórmulas para reunir a agentes de diferentes sectores. Las cooperativas tienen un gran potencial para convertirse en elementos esenciales en la cadena de suministro y procesamiento de subproductos. Para fomentar la replicabilidad lo más importante será aumentar la visibilidad de casos de éxito en los modelos de negocio de IBLC.

Most promising sectors identified in Republic of Serbia for IBLC concept replication were, grain, vegetable oil extraction, sugar, wine and feed and fodder.

The grain chain and vegetable oil extraction sectors are dominant as they generate significant amounts of by-products and residues, both during the primary production and the industrial processing, that can be used as feedstock for solid biofuels (e.g. agro pellets). Recent development of pellet production and specialized combustion equipment for this type of fuel have opened the opportunities for utilization of these agro residues.

Besides, in the sector of vegetable oil extraction it exists a constant surplus in processing capacities, which also constitutes a potential opportunity for IBLC implementation, however, logistics is an obstacle for market development.

The sugar industry sector generates two residues and by-products: sugar beet and molasses. However, at this moment there are no capacities in Serbia for the production of either biogas from sugar beet press or bioethanol from molasses. Moreover, EU quota regime raise uncertainty on market prices and revenues.

Wine sector was found as a suitable one for establishing IBLC, although logistic bottlenecks should be overcome as well as a differentiation between low and high added value products.

The feed and fodder sector has not biomass related residues, but has a significant surplus of processing capacities that could be used for processing grain and vegetable biomass feedstock, generated by other sectors, into solid biofuels.

Thus, the Serbian agro-industry has potential for implementing the IBLC concept in vegetable oil extraction sector, wine sector, sugar industry and grain sector.

Most promising sectors identified in Ukraine for IBLC concept replication were feed and fodder, vegetable oil extraction, sugar industry and grain.

Sugar industry sector generates primarily two residues and by-products: sugar beet and molasses, used for producing biogas (sugar beet) and bioethanol (molasses). Moreover, some industries have experience in using it for powering the sugar plants. For sugar beet, it is used in their own plant due to difficulties in transporting it, and molasses can be stored, transported, and processed in the distilleries which have surplus processing capacity.

The feed and fodder sector has not biomass related residues, but has a significant surplus of processing capacities that could be used for dehydrating or granulating biomass feedstock generated by other sectors. On the contrary, grain sector industries were found to generate significant amounts of by-products and residues that can be used as feedstock for solid biofuels (e.g. straw pellets).

The vegetable oil extraction sector generates significant amounts of by-products and residues, both during the primary production and the industrial processing. In this sector exists a constant surplus in processing capacities, which constitutes a great potential opportunity for IBLC concept implementation, since the logistics seems to be the main obstacle for further development of this market. However, more investment in innovation at vegetable oil extraction industries would probably encourage them to implement alternative activities in their facilities.

Solid biofuels show an increasing demand in Ukraine over the last years, therefore, there are good market opportunities that agro-industries should try to exploit.

Swedish sugar sector is represented by a single company with experience on the development of new biocommmodities (through several research projects) and the pursue of added value for their by-products. However, biomass residues and by-products from this sugar industry already have a market and are not available. Thus, the best option for Swedish sugar sector to adopt the IBLC concept could rely in taking advantage of their idle period to use compatible machinery (rotary driers) and storage facilities to process residual biomass from other sectors.

In the vegetable oil sector rapeseed is the most common crop. Oil extraction process does not generate large amounts of residues and extraction industries do not usually have idle periods since they have a continued activity all over the year.

Grain processing industry is currently researching on increasing value from residues such as husks. These are usually incinerated in boilers for steam and heat production demanded by the surrounding houses. Researches on bioplastics from brans are being carried out too.

Biomass residues produced at feed and fodder industries are low to none and mostly reused in feedstuff products. If animal production decreases and, consequently, surplus capacity is increased, this situation may benefit the establishment of IBLC.

Therefore, Swedish grain and sugar sectors have an interesting potential, both from the production and market point of view. In vegetable oil and feed and fodder the opportunities are limited due to the lack of market opportunities and low volume of residues.

Most promising sectors identified in Greece for IBLC concept replication were olive oil, wine, grain, vegetable oil and sugar.Though in these three last sectors a relevant amount of by-products is generated, most of these are already used for animal feed or bedding and, therefore, they are not available for other purposes. These sectors present some synergies regarding partially compatible machinery, storage sites, idle times, etc. However, sugar sector has experimented important economical setbacks all over Europe in the last years that have reduced significantly its capacity to afford new investments.

In the case of the olive oil and wine sectors, a wide range of by-products are generated during the extraction processes in wine cellars and olive mills. These by-products are treated respectively in distilleries and olive pomace oil industries, which own fully compatible equipment with the processing of biomass. This means less investment would be needed in these agro-industries at the time of starting-up a new IBLC. Moreover, these sectors have very close access to agricultural waste such as the vineyard and olive groves prunings, that are usually burnt or left in the field without any valorisation.

Despite the overall good potential of the wine sector, due to the economic crisis, investment in innovation over the last years has been very low. This aspect should be addressed to encourage diversification within wine industries and expand their current activities.

Due to the vast amount of by-products that olive oil sector produce, the good market opportunities, the synergies, and the possibility of finding solutions for the logistical barriers identified, this sector was found to be the most promising one to start-up IBLC's in Greece.

Most promising sectors identified in Spain for IBLC concept replication were vegetable oil, olive oil, feed and fodder, wine, and grain. Many of the agro-industries from these sectors are featured for their small size, however, there is a considerable number with an acceptable level of activity where interesting opportunities and synergies for establishing IBLC have been identified.

For instance, olive pomace oil industries, distilleries and fodder dehydration industries own fully compatible equipment with the processing of biomass, have access to agricultural by-products and have experience with biomass valorisation (mainly for energy purposes). Some others, such as the vegetable oil extractors and grain dehydrators have partially compatible equipment that can be suitable to process some types of biomass. In the case of wine cellars and oil mills, although they do not possess compatible equipment, they have other assets such as storage sites and workforce, that could be very useful for the IBLC activity.

Therefore, in terms of the analysed sectors olive oil and wine sectors have been identified as the most favourable ones for establishing an IBLC due to the large volume of agricultural by-products and the good market opportunities already known and established.

Despite the fact that many bioproducts have been identified as feasible alternatives for diversification, low market activity together with the high investments that most of these agro-industries would need to afford to start-up an IBLC are consider to be the main barriers that prevent many of them to implement biomass valorisation activities.

An important focus is needed for what concerning the stationary chipper Caravaggi BIO900 which presented high economic performances too. This machine was not selected as best alternative cause of the consistent amount of initial investment (more or less three times higher than Facma Comby TR200) but it could represent a very interesting solution for further development of the IBLC, most of all in cases of consistent field slopes and high biomass yield. In the second phase other field tests were conducted evaluating Facma Comby TR200 performance in Agios Kostantinos, both in hill and flat olive groves. The obtained results were very interesting both from economic performance and biomass quality points of view. In particular Facma Comby TR200 showed a cost per surface unit of 68.43 €·ha-1 and 83.13 €·ha-1 respectively in flat slope and hilly one, respectively, considering the pruning yield in the two experimental fields, to a cost per biomass unit equal to 29.88 €·t-1 in flat slope and to 16.59 €·t-1 in hilly one. For what concerning biomass quality, focusing on particle size distribution, the hog fuel produced belonged to the particle size class P16.5. The main problem with the obtained product regarding the fuel quality assessment was the consistent amount of oversized chips (15.82%), which could represent a problem for both industrial and domestic plants. Ash content (4.00 %) and Higher Heating Value (19.53 MJ·kg−1) were similar to other previous studies. The activities stated the feasibility of towed shredder like Facma Comby TR200 for pruning harvesting operation in Agios Kostantinos context in order to implement a pruning supply chain for energy purpose.

During the project AGROinLOG different machines for pruning’s residues harvesting and comminuting, actually available on market, were tested in order to demonstrate the feasibility of a pruning for energy supply chain in Greece. In fact, tests were conducted to check these machines’ feasibility to Agios Kostantinos context. Investigated parameters were related to work productivity, biomass quality and economic performance. In a first phase of the project preliminary tests were performed in Greece and South Italy (very similar context to the Greek one) on four different machines: the Greek modified mulcher Fotopoulos FSR2000, the Italian towed shredders Tierre Plano and Facma Comby TR200 and the Italian stationary chipper Caravaggi BIO900. These preliminary evaluations were fundamental for identifying the best possible machinery alternative for the IBLC implementation in Greece. Results analysis showed substantially that a feasible machine was Facma Comby TR200, which showed good work productivity (Field Capacity: 0.49 ha·h-1, Material Capacity 3.20 t·h-1) , so limited costs (71.08 €·ha-1, 16.30 €·t-1) and an appreciable quality of the obtained biomass.

The Harcob harvesting system, developed by the Italian company Agricinque of Racca group, was also tested for its capacity to collect wheat chaff separately from the straw in a container on the back part of the combine. Actually, the system was developed with the specific application on maize cobs harvesting, but its suitability for chaff collection was considered worthy to test anyway. The results showed that it was possible to harvest 0.67 t⸱ha−1 of chaff out of the 2.2 t⸱ha−1 potentially available. The straw baled was 3.3 t⸱ha−1 corresponding approximately to the 47 % w/w of biomass loss probably due to the straw crushing caused by the threshing system of the axial harvester. In fact, once the straw is cut in smaller parts, then the cleaning and ventilation system is not able to discriminate and separate the grain from the chaff and from the straw. The result was that part of the chaff went into the straw windrow. The EFC of the combine harvester decreased by 17% respect to the TFC.

