project - Research and innovation

Thermochemical fluids in greenhouse farming. TheGreefa
Thermochemical fluids in greenhouse farming

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Objectives

Greenhouse farming and energy intensive water recovery systems need new innovative applications to reduce their energy consumption. TheGreefa has the potential to significantly reduce the energy consumption in greenhouse climate control as well as in crop drying and will provide an alternative to energy intensive water desalination in arid regions. The uptake, conversion and storage of solar heat from greenhouses even provides the perspective to turn protected intensive horticulture from an energy/water consuming to an energy/water producing method, allowing to secure the important market of food production and food processing and to extend it to new regions.

Objectives

See objectives in English

Activities

The project demonstrates the technology in two demonstrators (Switzerland and Tunisia) and prepare a path to the market. Lab tests explore the processes and materials involved. Development of improved knowledge on modelling of the involved processes, the simulation and control of specific applications and the development of control strategies are further activities  to provide a bright insight into the novel approach. Economic and environmental assessments improve the economic and environmental potential of the technology by reducing costs and increasing energy efficiency  and allow to develop strategies to bring the technology to market as well as  appropriate policies.

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project

EUR 4 651 865.00

Total budget

Total contributions including EU funding.

Project keyword

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

30 Practice Abstracts

"Greenhouses are a production system that try to control the environmental conditions in which crops develop. Photosynthesis is the main physiological process that drives plant growth and crop productivity, being strongly influenced by environmental conditions. The indoor climate is mainly defined by the level of net radiation, photosynthetically active radiation (PAR), air temperature and velocity and its concentration in water vapor (moisture) and CO2. These factors directly or indirectly affect the photosynthesis of horticultural crops. Therefore, one of the main objectives in the management of greenhouses should be to enhance those environmental conditions that improve photosynthesis and the productive of crops.
Thermochemical fluids (TCF) are solutions with high hygroscopicity that can be used in greenhouses to reduce the air humidity. The TCF can also be used to heating during the absorption process when the water vapour is converted in liquid and for cooling during the hot period of the day using the phase change between vapor and liquid water.
Although there are multiple options for climate control in greenhouses, active systems require high energy use and passive systems are limited by external weather conditions. The TCF could be used as a complement to other systems to reduce energy or as safety systems to avoid extreme temperature and humidity conditions that endanger the survival of crops and auxiliary insects. The climate control system with TFC can help to maintain adequate temperature and humidity, incorporate CO2 from the outside environment and achieve greater homogeneity of these climatic parameters. However, the design of the air distribution system must prevent radiation loss at the crop level due to shading."
 

"Los invernaderos son un sistema de producción en el que se controlan las condiciones ambientales para el desarrollo de los cultivos. La fotosíntesis es el principal proceso fisiológico que impulsa el crecimiento de las plantas, estando influido por los parámetros climáticos. El microclima depende de la radiación neta, la radiación fotosintéticamente activa (PAR), la temperatura y velocidad del aire y su concentración en vapor de agua y CO2. Estos factores afectan directa o indirectamente a la fotosíntesis, por lo que el objetivo de los invernaderos debe ser potenciar las condiciones ambientales que mejoren la fotosíntesis y la productividad.
Los fluidos termoquímicos (TCF) son soluciones con alta higroscopicidad que pueden usarse para reducir la humedad del aire en invernaderos. Los TCF se puede utilizar para calentar durante el proceso de absorción cuando el vapor de agua se convierte en líquido y para enfriar durante el período caluroso del día mediante el cambio de fase entre vapor y el agua líquida.
Aunque existen muchos sistemas de control climático, los activos requieren un alto consumo energético y los pasivos están limitados por las condiciones climáticas externas. Los TFC podrían utilizarse como complemento de otros sistemas con el fin de reducir su uso de energía o como sistemas de seguridad para evitar condiciones de temperatura y humedad extremas que limitan la supervivencia de los cultivos e insectos auxiliares.
La instalación del sistema de climatización con TFC puede ayudar a mantener una temperatura y humedad adecuadas, e incluso a incorporar CO2 exterior y a homogeneizar los parámetros climáticos. Sin embargo, el diseño del sistema de distribución de aire debe evitar la pérdida de radiación debido al sombreo.
"
 