The Rekordverken Comby System, differently from both Thievin and Thierart, relies on a different technology which admix the chaff with the straw at the final step of the cleaning shoe of the combine harvester. The system can be switched off in case the chaff is wanted to be returned on the soil. Admixed and non-admixed treatments were tested. Admixing chaff allowed for a slightly higher amount of straw fresh weight baled compared to spreading (+336 kg straw ha−1), but such result was not evident on a dry weight basis. It slightly reduced the MC of the combine. On average, TFC and EFC were 3.72 ha⸱h−1 and 2.28 ha⸱h−1, respectively and the combine required 11.8 l⸱h−1 of fuel. TFC and EFC of the baling operation resulted on average 3.96 ha⸱h−1 and 2.01 ha⸱h−1, thus consisting of a mean field efficiency of 0.51. The performance of the combine harvester in threshing the grains was not affected by the Rekordverken Comby System. The collection losses were on average very high, from 41 to 47%.. If considering that chaff represented 23–29% of the total residues, this implies that an efficient collection of the chaff can allow halving the loss of residues.

Thierart technology was tested in Sweden in 2019 on two different wheat chaff harvesting methods: collecting the chaff onto a trailer towed by the combine harvester itself, and continuous discharge of it on straw swath for consequent baling. The total residual biomass increased by 0.84 t⸱ha-1 of and 0.80 t⸱ha-1 in the two respective treatments without affecting negatively the performance of the combine harvester in terms of EFC and MC. Negligible differences in baler performance as well were recorded. The fuel consumption ranged between 0.77 l⸱t-1 and 0.94 l⸱t-1 in case of straw and chaff baling while it ranged from 1.01 l⸱t-1 and 0.64 l⸱t-1 when the chaff was dispersed on the ground. The straw baled was 3.88 t⸱ha-1 out of 8.02 t⸱ha-1 potentially available on the field were baled. Concerning the operation costs, when the combine towed the trailer the hourly harvesting cost increased by 3.41 %, the cost per hectare by 73.35 % and the cost per tonne of biomass processed by 67.73 %.

Thievin technology was tested twice in 2018 and 2019 in France. The total biomass baled increased by 30% and 50% respectively, when chaff was baled along with the straw. In 2019 test, chaff was also collected as loose product by continuous discharge of it onto a trailer towed aside the combine harvester. This supply chain allowed the collection of 1.27 t⸱ha−1 of chaff separately to the straw. The effective field capacity (EFC) of the combine harvester was 13% and 23% lower than the theoretical value (TFC) estimated for 2018 and 2019 respectively when the chaff was discharged on swath, and 25 % lower when discharged on trailer. The latter test was performed only in 2019. Concerning the baler performance, the inclusion of chaff in the bales decreased the EFC by 21.5% in 2018 and 24.2% in 2019. The material capacity (MC) of the baler was significantly higher in case of chaff baling, whereas the MC of the combine harvester was not affected by the chaff collection. Fuel consumption only increased in the baling stage and only in the second year test, shifting from 2.62 l⸱ha-1when only straw was baled, to 6.21 l⸱ha-1 when chaff was included. The grain harvest performance was not affected by the collection of chaff.

The most common kind of the residual biomass exploited in cereal cropping is straw. However, up to 2 t ha−1 of residual biomass can be further collect if chaff were included. In the framework of AGROinLOG project, field tests were carried out to provide deeper understanding on the matter. Conventional harvester combines have been equipped with devices capable to collect the chaff produced by various firms (Thievin, Thierart, Rekordverken and Agricinque of Racca companies) and used as usual for harvesting the grains. In the meanwhile, the performance of the machines was analysed in order to provide scientific evidence on the improvements than can be brought about by the improving of conventional harvesters with such devices. The whole supply chain has been also valuated under the economical point of view. In conclusion, the tests revealed that the total amount of residual biomass collectable from cereal crops can be improved by equipping conventional combine harvester with aftermarket devices. The purchase cost of Thievin, Thierart and Rekordverken devices is affordable and worthy due to the increase of sealable biomass on the market. On the other hand, Harcob system is more expensive and the system should be improved to collect chaff due to high chaff harvesting losses. Hopefully, the establishment of a proper supply chain for both chaff and maize cob would help to reduce the purchasing costs.

Fiber sorghum enjoys the status of a highly diverse food, feed, and biofuel source worldwide. The natural attributes like abiotic stress tolerance, diverse genetic base, viable seed industry, and sound breeding system make sorghum a perfect candidate for establishing an efficient and low-cost biofuel industry. In this regard during the project AGROinLOG a technical tour was organized in Italy for partners with the scope to investigate the supply chain of Fiber sorghum for energy production in Italy, from the harvesting to the transformation. This feedstock is actually cultivated in Italy to feed a 15 MW biomass power plant. To this day, machines derived from haymaking or from mower conditioners, hay rakes and balers have been used for this purpose. However, according to various Research Institutes that have carried out Fiber Sorghum harvesting tests with machines for the haymaking, the conditioning resulted not always satisfactory as it extended the times required for the field drying process with the risk to postpone the harvesting and ruin the product in the case of rainfalls. For this reason, today COPROB, the farmer cooperative involved in the biomass recovery uses two different harvesting machines: a shredder and a conditioner. During the harvesting the biomass moisture content is about 70%. After the windrowing phase, when the moisture content reaches 15-20 %, the material is baled with conventional prismatic baler. All the logistic chain costs represent around 30 €/t (including harvesting, windrowing, baling and transport for maximum distances of 50 km). COPROB purchases the material to the logistic operators at 50 €/t (plant gate price) considering 75 % of dry matter.

Maize is one of the most widespread crops worldwide because of its high yield and importance for food, chemical purposes and livestock feed. Maize cob remains in the field after grain harvesting. In Europe, just maize cob could provide an annual potential biomass of 9.6 Mt. Collecting such a biomass could be of interest for bioenergy production and could increase farmers’ income. Progress in harvest technology plays a key role in turning untapped by-products into valuable feedstocks. During the project AGROinLOG the performance and the quality of the work of Harcob, an innovative system developed for maize cob collection simultaneously with grain, were evaluated in open field test. The results showed that it was possible to harvest 1.72 t ha−1 of cob without affecting the harvesting performance of the combine. The profit achievable from harvesting the corn cob was around 4% even if it is influenced by the market price. The use of cereal by-products for energy purposes may allow the reduction of CO2 from fossil fuel between 0.7 to 2.2 t CO2 ha−1. The Harcob system resulted suitable to harvest Maize cob and represent a solution for farmers investing in the bioenergy production chain.

Within the EU project AGRoinLOG, the potential to use wheat straw for the production of biofuels was evaluated. Two main processes were studied: fermentation to ethanol and hydrothermal hydrolysis to bio-oil. The straw was pre-treated before the fermentation process which produces both ethanol and a lignin rich fraction. The HTL-process then treat the lignin rich fraction. To study these processes, RISE Processum has developed a small-scale pilot plant within the project.

HTL is a thermal depolymerising process used to convert wet biomass into liquid oil, sometimes called bio-oil or bio-crude. The process takes place at high pressure and temperature (i.e. 200 bar, 300 degrees Celsius) in a water medium. This process was studied already in the 1920’s and has been considered interesting as supplement to the use of crude oil.

The process is based on wheat straw which is pre-treated to release the cellulose, hemicellulose and lignin. The hydrolysis of the pre-treated material releases individual sugars from the carbohydrates, which ferment then into ethanol (26% yield). The lignin remaining after this process (ca. 50% yield) undergone the Hydrothermal Liquification (HTL) which result to bio-oil (55% yield of the lignin fraction) and biochar (3% yield of the lignin fraction).

The HTL process has some technical challenges that need to be solved and to ensure its profitability, markets for the bio-oil and bio-char produced should also be identified.

I EU-projektet AGROinLOG har potentialen att använda vetehalm för tillverkning av biobränslen utvärderats. Två huvudprocesser har undersökts; fermentering till etanol och Hydrotermisk förvätskning (Hydrothermal liquefactionHTL) process till bioolja. Halmen har bearbetats med en förbehandling, innan fermentering som ger både etanol och en ligninfraktion. HTL-processen behandlar den lignin rika fraktion. För att kunna undersöka dessa processer har RISE Processum tagit fram och utvecklat en pilot i projektet.

Hydrotermisk förvätskning (HTL) är en termisk depolymeriseringsprocess som används för att omvandla våt biomassa till flytande olja - ibland kallad bioolja eller biocrude. Processen sker under höga tryck och temperaturer (tex 200 bar, 300 grader C) i vattenmedia. Processen undersöktes redan under 1920-talet och har ansetts intressant som komplement till användning av råolja.

Processen utgår från vetehalm som förbehandlas för att frigöra cellulosa, hemicellulosa och lignin. Hydrolys av förbehandlat materialet frigör enskilda sockerarter från kolhydrater, dessa fermenteras sedan till etanol (26% utbyte). Ligninresten (ca. 50% utbyte) genomgår en hydrotermisk förvätskning (HTL) som ger bioolja (55% utbyte av ligninfrkation) och biokol (3% utbyte av ligning fraktion).

Processen har en del tekniska utmaningar som måste lösas och för att få ekonomisk nytta så måste tillämpningar för de producerade oljorna också identifieras.

Regarding straw potential and capacity to harvest and handle straw, it is possible to supply the Swedish demonstration case in Norrköping with 80,000 tonnes of winter wheat straw. In the surrounding regions, as much as 230,000 tonnes would be available after taking account of any limitations regarding soil fertility aspects and the straw needed for animal production.