"The European Green Deal aims for Europe to be climate-neutral by 2050. Central to this is the Farm to Fork strategy, promoting a fair, healthy and environmentally friendly food system. This includes measures to reduce the agricultural sector's carbon footprint.
The Energy Efficiency Directive sets binding targets for Member States, mandating energy management systems in large enterprises, including agriculture. The Renewable Energy Directive encourages the use of renewable sources in agricultural operations.
The Horizon 2020 program supports projects like TheGreefa, which employs thermochemical fluids to cut energy and water use. The EU's Common Agricultural Policy (CAP) now includes measures to promote renewable energy in agriculture, aligning the sector with the Green Deal's goals.
TheGreefa's technology demonstrates large-scale implementation of sustainable practices. It respects the Water Framework Directive by ensuring sustainable water use. The project complies with EU chemical regulations, including REACH and CLP, ensuring safe use of substances. The magnesium chloride solution used is not dangerous, and all safety obligations are met.
Food safety is guaranteed by avoiding direct contact between the magnesium chloride solution and agricultural products, complying with Regulation (EC) 1935/2004.
TheGreefa integrates solar energy, reducing reliance on non-renewable sources and enhancing its environmental impact. Solar panels power the thermochemical system, reducing operational costs and contributing to the EU's renewable energy goals.
TheGreefa embodies the EU's sustainability goals aligning with EU legislation and promoting environmental protection.
"
 

El Pacto Verde Europeo tiene como objetivo que Europa sea neutral en carbono para 2050. Central en esto está la estrategia De la Granja a la Mesa, promoviendo un sistema alimentario justo, saludable y respetuoso con el medio ambiente. Esto incluye medidas para reducir la huella de carbono del sector agrícola. La Directiva de Eficiencia Energética establece objetivos vinculantes para los Estados miembros, que requieren sistemas de gestión energética en grandes empresas, incluida la agricultura. La Directiva de Energías Renovables fomenta el uso de fuentes renovables en operaciones agrícolas. El programa Horizon 2020 apoya proyectos como TheGreefa, que emplea fluidos termoquímicos para reducir el uso de energía y agua. La Política Agrícola Común (PAC) de la UE ahora incluye medidas para promover la energía renovable en la agricultura, alineando el sector con los objetivos del Pacto Verde. La tecnología de TheGreefa demuestra la implementación a gran escala de prácticas sostenibles. Respeta la Directiva Marco del Agua al garantizar el uso sostenible del agua. El proyecto cumple con las regulaciones químicas de la UE, incluidas REACH y CLP, garantizando un uso seguro de las sustancias. La solución de cloruro de magnesio utilizada no es peligrosa, y se cumplen todas las obligaciones de seguridad. La seguridad alimentaria está garantizada al evitar el contacto directo entre la solución de cloruro de magnesio y los productos agrícolas, cumpliendo con el Reglamento (CE) 1935/2004. TheGreefa integra energía solar, reduciendo la dependencia de fuentes no renovables y mejorando su impacto ambiental. Los paneles solares alimentan el sistema termoquímico, reduciendo costos operativos y contribuyendo a los objetivos de energía renovable. TheGreefa encarna los objetivos de sostenibilidad de la UE, alineándose con la legislación de la UE y promoviendo la protección ambiental. 
 

"Tomato seedlings of the indeterminate variety (MURANO F1) were transplanted into the greenhouse in a grid pattern, with rows spaced 1 meter apart and plants spaced 0.4 meters apart, resulting in a density of 2.9 plants per square meter.
Given the dynamic water requirements influenced by both the physiological stage of the plants and prevailing climatic conditions, a daily automated irrigation protocol was instituted. Throughout the growth cycle, a total of 26,000 liters of water were applied to sustain the tomato crop, culminating in the production of 200 kg of fresh tomatoes.
Rainwater collected from the greenhouse roof was the main water source, without significant supplemented by water recovery through crop evapotranspiration facilitated by Liquid Desiccant Climate Control technology. 
The mean yield achieved approximately 45 tons per hectare, aligning with the lower threshold of satisfactory yield as per FAO database standards. In Tunisia, the average greenhouse tomato yield is 55 tons per hectare (GIL, 2014). The water utilization efficiency for harvested yield (Ey) for fresh tomatoes was approximately 8 kg per cubic meter, indicating a deficit of 2 kg per cubic meter compared to the FAO-recommended efficiency rate (EY).
Further research aims to refine methodologies for optimizing tomato yield in the upcoming cycle. Emphasizing water efficiency and economic profitability, these efforts focus solely on utilizing the GREEFA system."
 