Lantmännen has good IBLC preconditions to widen its current business model with production of second-generation ethanol. It has well-established contacts with farmers and suppliers, a sales organisation for straw and ethanol, etc.

Lantmännen can produce ethanol from straw and has successfully learned to produce biooil with high yield from the lignin fraction remaining after ethanol production. Wastewater from the production can be utilised for biogas production. Thus, the profitability of the business model is based on three products (ethanol, biooil and biogas), thereby spreading the risks.

There are a wide range of possible markets and applications for the biooil. For most applications, however, the biooil needs to be upgraded to some extent, which significantly increases the investment costs. No market for the biochar produced in the project has been identified, mainly due to the high ash content.

The current business model for the demonstration case is estimated to give a net profit, although not enough to be economically viable. The major challenges are the high cost of straw, enzymes for hydrolysis and operation of the biooil unit. Scaling up the biooil unit and possibly also introducing an additional raw material source might help to improve the economic viability of the business model.

Angående halmpotential och kapacitet att skörda och hantera halm är det möjligt att förse det svenska demonstrationsfallet i Norrköping med 80 000 ton höstvetehalm per år. I de omgivande regionerna skulle så mycket som 230 000 ton vara tillgängligt efter att hänsyn tagits till eventuella begränsningar med avseende på markens bördighet och halmåtgång för djurproduktion.

Lantmännen har goda IBLC-förutsättningar för att utvidga sin nuvarande affärsmodell med produktion av andra generationens etanol. De har väletablerade kontakter med jordbrukare och leverantörer, en försäljningsorganisation för halm och etanol, etc.

Lantmännen kan producera etanol från halm och har framgångsrikt lärt sig att producera bioolja med högt utbyte från den ligninrest som återstår efter etanolproduktion. Avloppsvatten från produktionen kan användas för biogasproduktion. Således bygger affärsmodellens lönsamhet på tre produkter (etanol, bioolja och biogas) och därmed sprids riskerna.

Det finns flera möjliga marknader och applikationer för biooljan. För de flesta applikationer måste dock biooljan uppgraderas till viss del, vilket avsevärt ökar investeringskostnaderna. Ingen marknad har identifierats för den biokol som produceras, främst på grund av det höga askinnehållet.

Den nuvarande affärsmodellen för demonstrationsfallet beräknas ge en nettovinst, men inte tillräckligt för att vara ekonomiskt hållbar. De stora utmaningarna är de höga kostnaderna för halm, enzymer för hydrolys och drift av biooljaenheten. Att skala upp biooljaenheten och eventuellt införa en ytterligare råvara kan bidra till att förbättra affärsmodellens ekonomiska livskraft.

Straw is mainly harvested for fodder and bedding for animal production. The AGROinLOG project studied the opportunities to use straw for the production of biofuels. The study showed that Sweden produces around 1,255,000 tonnes of straw from winter wheat yearly. It was estimated that about two thirds or 836,000 tonnes are available for other use that animal production. Therefore, it is important that the removal of straw is performed in a sustainable way and does not result in a decrease in fertility of the cultivated fields.

The opportunities to extract ethanol and bio-crude from straw were studied for Lantmännen’s Agroetanol plant in Norrköping. The study investigated the possibility to supply 80,000 tonnes of winter wheat straw annually from the three neighbouring counties for the production of biofuels. The study’s main goal was to achieve a sustainable removal of straw with no negative impact on the long-term fertility of arable land. The arable land in the counties in question generally has a high organic content and collecting 80,000 tonnes of autumn wheat straw annually is feasible.

A survey was sent to farmers around the country in collaboration with LRF (Federation of Swedish Farmers) to investigate the conditions for collecting larger quantities of straw for the bio-based industry. Based on the 1000+ responses, the survey showed among others that 36% of respondents harvest straw from less than 20% of their cereal fields. This represents a large potential for increasing the harvest of straw. The responses also showed that most farmers want contracts for the delivery of straw directly with Lantmännen and not through an intermediary, and would prefer a one-year contract.

Halm skördas idag huvudsakligen till foder och strömedel i djurproduktionen. I AGROinLOG undersöker vi möjligheten att även använda halm för produktion av biodrivmedel. Av de cirka 1 255 000 ton höstvetehalm som produceras årligen i Sverige, uppskattas runt två tredjedelar eller 836 000 ton vara tillgängligt för annan användning än djurproduktion. Det är viktigt att uttaget av halm blir hållbart och inte medför en försämring av odlingsmarkens bördighet.

På Lantmännen Agroetanols anläggning i Norrköping har möjligheterna att utvinna etanol och bioolja ur halm undersökts. I studien utreddes möjligheten att leverera 80 000 ton höstvetehalm årligen för produktion av biodrivmedel från de tre länen runt Norrköping. Utgångspunkten var ett hållbart uttag av halm utan negativ påverkan på åkermarkens bördighet på lång sikt. Åkermarken i de aktuella länen har i allmänhet högt organiskt innehåll och att samla in denna mängd höstvetehalm årligen kommer att vara möjligt.

En enkät skickades till lantbrukare runtom i landet i samarbete med LRF för att undersöka förutsättningarna för att samla större mängder halm för den biobaserade industrin. De över 1000 svaren visade bland annat att 36% av de som svarade på enkäten skördar halm från mindre än 20% av sin spannmålsareal. Detta representerar den största potentialen för ökat halmuttag. Vidare visade svaren att en majoritet av lantbrukarna vill ha kontrakt för leverans av halm direkt med Lantmännen och inte via en mellanhand samt föredrar ettåriga kontrakt.

AGROinLOG studied the feasibility of transforming the Swedish agro-industry Lantmännen into an Integrated Biomass Logistics Centre (IBLC) in the grain-milling and feed sector.

Lantmännen integrates around 29.000 farmers working from August to October and delivering 1.2 Mt/year of grain to the plant to produce flour for food, animal feed and bioethanol. Apart from the grain, the Swedish farmers produce straw, which is partially harvested and used for feed or bedding. However, a significant part has no use today and is ploughed down into the soil.

Lantmännen looked at starting a new business line based on the use of the cereal straw as a non-food feedstock in the current process of producing bioethanol, ensuring that the bioethanol plant is working throughout the year at its maximum capacity. The challenge was to handle the by-product, a lignin rich residue that has a high value if refined into a product such as liquid fuel or bio-material. The profitability of the straw value chain increases by producing both, ethanol and products of higher value from the lignin (Sulphur free bio-oil to be used as biodiesel enhancer). Another challenge was to create a new logistics chain in order to deliver straw along the year, as straw is a seasonal resource.

The cultivation and processing of the harvested olive fruits yields various by-products such as field residues (leaves, prunings) and mill residues (pomace, exhausted olive cake), that consist an interesting source of phenolics. Olive leaves (OL) are known to be rich in polyphenols which may vary by cultivar, season or geographical location. Olive pomace and especially two-phase pomace (TPOMW) are also rich in phenolics. In the frameworks of AGROinLOG, extraction tests were performed on various olive mill waste residues with different solvents. Quantitative analysis showed OL and TPOMW contained the highest content of phenols compared to the other samples, with a content of phenolics of 15.7 and 12.4 g of phenols/ dry kg solids of residue respectively. In addition, some of the phenolic components were identified in the extracted phenols such as oleuropein, hydroxytyrosol, 1,2 dimethoxy benzene, rutin and caffeic acid. By using different kind of solvent, not only the amount of phenolic compounds extracted was different but also the type of phenols extracted differed. In terms of quantity, methanol and ethanol resulted in higher amounts of total phenolics extracted than using ethyl acetate or butanol. Methanol and ethanol solvents had similar extraction results, however, methanol resulted in slightly higher extraction yields. Considering the outcomes of the aforementioned tests, extracts of olive leaves and TPOMW may be used for cosmetic, nutraceutical and food applications, but again further treatment and/or clarification is advised to increase the possibilities of finding applications on the food sector.

Κατά την καλλιέργεια και επεξεργασία των καρπών της ελιάς υπάρχουν διάφορα παραπροϊόντα όπως αγροτικά υπολείμματα (φύλλα, κλαδέματα) και ελαιουργικά υπολείμματα (πυρήνας, πυρηνόξυλο), που αποτελούν μια ενδιαφέρουσα πηγή φαινολών. Τα φύλλα ελιάς είναι γνωστό ότι είναι πλούσια σε πολυφαινόλες που μπορεί να ποικίλουν ανάλογα με την ποικιλία, την εποχή ή τη γεωγραφική περιοχή. Ο πυρήνας ελιάς και ειδικά ο διφασικός πυρήνας είναι επίσης πλούσιος σε φαινολικές ενώσεις. Στο πλαίσιο του έργου AGROinLOG, πραγματοποιήθηκαν δοκιμές εκχύλισης σε διάφορα ελαιουργικά υπολείμματα με διαφορετικούς διαλύτες. Ποσοτική ανάλυση έδειξε πως τα φύλλα ελιάς και ο διφασικός πυρήνας είχαν τις υψηλότερες συγκεντρώσεις σε φαινόλες σε σχέση με άλλα δείγματα, με περιεκτικότητα φαινολικών 15,7 και 12,4 g φαινολών/ kg ξηρών στερεών υπολειμμάτων αντίστοιχα. Επιπλέον, στις φαινόλες που εκχυλίστηκαν ταυτοποιήθηκαν ορισμένες από τις φαινολικές ενώσεις όπως οι ελευρωπαΐνη, υδροξυ-τυροσόλη, 1,2 διμεθοξυ-βενζόλιο, ρουτοσίδη και καφεϊκό οξύ. Με την χρήση διαφορετικού διαλύτη διαφοροποιούνταν όχι μόνο η ποσότητα των εκχυλισμένων φαινολικών ενώσεων, αλλά και το είδος τους. Όσο αφορά την ποσότητα, η μεθανόλη και η αιθανόλη οδήγησαν στις υψηλότερες ποσότητες συνολικών φαινολικών ενώσεων που εκχυλίστηκαν σε σχέση με τον αιθανικό αιθυλεστέρα και την βουτανόλη. Η μεθανόλη και η αιθανόλη είχαν παρόμοια αποτελέσματα εκχύλισης, ωστόσο, η χρήση μεθανόλης οδήγησε σε ελαφρώς υψηλότερες αποδόσεις εκχύλισης. Λαμβάνοντας υπόψη τα αποτελέσματα των προαναφερθέντων δοκιμών, εκχυλίσματα φύλλων ελιάς και διφασικού πυρήνα μπορούν να χρησιμοποιηθούν για εφαρμογές σε καλλυντικά, «φαρμακοτρόφιμα» και είδη διατροφής, αλλά συνιστάται η περαιτέρω επεξεργασία και καθαρισμός τους ώστε να αυξηθούν οι δυνατότητες εφαρμογής τους στον τομέα των τροφίμων.

Main interest of an Integrated Biomass Logistic Centre (IBLC) in the olive oil sector is the exploitation of olive tree prunings. Apart from the exploitation of olive tree prunings for energy purposes, AGROinLOG project investigated the potential of producing particleboards from olive prunings by replacing common wood at 20 %, 40 %, 60 %, 80 % and 100 % rate. Particleboards are used in used in the construction and furniture sector. Different samples of olive tree prunings harvested during the demonstrations in Agios Konstantinos, in terms of olive variety, pruning thickness and presence of olive leaves, were used for the production of particleboards. The pilot production of particleboards included: a) the preparation of the particles, b) the preparation of the adhesive mixtures consistent of a suitable resin and additives, c) the mixing of the particles with the adhesive mixture, d) the laying of the glued particles in a special box to form a mat and e) the production of the final board product by hot pressing and final bonding of the polymeric resin. The evaluation of the results has led to the conclusion that it is possible to produce panels by substituting the conventional wood with olive pruning materials. Based on the results achieved, a maximum substitution level of 40 % of the conventional wood with pruning material can be applied, without affecting significantly its mechanical properties. The latter are reduced by increase of the substitution level. This may be attributed to the higher amount of bark compared to the conventional wood chips, which are produced from debarked wood logs. On the other hand, particle board properties such as the formaldehyde emissions of the boards (along with the thickness swelling) are reduced by increase of the substitution level, which makes the panels safer in terms of indoor pollution and human health and more consumer friendly and attractive.

Βασικό ενδιαφέρον ενός Ολοκληρωμένου Κέντρου Εφοδιαστικής Βιομάζας (ΟΚΕΒ) στον τομέα του ελαιολάδου είναι η διαχείριση των κλαδεμάτων ελιάς. Εκτός από την εκμετάλλευση των κλαδεμάτων για ενεργειακούς σκοπούς, το έργο AGROinLOG διερεύνησε τη δυνατότητα παραγωγής μοριοσανίδων από κλαδέματα ελιάς, αντικαθιστώντας το συμβατικό ξύλο σε ποσοστό 20%, 40%, 60%, 80% και 100%. Οι μοριοσανίδες χρησιμοποιούνται στον τομέα των κατασκευών και των επίπλων. Για την παραγωγή μοριοσανίδων χρησιμοποιήθηκαν διάφορα δείγματα κλαδεμάτων ελιάς, τα οποία συγκομίστηκαν κατά τη διάρκεια των επιδεικτικών δράσεων στον Άγιο Κωνσταντίνο, ανάλογα με την ποικιλία, το πάχος κλαδέματος αλλά και την παρουσία φυλλώματος. Η πιλοτική παραγωγή μοριοσανίδων περιλάμβανε: α) την προετοιμασία των σωματιδίων, β) την παρασκευή των συγκολλητικών μειγμάτων ως αποτέλεσμα μίξης της κατάλληλης ρητίνης και πρόσθετων υλών, γ) την ανάμιξη των σωματιδίων με το συγκολλητικό μείγμα, δ) την τοποθέτηση του κολλημένων σωματιδίων σε ειδικό κουτί για να διαμορφώσουν ένα στρώμα και ε) την παραγωγή του τελικού προϊόντος σανίδας με θερμή συμπίεση και τελική συγκόλληση της πολυμερούς ρητίνης. Η αξιολόγηση των αποτελεσμάτων οδήγησε στο συμπέρασμα ότι είναι δυνατή η παραγωγή σανίδων με αντικατάσταση του συμβατικού ξύλου με κλαδέματα ελιάς. Με βάση τα επιτευχθέντα αποτελέσματα, μπορεί να εφαρμοστεί ένα μέγιστο επίπεδο υποκατάστασης 40% του συμβατικού ξύλου με υλικό κλαδέματος, χωρίς να επηρεάζονται σημαντικά οι μηχανικές ιδιότητες της μοριοσανίδας. Οι τελευταίες, μειώνονται με αύξηση του επιπέδου αντικατάστασης. Αυτό μπορεί να αποδοθεί στην υψηλότερη ποσότητα φλοιού σε σύγκριση με τα συμβατικά τσιπ ξύλου, τα οποία παράγονται από αποφλοιωμένους κορμούς ξύλου. Από την άλλη πλευρά, ιδιότητες των μοριοσανίδων, όπως η έκλυση φορμαλδεΰδης των σανίδων (μαζί με την κατά πάχος διόγκωση) μειώνονται με την αύξηση του επιπέδου αντικατάστασης, γεγονός που καθιστά τις σανίδες ασφαλέστερες, από άποψη ρύπανσης του εσωτερικού χώρου και της ανθρώπινης υγείας, και πιο ελκυστικές και πιο φιλικές προς τον καταναλωτή

Τhe main biomass fuel products produced during the demo activities for the development of an olive sector IBLC were validated: olive tree pruning (OTP) pellets and OTP hog fuel. Pellets are a more homogeneous and higher energy density product, compatible with more boilers and able to be transported over longer distances; hog fuel is the material as harvested.

The results of the emission measurement campaign highlight the importance of choosing a modern combustion system, compatible with this type of biofuels that has all the necessary automations that will ensure a high efficiency and low emissions (lamda sensors, cyclone/ESP) and ease of use (automatic ash extraction).

The fuel properties of the olive tree prunings are similar and even better that other industrial fuels. Although OTP pellets could compete with other industrial fuels, in terms of combustion efficiency and emissions, their cost is considerably higher, making them an unattractive substitute of these fuels. However, their price is very competitive compared to domestic solid biofuels, and these pellets could, in certain circumstances, be used in the domestic market.

The use of OTP hog fuel seems to be a promising solution, as it is more competitive due to its reduced cost. However, it faces several challenges as well, as the need of a suitable fuel feeding system. OTP hog fuel has significantly lower (energy) density compared to pellets, thus increasing the transportation costs. In this light, its targeted end users should be in close range from the IBLC.

An alternative use of OTP pellets was also validated through their use as bedding for rodents, with positive feedback. The user found the use of OTP pellets more attractive compared to wood pellets and is willing to pay a higher price.

Πραγματοποιήθηκαν δοκιμές καύσης με τα κύρια στερεά καύσιμα από βιομάζα που παρήχθησαν κατά τις επιδεικτικές δραστηριότητες ενός Ολοκληρωμένου Κέντρου Εφοδιαστικής Βιομάζας (ΟΚΕΒ) στον ελαιουργικό τομέα: πελλέτες από κλαδέματα ελιάς και τεμαχισμένα (hog fuel) κλαδέματα ελιάς. Τα πέλλετ είναι ένα ομοιογενές προϊόν με μεγαλύτερη ενεργειακή πυκνότητα, που είναι συμβατό με περισσότερους λέβητες και μπορεί να μεταφερθεί σε μεγαλύτερες αποστάσεις, ενώ τα τεμαχισμένα κλαδέματα είναι το υλικό όπως συλλέχθηκε.

Τα αποτελέσματα των μετρήσεων εκπομπών καυσαερίων τονίζουν την σημασία της επιλογής ενός μοντέρνου συστήματος καύσης, συμβατού με αυτό το είδος στερεών βιοκαυσίμων που περιλαμβάνει όλους τους απαραίτητους αυτοματισμούς που εξασφαλίζουν υψηλή απόδοση και χαμηλές εκπομπές (αισθητήρας λ, κυκλώνας/ηλεκτροστατικά φίλτρα) και ευκολία χρήσης (αυτόματη εξαγωγή τέφρας).

Οι ιδιότητες καυσίμου των κλαδεμάτων ελιάς είναι παρόμοιες ή και καλύτερες σε σχέση με άλλα βιομηχανικά καύσιμα. Αν και τα πέλλετ από κλαδέματα ελιάς είναι ανταγωνιστικά με άλλα βιομηχανικά καύσιμα, ως προς την απόδοση και τις εκπομπές κατά την καύση, το κόστος τους είναι σημαντικά υψηλότερο, με αποτέλεσμα να μην είναι ελκυστικό υποκατάστατο αυτών των καυσίμων. Ωστόσο, η τιμή τους είναι πολύ ανταγωνιστική σε σχέση με οικιακά στερεά βιοκαύσιμα και αυτά τα πέλλετ θα μπορούσαν, υπό προϋποθέσεις, να χρησιμοποιηθούν στην οικιακή αγορά.