"يمثل الأمن الغذائي قضية مهمة في تونس كما هو الحال على مستوى العالم، حيث يعد الزراعة عنصرًا حيويًا للاستقرار. يحتاج المزارعون إلى تقليل التكاليف من خلال الحفاظ على الموارد مثل الماء والطاقة.
أجريت دراسة تجريبية في بيت محمي مغلق بمساحة 100 متر مربع مع أنظمة التحكم في المناخ باستخدام السوائل المجففة لتقييم الإنتاجية الزراعية مع التركيز على المحصول وكفاءة استخدام المياه.
تمت زراعة شتلات الطماطم من نوع (MURANO F1) في البيت المحمي بنمط شبكة مع صفوف متباعدة بمقدار متر واحد ونباتات متباعدة بمقدار 0.4 متر مما أسفر عن كثافة تبلغ 2.9 نبات لكل متر مربع.
نظرًا لمتطلبات المياه التي تتأثر بالمرحلة الفسيولوجية للنباتات والظروف المناخية السائدة، تم تنفيذ بروتوكول ري آلي يومي. خلال دورة النمو تم استخدام ما مجموعه 26000 لتر من الماء لدعم محصول الطماطم مما أسفر عن إنتاج 200 كيلوجرام من الطماطم الطازجة.
كانت مياه الأمطار التي تم جمعها من سقف الدفيئة هي المصدر الرئيسي للمياه، دون أن يتم الحصول بشكل كبير على مياه تبخر المحاصيل الذي تم تسهيله بواسطة تكنولوجيا التحكم في المناخ باستخدام السوائل المجففة.
بلغ متوسط المحصول المحقق حوالي 45 طنًا لكل هكتار، مما يتماشى مع الحد الأدنى للإنتاجية المرضية وفقًا لمعايير قاعدة بيانات منظمة الأغذية والزراعة (الفاو). وفي تونس، يبلغ متوسط إنتاج الطماطم في الدفيئة 55 طنًا للهكتار الواحد (GIL, 2014). بلغت كفاءة استخدام المياه للمحصول المحصود (Ey) للطماطم الطازجة حوالي 8 كيلوجرام لكل متر مكعب، مما يشير إلى عجز قدره 2 كيلوجرام لكل متر مكعب مقارنة بمعدل الكفاءة الموصى به من قبل منظمة الأغذية والزراعة (EY).
تهدف البحوث المستقبلية إلى تحسين المنهجيات لتحسين إنتاجية الطماطم في الدورة المقبلة. مع التركيز على كفاءة استخدام المياه والربحية الاقتصادية، تركز هذه الجهود فقط على استخدام نظام GREEFA.
"
 

"Thermochemical fluids (TCF) are saline solutions and as such have a lower freezing point than water. Nevertheless, crystals can be found at higher temperatures, as was the case in the greenhouse used as a demonstrator for the TheGreefa project, located near Zurich. Here, crystallization was observed in a pump. An examination of the crystals found showed that they were Carnallite. Additionally, there were hexahydrate and bihydrate forms of magnesium chloride as secondary components.

Carnallite is a compound of potassium and magnesium chloride that also binds crystal water. In the production of magnesium chloride by evaporating water from salt lakes, potassium components are common, leading to the precipitation of Carnallite. The solubility of potassium chloride in the ternary mixture of water, magnesium chloride, and potassium chloride is relatively low near the solubility limit of magnesium chloride.

In addition to deposits in the pumps, larger amounts of Carnallite had settled in the tanks of the concentrated solution. No deposits were found in other parts of the system. Measurements of the potassium content over time showed a decrease in potassium levels, indicating deposition in the tanks. An analysis of a freshly procured solution from the same supplier also showed a potassium content of the same magnitude. Therefore, it is assumed that the potassium was not introduced but was already present in the procured solution.

By cooling the concentrated solution, the potassium could be precipitated and crystallization avoided."
 

"Die thermochemischen Fluide (TCF) sind Salzlösungen und haben daher einen niedrigeren Gefrierpunkt als Wasser. Trotzdem können bei höheren Temperaturen Kristalle gefunden werden, wie es im Gewächshaus des Projekts TheGreefa nahe Zürich der Fall war. Hier wurde in einer Pumpe Kristallbildung festgestellt. Eine Untersuchung der gefundenen Kristalle zeigte, dass es sich um Carnallit handelt. Zusätzlich gab es Hexahydrat und Bihydrat von Magnesiumchlorid als Nebenbestandteile.
Carnallit ist eine Verbindung aus Kalium- und Magnesiumchlorid, die zusätzlich Kristallwasser bindet. Bei der Herstellung von Magnesiumchlorid durch Verdunstung von Wasser aus Salzseen sind Kaliumbestandteile üblich, die zur Ausfällung von Carnallit führen. Die Löslichkeit von Kaliumchlorid ist im Dreistoffgemisch Wasser – Magnesiumchlorid – Kaliumchlorid nahe der Löslichkeitsgrenze von Magnesiumchlorid eher gering.
Neben den Ablagerungen in den Pumpen hatten sich grössere Mengen von Carnallit in den Tanks der konzentrierten Lösung abgesetzt. In anderen Anlageteilen wurden keine Ablagerungen festgestellt. Durch Messungen des Kaliumanteils konnte über die Zeit eine Abnahme des Kaliumgehalts gemessen werden, was auf die Ablagerung in den Tanks zurückzuführen ist. Eine Analyse frisch beschaffter Lösung vom selben Lieferanten wies zudem einen Kaliumgehalt in gleicher Grössenordnung auf. Daher wird davon ausgegangen, dass das Kalium nicht eingetragen wurde, sondern schon in der beschafften Lösung vorhanden war.
Durch Abkühlen der konzentrierten Lösung konnte das Kalium ausgefällt und die Kristallisation vermieden werden."
 

The absorber is the interface for energy and mass transfer between air and a liquid desiccant. There are two different objectives: (1) Dehumidification of air: The absorber is optimised for a low volume flow of the desiccant. Most process heat, generated by the phase change from vapor (in the air) to liquid (in the desiccant) will be released to the air side, due to the low-volume flow. This is especially advantageous for air dehumidification in the heating period. The Watergy absorber was originally designed for this application. A low flow is generated by a short transport against gravity using capillary forces provided by the suction properties of a textile material, mounted on a cylindrical distribution surface. The advantage is a very low pumping energy demand, combined with a low ventilation energy demand compared to the estate of art (random packing absorber). The disadvantage is a larger volume for the same drying capacity. (2) Combined cooling and dehumidification: The absorber must be designed for high volume flow of the desiccant in order to withdraw the phase change energy with the flow of the desiccant (instead of the flow of air). Still the energy costs for pumping are lower compared to random packing, as the desiccant is not circulated over the structure, but only passes once. However, the high-volume flow required a solution for an equal distribution over all textile elements. This was finally reached by a distribution scheme with desiccant entries between each element. 
 

Der Absorber ist die Schnittstelle für den Energie- und Stoffaustausch zwischen Luft und einem flüssigen Trockenmittel. Es gibt zwei verschiedene Ziele: (1) Entfeuchtung der Luft: Der Absorber ist für einen sehr langsamen Volumenstrom des Trockenmittels optimiert. Die meiste Prozesswärme, die durch den Phasenwechsel von Wasserdampf (in der Luft) zu Flüssigkeit (im Trockenmittel) entsteht, wird aufgrund des geringen Volumenstroms an die Luftseite abgegeben. Dies ist besonders vorteilhaft für die Luftentfeuchtung in der Heizperiode. Der Watergy-Absorber wurde ursprünglich für diese Anwendung konzipiert. Die geringe Strömung wird durch einen kurzen Transport gegen die Schwerkraft unter Ausnutzung der Kapillarkräfte erzeugt, die durch ein textiles Materials entstehen, das auf einer zylindrischen Verteilerfläche angebracht ist. Der Vorteil ist ein sehr geringer Pumpergiebedarf, kombiniert mit einem geringen Lüftungsenergiebedarf im Vergleich zum Stand der Technik. Der Nachteil ist ein größeres Gesamtvolumen bei gleicher Trocknungsleistung. (2) Kombinierte Kühlung und Entfeuchtung: Der Absorber muss für einen hohen Volumenstrom des Trockenmittels ausgelegt sein, um die Phasenwechselenergie mit dem Strom des Trockenmittels (anstelle des Luftstroms) zu entziehen. Dennoch sind die Energiekosten für das Pumpen im Vergleich zu einer ungeordneten Packung geringer, da das Trockenmittel nicht über die Struktur zirkuliert, sondern nur einmal durchläuft. Der hohe Volumenstrom erforderte jedoch eine Lösung für eine gleichmäßige Verteilung auf alle Textilelemente. Dies wurde schließlich durch ein Verteilungsschema mit Trocknungsmitteleinträgen zwischen den einzelnen Zylinderelementen erreicht.
 