Η χρήση τεμαχισμένων κλαδεμάτων ελιάς δείχνει να είναι μια πολλά υποσχόμενη λύση, καθώς είναι πιο ανταγωνιστικό λόγω του μειωμένου κόστους του. Παρ’ όλα αυτά, υπάρχουν και σε αυτή την περίπτωση δυσκολίες καθώς απαιτείται κατάλληλο σύστημα για την τροφοδοσία του καυσίμου. Τα τεμαχισμένα κλαδέματα έχουν σημαντικά μικρότερη (ενεργειακή) πυκνότητα σε σχέση με τα πέλλετ, και συνεπώς και αυξημένα κόστη μεταφοράς. Υπό το πρίσμα αυτό, οι τελικοί χρήστες θα πρέπει να είναι σε κοντινή απόσταση από το ΟΚΕΒ.

Μια εναλλακτική χρήση των πέλλετ από κλαδέματα ελιάς που δοκιμάστηκε ήταν η χρήση τους σαν στρωμνή για τρωκτικά, με θετικά σχόλια. Ο χρήστης βρήκε προτιμότερη την χρήση πέλλετ από κλαδέματα ελιάς σε σχέση με πέλλετ ξύλου και θα ήταν διατεθειμένος να τα αγοράσει σε υψηλότερη τιμή.

Storage of OTP is a very important factor for the realization of an IBLC concept. Thus, monitoring of feedstock losses during OTP’s storage was performed to optimize the storage strategy and investigate how their quality is affected. Piles of harvested prunings were built and monitored for calculating the changes in dry matter and energy content of the stored material over time. In general, a 6 months storage test of harvested olive tree prunings was performed at the IBLC’s premises. Two piles of 3 meters height and 5.5 meters diameter were built. One pile was stored as-is in open space and the other one was covered with a fleece, while sample bags were used to determine the dry matter and energy variations of the olive tree prunings after two, four and six months of storage. After six months, the covered pile showed an average weight loss of 12.5 % of the retrieved sample bags, in contrast with the uncovered bags which had fluctuations on the weight losses of 6.0 %. In brief, the covered pile showed greater storage performance than the uncovered pile. Finally, based on the thermocouples used to measure the inside temperatures of the piles, the covered pile recorded a stable average temperature (36.1 °C), whereas the uncovered pile recorded more violent temperature fluctuations (32.7 °C) throughout the storage period. In overall, the covered pile presented lower dry matter losses (average value of 1.5 % compared to 3.7 % of the uncovered pile), higher moisture losses (44.8 % average moisture content loses compared to the initial moisture of the covered pile, versus 8.2 % of the uncovered pile) which resulted in energy content gain (average value of energy content gain of 11.6 % in the covered pile, compared to energy content loss of 2.3 % of the uncovered pile).

Η αποθήκευση των κλαδεμάτων ελιάς αποτελεί έναν πολύ σημαντικό παράγοντα για την υλοποίηση της γενικής ιδέας ενός ΟΚΕΒ. Για αυτόν το λόγο, πραγματοποιήθηκε η παρακολούθηση των απωλειών της πρώτης ύλης κατά την αποθήκευση των κλαδεμάτων ελιάς με σκοπό τη βελτιστοποίηση της στρατηγικής ιδέας της αποθήκευσης και τη διερεύνηση του τρόπου με τον οποίο επηρεάζεται η ποιότητά τους. Κατασκευάστηκαν και παρακολουθήθηκαν σωροί από συλλεχθέντα κλαδέματα ελιάς προκειμένου να υπολογιστούν οι αλλαγές στην ξηρή ύλη και την ενεργειακή περιεκτικότητα του αποθηκευμένου υλικού με την πάροδο του χρόνου. Γενικά, πραγματοποιήθηκε μια εξάμηνη δοκιμή αποθήκευσης σε κλαδέματα ελιάς στις εγκαταστάσεις του ΟΚΕΒ. Κατασκευάστηκαν δύο σωροί ύψους 3 μέτρων και διαμέτρου 5,5 μέτρων. Ο πρώτος σωρός αποθηκεύτηκε ως έχει σε ανοιχτό χώρο και ο άλλος καλύφθηκε με ειδικό πανί, ενώ σάκοι δείγματος χρησιμοποιήθηκαν για τον προσδιορισμό της ξηράς ύλης αλλά και των ενεργειακών εναλλαγών των κλαδεμάτων ελιάς μετά από αποθήκευση δύο, τεσσάρων και έξι μηνών. Μετά από έξι μήνες, ο καλυμμένος σωρός έδειξε μέση απώλεια βάρους 12,5% από τους ανακτηθέντες σάκους δειγμάτων, σε αντίθεση με τους σάκους από τον ακάλυπτο σωρό οι οποίοι είχαν απώλειες βάρους της τάξης των 6,0%. Εν συντομία, ο καλυμμένος σωρός εμφάνισε καλύτερη απόδοση κατά την αποθήκευση από τον αντίστοιχο ακάλυπτο. Τέλος, με βάση τα θερμοστοιχεία που χρησιμοποιήθηκαν για τη μέτρηση των εσωτερικών θερμοκρασιών των σωρών, ο καλυμμένος σωρός κατέγραψε σταθερή μέση θερμοκρασία (36,1oC), ενώ ο ακάλυπτος σωρός κατέγραψε πιο βίαιες διακυμάνσεις θερμοκρασίας (με μ.ο. 32,7oC) καθ’ 'όλη τη διάρκεια της περιόδου αποθήκευσης. Συνολικά, ο καλυμμένος σωρός παρουσίασε χαμηλότερες απώλειες ξηρής ύλης (μέση τιμή 1,5% σε σύγκριση με 3,7% του ακάλυπτου σωρού), υψηλότερες απώλειες υγρασίας (44,8% μέση απώλεια υγρασίας σε σύγκριση με την αρχική υγρασία του καλυμμένου σωρού, έναντι 8,2% του ακάλυπτου σωρού) που είχε ως αποτέλεσμα την αύξηση του ενεργειακού περιεχομένου του καλυμένου σωρού (μέση τιμή κέρδους ενεργειακού περιεχομένου 11,6% στον καλυμμένο σωρό, σε σύγκριση με την απώλεια ενεργειακού περιεχομένου 2,3% του ακάλυπτου σωρού).

The main activity of an IBLC in the olive oil sector is the exploitation of the untapped biomass resources, that of olive prunings, mainly for energy means. One possible exploitation method of olive tree prunings is the pelletization of them. In the framework of AGROinLOG project, a pilot pellet production from harvested olive tree prunings was demonstrated in a Greek pellet plant, ENPlus® certified. The production of around 63 t of olive tree prunings pellets was monitored. Around 1044.5 kWh of primary energy per dry ton of pellet for the heat consumptions and 295.5 kWh per dry ton of pellet for electricity are needed during pelletization. Continuously, the approximate production cost for the pelletization of olive tree prunings was calculated at 80 €/t. Lastly, the mass balance of the pelletization of the harvested olive tree prunings from the Greek IBLC area along with the fuel analyses of the produced OTP pellets were successfully addressed. In general, olive tree prunings fuels have a good energy content (HHV of 19.8 MJ/kg db) but differ to forest biomass in terms of higher ash content (5.5 w-% d.b.). The high ash content is because of the existence of olive leaves and soil contamination due to the mechanized harvesting. Thus, this type of biomass requires boilers with higher requirements in the systems dedicated to withdrawing ashes or to clean flue gases (particle matter likely emissions). In order to keep the ash content as low as possible it is important to avoid soil contamination before the pellet production.

Η κύρια δραστηριότητα του Ολοκληρωμένου Κέντρου Εφοδιαστικής Βιομάζας (ΟΚΕΒ) στον ελαιουργικό τομέα είναι η αξιοποίηση του ανεκμετάλλευτου πόρου βιομάζας των κλαδεμάτων ελιάς, κυρίως για παραγωγή ενέργειας. Ένας πιθανός τρόπος αξιοποίησης των κλαδεμάτων ελιάς είναι η πελλετοποίησή τους. Στο πλαίσιο του έργου AGROinLOG, έγινε επιδεικτική πιλοτική παραγωγή πέλλετ από συλλεγμένα κλαδέματα ελιάς σε Ελληνικό εργοστάσιο παραγωγής πελλετών, πιστοποιημένο με ENPlus®. Συνολικά έγινε παραγωγή περίπου 63 τόνων πέλλετ από κλαδέματα ελιάς. Για την παραγωγής τους χρειάστηκαν περίπου 1044,5 kWh πρωτογενούς ενέργειας ανά ξηρό τόνο πέλλετ για καταναλώσεις θερμότητας και 295,5 kWh ανά ξηρό τόνο πέλλετ για καταναλώσεις ηλεκτρικής ενέργειας. Στη συνέχεια, το κατά προσέγγιση κόστος παραγωγής για την πελλετοποίηση των κλαδεμάτων ελιάς υπολογίστηκε στα 80 €/t. Τέλος, πραγματοποιήθηκε με επιτυχία το ισοζύγιο μάζας για την πελλετοποίηση των κλαδεμάτων ελιάς που συλλέχθηκαν από την περιοχή του Ελληνικού ΟΚΕΒ καθώς και αναλύσεις καυσίμου των πέλλετ που παρήχθησαν. Γενικά, τα καύσιμα από κλαδέματα ελιάς έχουν καλό ενεργειακό περιεχόμενο (Ανώτερη Θερμογόνο Ικανότητα 19,8 MJ/kg επί ξηρού) αλλά διαφέρουν από την βιομάζα δασικής προέλευσης στην υψηλότερη περιεκτικότητα σε τέφρα (5,5 κ.β.-% επί ξηρού). Η υψηλή περιεκτικότητα σε τέφρα οφείλεται στην παρουσία των φύλλων ελιάς και σε επιμόλυνση με χώμα κατά την μηχανοποιημένη συλλογή των κλαδεμάτων. Συνεπώς, αυτό το είδος βιομάζας απαιτεί λέβητες με ειδικά συστήματα απομάκρυνσης τέφρας ή καθαρισμού των καυσαερίων (από εκπομπές σωματιδίων κυρίως). Προκειμένου να διατηρηθεί η περιεκτικότητα σε τέφρα όσο το δυνατόν χαμηλότερα, είναι σημαντικό να αποφευχθεί η επιμόλυνσης με χώμα πριν την παραγωγή των πέλλετ.