The Watergy Absorber provides a design for an equal distribution of liquid desiccant over a larger number of cylindrical surface elements, optimised for energy- and mass transfer between the desiccant moving from top to bottom of the cylinders and air, passing the desiccant along the surface. The first prototypes were built by hand. Small pipe segments were glued by hand to the openings of a perforated distribution tray. It was shown, that this solution did not provide sufficient precision in order to guarantee an equal flow over all cylinders. For that, a solution using 3D printing was chosen to reach a level of higher precision. In order to reduce the pressure drop for the air flow and reach an optimum flow of desiccant in the distribution tray, the cylindrical elements were replaced by a hexagonal structure. Tests in the greenhouse did show a high sensibility of the printed plastic against high temperatures. Therefore, an adequate heat resistant printing material had to be chosen. Also, the bottom of the tray required a sufficient thickness to prevent quad bends, caused by the high weight of the cylinders carrying the liquid and the increasing softness of the material along hot periods. Finally, a system of desiccant channels within the bottom of the tray was designed with openings at each hexagon, allowing to maintain an equal distribution of the liquid also at high volume flows. 
 

"Der Watergy Absorber bietet ein Design für eine gleichmäßige Verteilung des flüssigen Trockenmittels über eine größere Anzahl von zylindrischen Oberflächenelementen, optimiert für den Energie- und Massentransfer zwischen dem Trockenmittel, das sich von oben nach unten in den Zylindern bewegt, und der Luft, die das Trockenmittel entlang der Oberfläche passiert. Die ersten Prototypen wurden von Hand gebaut. Kleine Rohrsegmente wurden von Hand in die Öffnungen einer perforierten Verteilerschale geklebt. Es zeigte sich, dass diese Lösung nicht präzise genug war, um einen gleichmäßigen Durchfluss über alle Zylinder zu gewährleisten. Aus diesem Grund wurde eine Lösung mit 3D-Druck gewählt, um eine höhere Präzision zu erreichen. Um den Druckabfall für den Luftstrom zu verringern und einen optimalen Fluss des Trockenmittels zu erreichen, wurden die zylindrischen Elemente durch eine sechseckige Struktur ersetzt. Tests im Gewächshaus zeigten eine hohe Empfindlichkeit des gedruckten Kunststoffs gegenüber hohen Temperaturen. Daher musste ein geeignetes, hitzebeständiges Druckmaterial gewählt werden. Außerdem musste der Boden der Schale ausreichend dick sein, um ein Durchbiegen zu verhindern, das durch das hohe Gewicht der mit Flüssigkeit benetzten Zylinder und die zunehmende Weichheit des Materials bei Erhitzung verursacht wird. Schließlich wurde ein System von Kanälen mit Öffnungen an jedem Sechseck entworfen, um eine gleichmäßige Verteilung der Flüssigkeit bei hohen Volumenströmen zu gewährleisten.
"
 

"TheGreefa is making significant strides in promoting environmental responsibility globally and is substantial step forward in reducing energy and water consumption, aligning with international sustainability goals.
Switzerland is a leading example of sustainable agriculture, emphasizing organic and sustainable methods in greenhouse farming. The Swiss Waters Protection Act safeguards water quality and ensures residual flows is maintained for greenhouses and the environment. Switzerland aims to cut agricultural emissions by 40% by 2050 compared to 1990 levels.
France has set ambitious targets through the Energy Transition for Green Growth Law, aiming to cut gas emissions and boost renewable energy by 2030. Additionally, the Act on the Future of Agriculture, Food, and Forestry aspires to see 50% of French farms adopt agroecological methods by 2025. 
Poland, through the EU’s Common Agricultural Policy, seeks to expand organic farming by 2030 via eco-schemes that encourage environmentally friendly practices.
Spain enacts its commitment to reducing gas emissions and promoting efficient water use in agriculture through the Climate Change Act and Water Law.
Germany supports sustainable agriculture and renewable energy through its Decree on the Sources of Renewable Energy and the Climate Action Plan 2050. 
TheGreefa project exemplifies how advanced technology can drive global agricultural sustainability, supporting and enhancing the environmental goals of various countries within and beyond the European Union."
 

"TheGreefa está logrando avances significativos en la promoción de la responsabilidad ambiental a nivel mundial y es un paso importante hacia la reducción del consumo de energía y agua, alineándose con los objetivos de sostenibilidad internacionales.
Suiza es un ejemplo destacado de agricultura sostenible, con un fuerte énfasis en métodos orgánicos y sostenibles en la agricultura de invernaderos. La Ley de Protección de Aguas de Suiza protege la calidad del agua y asegura que se mantengan los flujos residuales para los invernaderos y el medio ambiente. Suiza se ha propuesto reducir las emisiones agrícolas en un 40% para 2050 en comparación con los niveles de 1990.
Francia ha establecido metas ambiciosas a través de la Ley de Transición Energética para el Crecimiento Verde, que busca reducir las emisiones de gases y aumentar el uso de energías renovables para 2030. Además, la Ley sobre el Futuro de la Agricultura, Alimentación y Bosques aspira a que el 50% de las granjas francesas adopten métodos agroecológicos para 2025.
Polonia, a través de la Política Agrícola Común de la UE, busca expandir la agricultura orgánica para 2030 mediante esquemas ecológicos que fomentan prácticas respetuosas con el medio ambiente.
España manifiesta su compromiso con la reducción de emisiones de gases y la promoción del uso eficiente del agua en la agricultura a través de la Ley de Cambio Climático y la Ley del Agua.
Alemania apoya la agricultura sostenible y las energías renovables a través de su Decreto sobre Fuentes de Energía Renovable y el Plan de Acción Climática 2050.
TheGreefa ejemplifica cómo la tecnología avanzada puede impulsar la sostenibilidad agrícola global, apoyando y mejorando los objetivos ambientales de varios países dentro y fuera de la Unión Europea."
 

"The greenhouse typically maintains a high temperature due to its transparent envelope and high humidity from irrigation, so the indoor environment adjustment become a key problem. An absorber system is a promising solution for dehumidification and cooling in a single absorption process. In this project, the absorber dehumidification system for greenhouse is simulated, which includes greenhouse, absorber, solution tank and controller. Greenhouse model contains some components changing the thermal characteristics, such as envelop heat transfer coefficient and indoor latent heat source. The finite difference method is employed to simulate the absorber. A three-stage control strategy (a small absorber on, a big absorber on and two absorbers on) is used to manage the system working conditions. Additionally, laboratory experiments are conducted to define the heat and mass transfer coefficient for model validation and calibration. 
After simulations and case studies, the main results and some suggestions for end-users are presented. Firstly, the increase of irrigation will lead to lower temperature but higher humidity under the same control stage. Therefore, after irrigating the farmland, the dehumidification system should be turned on in time, as in this period, the dehumidification load will be very high. Secondly, the different control stages can efficiently manage the indoor environment to maintain humidity within the range of 60% - 80% and temperature around 30 - 40℃. For practical condition, the stage change point should be suitable. Besides, the solution’s temperature also plays a key role in dehumidification process, the lower the temperature, the better the system performance. During practical system operation, the solution tank should set at the cool place with sun shade, and the temperature should be monitored and adjusted if possible.
"
 