Olive tree prunings are the main agro-residues being exploited by the IBLC in the olive oil sector. A first step towards the valorization and harvesting of olive tree prunings is to map the biomass sources and accurately estimate the biomass productivity. Thus, in the framework of AGROinLOG project, a GIS mapping tool was developed that based on data supplied from the Greek Payment Authority of Common Agricultural Policy (C.A.P.) Aid Schemes, it estimates the biomass potential from olive tree prunings. The tool calculates biomass availability using a biomass per tree ratio, which can be adapted to local conditions based on empirical data from field measurements performed in AGROinLOG project and other projects. Moreover, this tool is able to produce a thematic map where the biomass potential of olive prunings from selected areas of Greece will be displayed (regions, regional units, municipalities). Furthermore, users are able to select ad-hoc geographic areas of interest where the tool will automatically calculate the biomass potential (OTP) of the selected polygons. The tool has been expanded from the IBLC area to calculate OTP potential in all olive areas of Greece. This tool can be used by any agro-industry interested in implementing the IBLC concept in order to have a first estimation of the olive tree pruning potential in its area. Thus, organizing a secure supply of olive tree prunings for each IBLC case in the olive sector. This tool is continuously being improved and is aimed in inserting more «kg of prunings per tree» ratios for more olive varieties and, as a result, have more accurate OTP calculations for different olive areas, at least at national level at the moment.

Τα κλαδέματα ελιάς είναι τα κύρια αγροτικά υπολείμματα που εκμεταλλεύονται από ένα ΟΚΕΒ στον τομέα του ελαιολάδου. Το πρώτο βήμα προς την αξιοποίηση και τη συγκομιδή των κλαδεμάτων ελιάς είναι η χαρτογράφηση των πηγών βιομάζας και η ακριβής εκτίμηση της παραγωγικότητας της. Για αυτό το λόγο, στα πλαίσια του έργου AGROinLOG, αναπτύχθηκε ένα εργαλείο χαρτογράφησης GIS το οποίο βάσει δεδομένων που παρέχονται από τον Ο.Π.Ε.Κ.Ε.Π.Ε., εκτιμά το δυναμικό βιομάζας από κλαδέματα ελιάς. Το εργαλείο υπολογίζει τη διαθεσιμότητα της βιομάζας χρησιμοποιώντας λόγους βιομάζας ανά δέντρο, οι οποίες μπορούν να προσαρμοστούν στις τοπικές συνθήκες με βάση εμπειρικά δεδομένα από μετρήσεις πεδίου που πραγματοποιήθηκαν στο έργο AGROinLOG αλλά και σε άλλα έργα. Επιπλέον, αυτό το εργαλείο είναι σε θέση να παράγει έναν θεματικό χάρτη στον οποίο εμφανίζεται το δυναμικό βιομάζας των κλαδεμάτων ελιάς από επιλεγμένες από τον χρήστη περιοχές της Ελλάδας (περιοχές, περιφερειακές ενότητες, δήμοι). Ακόμη, οι χρήστες μπορούν να επιλέξουν μια γεωγραφική περιοχή ενδιαφέροντος όπου το εργαλείο θα υπολογίσει αυτόματα το δυναμικό βιομάζας του επιλεγμένου πολυγώνου. Το εργαλείο έχει επεκταθεί από την περιοχή του ΟΚΕΒ για να υπολογίσει το δυναμικό κλαδεμάτων ελιάς σε όλη την Ελλάδα. Αυτό το εργαλείο μπορεί να χρησιμοποιηθεί από οποιαδήποτε αγροτο-βιομηχανία που ενδιαφέρεται να εφαρμόσει την ιδέα του ΟΚΕΒ προκειμένου να έχει μια πρώτη εκτίμηση του δυναμικού βιομάζας στην περιοχή του. Έτσι, μπορεί να οργανωθεί μια ασφαλή προμήθεια κλαδεμάτων για κάθε περίπτωση ΟΚΕΒ στον κλάδο της ελιάς. Αυτό το εργαλείο βελτιώνεται συνεχώς και στοχεύει στην εισαγωγή περισσότερων λόγων "kg κλάδεμα ανά δέντρο" για περισσότερες ποικιλίες ελιάς και, ως εκ τούτου, να υπάρχουν ακριβέστεροι υπολογισμοί κλαδεμάτων για διαφορετικές περιοχές ελιάς, τουλάχιστον σε εθνικό επίπεδο αυτή τη στιγμή.

AGROinLOG project studied the feasibility to transform the Greek agro-industry NUTRIA into an Integrated Biomass Logistics Centre (IBLC) in the olive oil sector.

NUTRIA is an olive oil refinery plant that produces standardized olive oil, olive pomace oil and seed oils. Farmers collect olives from late October until December and the olive milling operates on a seasonal basis as well (October – March).

NUTRIA looked at starting a new business line taking advantage of the idle periods and idle equipment (e.g., dryers) and of some residues or wastes, as follows:

• Use of olive tree pruning resources as a supplementary feedstock for the production of solid biofuels (pellets and chips) for the energy market (heating) or bio-commodities for the production of particle boards.

• Extraction of useful chemicals from residual streams for application in the pharmaceutical or cosmetics industry.

This passed through the use of a pomace mill facility for Two Phase Olive Mill Waste (TPOMW) and the development of a logistics chain for the utilization of biomass from pruning.

The new business line studied in AGROinLOG for the Spanish agro-industry Pascual Sanz consisted on developing energy blends pellets from herbaceous materials and forestry woodchips.

The use of herbaceous material implies to take care of some properties, like ash and chlorine, which have a huge variability associated to the area where these crops are cultivated and to other parameters like the management of the crop or climate conditions. For this reason, a traceability assessment should be performed by the agro-industries in order to identify the best raw materials that may guarantee the production of a blend pellet with the maximum amount of herbaceous material without compromising the quality of the final product. The less wood used in the blend, the lower the cost operation, since in general working with wood implies reducing the moisture content (drying) and the pre-milling of the material, steps than can be avoided when using herbaceous biomass.

In the case of the Spanish demo, a traceability assessment of the wheat straw and corn stalk was carried out. To this aim APS’ main suppliers were identified, and the corresponding main storages areas studied. Additionally, representative samples were taken from different areas in order to analyse the quality of these raw materials (proximate analysis, ultimate analysis and ash composition).

Before starting the supply of the raw material each new season, it is highly recommended to carry out this analysis and see if there is any change in the quality of the raw material from the best areas previously identified. It is necessary to verify that their characteristics are still appropriate to minimize the percentage of wood in the blend while fulfilling the standard ISO 17225-6.

La nueva línea de negocio estudiada en AGROinLOG para la agroindustria española Pascual Sanz consistió en producir pellets mezcla para uso energético a partir de materiales herbáceos y astilla forestal.

El uso de material herbáceo implica cuidar algunas propiedades, como las cenizas y el cloro, que tienen una gran variabilidad asociada al área donde se cultivan estos cultivos y a otros parámetros como el manejo del cultivo o las condiciones climáticas. Por ello, las agroindustrias deben realizar una evaluación de trazabilidad para identificar las mejores materias primas que pueden garantizar la producción de una mezcla de pellets con la máxima cantidad de material herbáceo sin comprometer la calidad del producto final. Cuanta menos madera se use en la mezcla, menor será el costo de operación, ya que en general trabajar con madera implica reducir su humedad (secado) y la molienda previa del material, pasos que pueden evitarse al usar biomasa herbácea.

En el caso del demostrador español, se realizó una evaluación de trazabilidad de la paja de trigo y el cañote de maíz. Con este objetivo, se identificaron los principales proveedores de APS y se estudiaron las áreas de almacenamiento principales. Además, se tomaron muestras representativas de diferentes áreas para analizar la calidad de estas materias primas (análisis próximo, análisis final y composición de cenizas).

Antes de comenzar el suministro de la materia prima en cada nueva temporada, se recomienda realizar este análisis y ver si hay algún cambio en la calidad de la materia prima de las mejores áreas previamente identificadas. Es necesario verificar que sus características siguen siendo apropiadas para minimizar el porcentaje de madera en la mezcla y cumplir con la norma ISO 17225-6

AGROinLOG evaluated the feasibility of producing green chemicals from herbaceous biomass. The motivation was to valorise these crop residues in Spain where there is high availability. Namely, the production of levulinic acid and furfural was demonstrated using different herbaceous biomass: corn stalks, wheat straw and barley straw.

Levulinic acid can be used in chemical and pharmaceutical industries: herbicides, plasticisers, cross-linker, fuel additives, coatings, solvent and cosmetics. Furfural and its derivatives can be used in plastics, pharmaceutical and agrochemical industries. Both chemicals have growth expectancy in the market.