"Im Gewächshaus herrscht aufgrund seiner transparenten Hülle und der durch die Bewässerung verursachten hohen Luftfeuchtigkeit und eine hohe Temperatur: die Anpassung des Raumklimas ist ein zentrales Problem. Ein Absorbersystem ist eine vielversprechende Lösung für Entfeuchtung und Kühlung in einem einzigen Absorptionsprozess. In TheGreefa wird das Absorber-Entfeuchtungssystem für Gewächshäuser simuliert, das Gewächshaus, Absorber, Lösungstank und Regler umfasst. Das Gewächshausmodell enthält einige Komponenten, die die thermischen Eigenschaften verändern, wie den Wärmeübergangskoeffizienten der Hülle und die latente Wärmequelle im Innenraum. Zur Simulation des Absorbers wird die Methode der finiten Differenzen eingesetzt. Eine dreistufige Kontrollstrategie (ein kleiner Absorber, ein grosser Absorber und zwei Absorber) wird verwendet, um die Arbeitsbedingungen des Systems zu steuern. Zusätzlich werden Laborexperimente durchgeführt, um den Wärme- und Massenübergangskoeffizienten für die Modellvalidierung und -kalibrierung zu bestimmen.
Nach Simulationen und Fallstudien werden die wichtigsten Ergebnisse und einige Vorschläge für Endbenutzer präsentiert. Erstens führt eine erhöhte Bewässerung bei gleicher Kontrollstufe zu niedrigeren Temperaturen, aber höherer Luftfeuchtigkeit. Daher sollte das Entfeuchtungssystem nach der Bewässerung des Ackerlandes rechtzeitig eingeschaltet werden, da in dieser Zeit die Entfeuchtungslast sehr hoch ist. Zweitens können die verschiedenen Steuerstufen das Raumklima effizient regeln, um die Luftfeuchtigkeit im Bereich von 60 % - 80 % und die Temperatur bei etwa 30 - 40 °C zu halten. Für praktische Bedingungen sollte der Phasenwechselpunkt geeignet sein. Außerdem spielt auch die Temperatur der Lösung eine Schlüsselrolle beim Entfeuchtungsprozess. Je niedriger die Temperatur, desto besser die Systemleistung. Während des praktischen Systembetriebs sollte der Lösungstank an einem kühlen Ort mit Sonnenschutz aufgestellt werden und die Temperatur sollte überwacht und wenn möglich angepasst werden."
 

Within the framework of “TheGreefa” project, a liquid-desiccant climate control system demonstrator was deployed in Tunisia, utilizing a brine-based solution sourced from the Tunisian Salinas of Sfax, located in the southern region of the country. This brine solution, which contains diluted magnesium chloride, served as a thermochemical carrier fluid. The system operates by circulating this fluid in counterflow with the air drawn from the greenhouse environment.                                                                                                            The primary mechanism for heat and moisture exchange between the air and the desiccant occurs within the absorber device, the core component of the demonstrator.  The Absorber incorporates an innovative design that enables climate control within greenhouses by regulating both air temperature and humidity. It operates by converting latent heat into sensible heat and absorbing air humidity. This regulation is expected to optimize the growing environment, leading to enhanced crop quality and increased yields for grower.                                        Initial results from several weeks of experimentation indicate the promising potential of the brine-based climate control system as a sustainable solution for creating a balanced and controlled greenhouse environment.
 

"في إطار مشروع ""TheGreefa""، تم نشر نموذج عرضي لنظام تحكم في المناخ بواسطة مادة السوائل المجففة في تونس، باستخدام محلول قائم على الملح مأخوذ من وحدة تحلية مياه تونسية  في مدينة صفاقس، الموجودة في الجزء الجنوبي من البلاد. يعتبر هذا المحلول المالح، الذي يحتوي على كلوريد المغنيسيوم المخفف، وسيطًا حراريًا كيميائيًا. يعمل النظام عن طريق تدوير هذا المحلول بتدفق معاكس مع الهواء المار من بيئة البيت الزراعي. يحدث التبادل الرئيسي للحرارة والرطوبة بين الهواء والمادة الامتصاصية داخل جهاز الامتصاص، المكون الأساسي للنموذج.