A process was chosen in which lignocellulosic biomass is impregnated with acid, drained and subsequently subjected to a flow of hot steam in a pressure reactor. The lignocellulose complex is degraded, (hemi)cellulose is hydrolysed to monosaccharides and the monosaccharides are further dehydrated to yield furfural and hydroxy-methylfurfural (HMF). The C5 carbohydrates are converted into furfural and the C6 carbohydrates into HMF that is subsequently converted into levulinic acid and formic acid.

The business case analysis of this combined production process showed that the process for the production of furfural and levulinic acid from wheat straw could be economically viable. This viability is linked to competition with other biomass sources (corn cobs, bagasse/ sugar, starch) and the potential scale of operation. The competition with food is avoided when using straws (wheat, rice) instead of sugar and starch. The combined production of levulinic acid and furfural is advantageous as both bio-commodities can be produced and the herbaceous biomass can be fully exploited.

AGROinLOG evaluó la viabilidad de producir productos químicos verdes a partir de biomasa herbácea. La motivación fue aprovechar estos residuos de cultivos en España (hay una alta disponibilidad). Es decir, la producción de ácido levulínico y furfural se demostró utilizando diferentes biomasas herbáceas: cañote de maíz, paja de trigo y paja de cebada.

El ácido levulínico se puede utilizar en industrias químicas y farmacéuticas: herbicidas, plastificantes, aditivos para combustibles, recubrimientos, solventes y cosméticos. El ácido furfural y derivados se pueden utilizar en industrias plásticas, farmacéuticas y agroquímicas. Se espera un crecimiento de ambos productos en el mercado.

En el proceso elegido, la biomasa lignocelulósica se impregna con ácido, se drena y se somete a un flujo de vapor caliente en un reactor a presión. El complejo de lignocelulosa se degrada, la celulosa se hidroliza a monosacáridos y los monosacáridos se deshidratan adicionalmente para producir furfural e hidroximetilfurfural (HMF). Los carbohidratos C5 se convierten en furfural y los carbohidratos C6 en HMF que posteriormente se convierten en ácidos levulínico y fórmico.

El análisis negocio de este proceso productivo mostró que la producción de ácido furfural y levulínico a partir de paja de trigo podía ser viable económicamente. Esta viabilidad está vinculada a la competencia con otras fuentes de biomasa (mazorcas de maíz, bagazo / azúcar, almidón) y la potencial escalabilidad de operación. Se evita la competencia con los alimentos cuando se usa paja (trigo, arroz) en lugar de azúcar y almidón. La producción combinada de ácido levulínico y furfural es ventajosa ya que se pueden producir ambos bioproductos y la biomasa herbácea se aprovecha por completo.

Beyond the energy market, AGROinLOG also explored the production of bio-commodities based on pure herbaceous pellets (wheat straw and maize stalk pellets). The results were very promising and demonstrated a big potential, although the commercialization of these products is challenging in the short-term since the market is not well developed yet:

• • Innovative bio-composites boards: Their characteristics are within the suitable range for bioboards but a little bit worse than the current material used. Thus, the manufacturer was only willing to pay a price which is much lower than the production cost of these pure herbaceous pellets, so no feasible by now.

• Thermoplastics reinforced with natural fibres: The herbaceous pellets are processable by injection with Polypropylene. The bending mechanical tests revealed that the wheat-derived materials support more strength than the materials with corn, while in the tensile mechanical tests no significant differences were observed. Polypropylene with 20 wt. % wheat fibre was found to be the most suitable material.

• Adsorbent for hydrocarbons: Corn samples showed higher mass adsorbency values than wheat samples, with no significant differences. The advantages when compared with commercial adsorbents are: lower production costs, similar adsorbency properties and 100 % natural products. By contrast, they present greater volumes and a very careful handling is required to avoid any risks.

• Activated carbon for supercapacitors: Highly microporous materials were obtained from agro-waste biomass with very good electrochemical properties as supercapacitors. Best results at the conditions evaluated were found for the corn-derived biomass prepared by slow pyrolysis and CO2 activation at 800°C.

Más allá del mercado de la energía, AGROinLOG exploró la producción de bioproductos basados en pellets herbáceos puros (paja de trigo y cañote de maíz). Los resultados fueron prometedores y con gran potencial, aunque la comercialización es un desafío a corto plazo ya que el mercado aún no está bien desarrollado:

• Biotableros: sus características están en el rango adecuado para los biotableros. El fabricante solo estaba dispuesto a pagar un precio que es mucho más bajo que el coste de producción de estos pellets herbáceos puros, por lo que ahora no es factible.

• Termoplásticos reforzados con fibras naturales: los pellets herbáceos son procesables por inyección con polipropileno. Los ensayos mecánicos de flexión revelan que los materiales derivados del trigo soportan más resistencia que los materiales con maíz, mientras que en las pruebas mecánicas de tracción no se observan diferencias significativas. Se demostró que el material más adecuado es polipropileno con 20% de peso de fibra de trigo.

• Adsorbente para hidrocarburos: las muestras de maíz mostraron valores de adsorción de masa más altos que las muestras de trigo, sin diferencias significativas. Ventajas respecto a adsorbentes comerciales: menores costos de producción, propiedades de adsorción similares y productos 100% naturales. Al contrario, presentan mayor volumen y requiere manejo cuidadoso para evitar riesgos.

• Carbón activado para supercondensadores: se obtienen materiales altamente microporosos a partir de biomasa de residuos agrícolas con buenas propiedades electroquímicas como supercondensadores. Se encontraron los mejores resultados en las condiciones evaluadas para la biomasa derivada del maíz preparada por pirólisis lenta y activación de CO2 a 800 ° C.

The new pellets produced in APS for energy use were satisfactory tested by means of combustion tests in different facilities.

First in CIRCE’s combustion facilities, in a fixed bed reactor and an industrial boiler based on a grill burner. Good CO emissions were obtained with all blends tested, being lower than 500 mg/ Nm3 d. b., as per the limit established by the standard for this kind of installation (between 150-500 kW).

When comparing these biofuels to the reference fuel (100 % forestry wood pellet), the main drawback was related to sintering and deposition problems associated to the ash. As a result, it was concluded that the new fuels should be design in order to reduce the ash content, low Si content and high Ca+Mg content; also a low percentage of ash, few fines and a low content of S and Cl.

Finally, the blend selected was the one with 60 % wheat straw and 40 % forestry wood, since it achieved a good behaviour compared to the reference fuel (100 % wood), in terms of emissions, yield, sintering and deposition phenomena, satisfying also the ISO standard. In economic terms, the selling price, was also quite competitive compared to industrial woody pellets.

Moreover, the new products were validated with several industrial end-users including two agro-industries, one domestic user and one boiler manufacturer.

All the validators qualified the tests performed as “satisfactory” or “very satisfactory”, as they did not have any problems with the operation of the boiler. The only inconvenient was the quantity of ashes generated, but the automatic cleaning system was able to remove the ashes in all cases, so no problems ocurred during operation. All the validators indicated that they would be interested in the new products if the purchasing price was more competitive than their current biofuel in terms of €/kWh

Los nuevos pellets producidos en APS para uso energético se probaron satisfactoriamente mediante ensayos de combustión en diferentes instalaciones.

Primero en las instalaciones de CIRCE, en un reactor de lecho fijo y en una caldera industrial con quemador. Se obtuvieron emisiones de CO por debajo de 500mg/NM3 d.b con todas las mezclas utilizadas (por debajo de los límites establecidos por los estándares para este tipo de instalaciones).

Al comparar estos biocombustibles con el combustible de referencia (pellet 100% astilla forestal), el principal inconveniente es el problema de sinterización y de deposición de cenizas. Así, se concluyó que se debían diseñar nuevos combustibles que reduzcan la cantidad de cenizas, disminuyan el contenido de Si e incrementen la cantidad de Ca+Mg.

La mezcla seleccionada contenía 60% paja de trigo y 40% astilla forestal pues conseguía buen comportamiento frente al combustible de referencia en términos de emisiones, rendimiento, sinterización y deposición, satisfaciendo los estándares ISO. Económicamente, el precio de venta es competitivo comparado con los pellets industriales.

Los productos se validaron con múltiples usuarios finales industriales incluyendo dos agroindustrias, un usuario doméstico y un fabricante de calderas.

Todos los validadores calificaron las pruebas como satisfactorias, ya que no tuvieron problemas con la operación de las calderas. El único inconveniente fue la cantidad de cenizas generadas, pero los sistemas de limpieza automáticos fueron capaces de retirarlas, evitando problemas durante la operación. Todos los validadores estarían interesados en el nuevo producto si el precio de compra fuese más competitivo (€/kWh) que los actuales biocombustibles.

AGROinLOG project has studied the viability of transforming the agro-industry Agroindustrial Pascual Sanz (APS) in Spain into an Integrated Biomass Logistics Centre (IBLC) in the forage sector.

This agro-industry produces animal feed products based on lucerne. This activity is seasonal what means that the existing production lines are underused along the year, mainly from December to March.

APS started a new business line in order to take advantage of the facilities during this idle period. It consisted on producing new pellets for the energy market as well as bio-commodities for new applications in other sectors.

The first step of the process was to assess the harvesting of herbaceous biomass (wheat straw and corn stalk), and the procurement of new feedstock, like forestry wood to the plant. An Integrated logistics was key to improve the performance of the supply chain, and also the traceability assessment of the raw materials in order to ensure that the quality and cost of the new pellets were competitive in the market.

Next steps were pre-processing and storage. The facilities were adapted in order to integrate the new production line. Being able to use part of the existing equipment, reduced the investment costs. Once the line was set, many tests followed in order to optimize the production costs. Also to determine the preparatory operation time that is needed in order to confirm there is no contamination and establish the protocol to ensure quality of the products once restarting the production of pellets for the feed market or viceversa.

As a result, it is demonstrated that this agro-industry could annually produce between 2.000 and 5.000 tons of the new pellets at a competitive price, diversifying their business and avoiding seasonality.

El proyecto AGROinLog ha analizado la viabilidad de transformar la compañía agroindustrial Agroindustrial Pascual Sanz (APS) en España en un Centro Logístico de Biomasa Integrado (IBLC) en el sector del forraje.

Esta agroindustria produce pienso animal basado en alfalfa. Esta actividad es estacional por lo que sus líneas de producción están infrautilizadas principalmente de diciembre a marzo.

APS ha comenzado una nueva línea de negocio para aprovechar sus instalaciones en este periodo: producir nuevos pellets para el mercado energético, así como bioproductos para aplicaciones en otros sectores.

El primer paso fue evaluar la recolección de biomasa herbácea (paja de trigo y cañote de maíz), y la adquisición de nueva materia prima, como astilla forestal. Realizar una logística integrada es esencial para mejorar el rendimiento de la cadena de suministro. También lo es el estudio de la trazabilidad de las materias primas para asegurar que la calidad y el coste de los nuevos pélets sean competitivos en el mercado.

Los siguientes pasos son el almacenamiento y el pre-tratamiento de la biomasa.Las instalaciones se adaptaron para integrar la nueva línea de producción. Utilizar parte del equipo existente permitió reducir la inversión. Una vez instalada, se llevaron a cabo numerosas pruebas para optimizar los costes de producción,y determinar los tiempos de preparación de la producción, para garantizar que no hay contaminación y para establecer protocolos que aseguren la calidad de los productos cuando se reanude la producción de piensos y viceversa.

Se demuestra que esta agroindustria puede producir anualmente entre 2.000 y 5.000 toneladas de nuevos pellets a un precio competitivo, diversificando así su negocio y evitando la estacionalidad.

AGROinLOG project studied the viability of transforming the Spanish agro-industry Agroindustrial Pascual Sanz (APS) into an Integrated Biomass Logistics Centre (IBLC) in the forage sector.

APS is dedicated to the production of dehydrated forage in bales or pellet formats. The main raw material used for their core activity is lucerne. This activity takes place mainly between the months from April to November, since the arrival of the loose raw material is what mainly defines the timeframe of the production. The pelletization line operates the whole year according to customers’ needs and electrical tariffs although between the months of December to March the production capacity is reduced.

APS looked at starting a new business line taking advantage of the idle period of the equipment in their plant from December to March. During this time, biomass pellets were produced for different purposes, mainly energy but also other applications such as bio boards, adsorbent, thermoplastics among others.

It was estimated that APS can work in an alternative business line between 615 to 2050 hours/year depending on the year, without interrupting their current activity.

El proyecto AGROinLOG estudió la viabilidad de transformar la agroindustria española Agroindustrial Pascual Sanz (APS) en un Centro Logístico de Biomasa Integrado (IBLC) en el sector de forraje español.

APS se dedica a la producción de forraje deshidratado en formato paca o pellet, siendo la principal materia prima utilizada la alfalfa. Esta actividad se lleva a cabo principalmente entre los meses de abril a noviembre, ya que la llegada de la materia prima es lo que define principalmente el plazo de producción. La línea de peletización opera todo el año de acuerdo con las necesidades de los clientes y las tarifas eléctricas, aunque entre los meses de diciembre a marzo la capacidad de producción se reduce.

APS consideró comenzar una nueva línea de negocio aprovechando el período de inactividad de los equipos en su planta de diciembre a marzo. Durante este tiempo, los pellets de biomasa se produjeron para diferentes objetivos, principalmente para uso energético, pero también para otras aplicaciones como producción de biotableros, adsorbentes, y termoplásticos reforzados con fibras naturales, entre otros.

Se estimó que APS puede trabajar en una línea de negocio alternativa entre 615 y 2050 horas / año, dependiendo del año, sin interrumpir su actividad actual.

Many European agro-industries are characterized by the fact that capital goods and facilities cannot be used year-round due to the seasonal availability of their primary feedstocks. The Integrated Biomass Logistics Centre (IBLC) concept establishes connection between the seasonal overcapacity at agro-industries and the regional availability of biomass residues as resources (biocommodities), increasing the utilization of the facilities of these agro-industries. Alternative non-food feedstocks (e.g., crop residues or non-food crops) could fill the idle periods of, for example, the pre-treatment equipment (e.g., dryer, mill etc.) or of the storage capacity at the facility.

Thus, an IBLC is defined as a business strategy for agro-industries to take advantage of available capacities (in terms of facilities, equipment, waste, non-used local resources and staff) as a resource for the processing of biomass as renewable feedstock for bioenergy and/or biorefinery markets.

For existing agro-industries, there are three important drivers to develop an IBLC:

1. diversification of inputs: by using extra feedstock types (not only food or feed but also non-food biomass residues);

2. optimization of available and new capacity: by optimizing its existing processing capacity that already has fixed (capital) costs or by expanding its processing capacity with extra (pre-treatment) capacity with low additional investment costs;

3. diversification of outputs: by obtaining extra revenues from delivering new output types; not only food or feed but also supplying biobased (intermediate) products such as bioenergy (electricity and heat), biofuels, biomaterials and biochemicals to new markets.

Muchas agroindustrias europeas se caracterizan por el hecho de disponer de activos e instalaciones que no pueden utilizarse durante parte del año debido a la estacionalidad de sus materias primas. El concepto de Centro Logístico de Biomasa Integrado (IBLC) establece una conexión entre esta infrautilización estacional de la capacidad de las agroindustrias y la disponibilidad regional de residuos de biomasa como recursos (bio-productos), permitiendo incrementar la utilización de sus instalaciones. De esta forma, las biomasas residuales de los cultivos podrían aprovecharse durante los períodos de inactividad de ciertos equipos (como secaderos, peletizadoras, etc.) o instalaciones (silos, laboratorios, etc.).

Así, un IBLC se define como una estrategia de negocio para un aprovechamiento más eficiente por parte de las agroindustrias de su capacidad disponible (en términos de instalaciones, equipos, residuos, recursos locales no utilizados y personal), a través del procesamiento de biomasa residual renovable destinada a los mercados de bioenergía y/o biorrefinería.

Tres factores a tener en cuenta por las agroindustrias a la hora de desarrollar un IBLC son:

1. Diversificación de los insumos: mediante la utilización de biomasa residual para otros usos;

2. Optimización de la capacidad disponible: a través de un aprovechamiento más eficiente de las inversiones ya realizadas en instalaciones y equipos y/o complementarlas con capacidad adicional a menor coste;

3. Diversificación de la producción: obtención de ingresos adicionales por la fabricación de nuevos productos como los bio-compuestos, biocarburantes, biomasa sólida para la producción de bioenergía (electricidad y calor) y productos bioquímicos a otros mercados.

AGROinLOG is a project funded by the European Commission to improve the competitiveness of agro-industries through their transformation into Integrated Biomass Logistics Centres (IBLC).

But, what does an IBLC do? An IBLC takes advantage of the facilities of an agro-industry, its network of contacts and its own residues or non-used local resources, to create new activities and obtain new bio products, such as biomass, biofuels or raw materials for other sectors.

AGROinLOG tested the IBLC concept in three real experimental plants. In Spain at a fodder industry, in Greece at an olive oil industry, and in Sweden inside a grain-milling industry.

With these pilots, a new logistics chain was developed and the existing equipment was adapted to the new production. In addition, the technical, financial, and environmental feasibility of the new activity and the final quality of the new products was evaluated.

After analysing these three industries, the project studied how to replicate the IBLC business model in other agro-industries from different sectors.

As a result of these measures, European agro-industries may be able to create a new activity with lower investment, stabilizing their annual activity (avoiding idle periods) and maintaining or creating new jobs

AGROinLOG es un proyecto financiado por la Comisión Europea para mejorar la competitividad de las agroindustrias a través de su transformación en Centros Logísticos de Biomasa Integrados (IBLC).

Pero, ¿qué hace un IBLC? Un IBLC aprovecha las infraestructuras de una agroindustria, su red de contactos, sus residuos o los recursos de su entorno no utilizados para crear nuevas actividades y obtener nuevos bioproductos, como biomasa, biocombustibles o materias primas para otros sectores.

AGROinLOG testará el concepto de IBLC en 3 instalaciones piloto reales. En España en una industria de forraje, en Grecia en una de aceite de oliva, y en Suecia en una de cereal.

En estos pilotos se desarrollará una nueva cadena logística y se adaptarán los equipos existentes a la nueva producción. Además, se evaluará la viabilidad técnica, económica y medioambiental de la nueva actividad y la calidad final de los nuevos productos.

Después de analizar estos tres sectores se estudiará cómo reproducir el modelo de negocio de un IBLC en otras 6 agro-industrias de sectores diferentes.

Gracias a estas medidas las agroindustrias podrán crear una nueva actividad con una inversión inferior, consiguiendo ahorros económicos de 1-2 millones de euros/año durante la primera década.

Pero lo más importante: se generarán nuevas líneas de negocio aumentando sus ingresos en más de un 12%, estabilizando su actividad anual (evitando periodos de inactividad) y manteniendo o creando puestos de trabajo.

Affichage actuel du contenu de la page dans la langue maternelle, si disponible

Contacts

Project coordinator

  • Project coordinator

Project partners

  • Project partner

  • Project partner