يتضمن الجهاز تصميمًا مبتكرًا يمكنه التحكم في المناخ داخل البيوت الزراعية من خلال تنظيم درجة حرارة الهواء والرطوبة. يعمل الجهاز عن طريق تحويل الحرارة الكامنة إلى حرارة واضحة وامتصاص رطوبة الهواء. من المتوقع أن يتم تحسين هذا التنظيم لبيئة النمو، مما يؤدي إلى تحسين جودة المحاصيل وزيادة العائد للمزارع.

تشير النتائج الأولية من عدة أسابيع من التجارب إلى الإمكانات الواعدة لنظام التحكم في المناخ بواسطة محلول الامتصاص القائم على الملح كحل مستدام لخلق بيئة متوازنة ومتحكمة في البيت الزراعي. "
 

"Dehumidification through thermochemical fluids (TCF) plays an important role in supporting mechanical cooling in environments with high humidity and temperature. This application is not limited to greenhouses.
Solar power produced by photovoltaic (PV) systems is used during the day in mechanical air conditioning systems. However, the renewable electricity generated by PV systems does not always align with the demand for cooling in very hot regions, where additional cooling is needed in the evening and nighttime. Storing electricity can be very expensive, and it is much more economical to store heat and cool energy instead of using batteries or related systems. Thermo-chemical energy storage can support mechanical cooling.
The capacity of the mechanical cooling can be designed to produce the required cooling during the 24 hours within the sunny hours. The excess cooling produced during the day can be stored and released at night. Besides cooling, mechanical cooling units also produce heat, which can be used for the regeneration of the thermo-chemical fluid, which is then used for air dehumidification. In very hot and humid regions, mechanical cooling systems must first cool the ambient air to the dew point to remove the humidity, and then the temperature is raised again to the desired level. Reducing humidity through TCF also means reducing the total electricity demand, which includes the size of the mechanical cooling machines and the surface area of the PV systems connected to the cooling machines. Furthermore, dehumidifying the air allows the use of evaporative cooling as a supplementary system, especially during the night when temperatures are slightly lower than during the day, thus reducing the size of the cool storage."
 

"La deumidificazione attraverso fluidi termochimici (TCF) svolge un ruolo importante nel raffreddamento meccanico in ambienti con alta umidità e temperatura. Ciò non è limitata alle serre.
L'energia solare prodotta dai sistemi fotovoltaici (PV) alimenta durante il giorno i sistemi di condizionamento meccanici. L'elettricità generata dai PV non corrisponde alla domanda di raffreddamento in regioni molto calde dove è necessario raffreddare anche di notte. L'accumulo di elettricità può essere costoso, mentre è più economico accumulare calore ed energia di raffreddamento. I TCF possono supportare il raffreddamento meccanico.
La capacità del raffreddamento meccanico può essere progettata per produrre nelle ore di sole il raffreddamento richiesto durante le 24 ore. Il raffreddamento in eccesso prodotto durante il giorno può essere accumulato e rilasciato di notte. Oltre al raffreddamento, le unità di raffreddamento producono anche calore, che può essere utilizzato per la rigenerazione del TCF, che viene poi utilizzato per deumidificare l'aria. Nelle regioni molto calde e umide, i sistemi di raffreddamento meccanico devono prima raffreddare l'aria fino al punto di rugiada per rimuovere l'umidità, e per poi rialzare la temperatura al livello desiderato. Ridurre l'umidità attraverso i TCF significa anche ridurre la domanda totale di elettricità, la dimensione delle macchine di raffreddamento meccanico e la superficie dei sistemi PV ad essa collegati. Inoltre, la deumidificazione dell'aria consente l'uso del raffreddamento evaporativo come sistema di supporto, specialmente durante la notte quando le temperature sono leggermente più basse rispetto al giorno, riducendo così la dimensione dell'accumulo di freddo."
 

"""The project’s methodology addressed stakeholders’ engagement for future marketability. It was conceived in full alignment with the project’s aims and expectations, and it addressed the stakeholders identification, analysis, and mapping. Main outcomes was the mapping into the following main stakeholders groups: Greenhouses, Industry, Academia and research, Business and financial advisors, Policy makers and authorities. Representatives of these groups invited to attend the project’s events well demonstrated interests in its main achievements and potential exploitation in the target domain and market.
In the light of the positive feedback gathered during the project’s main events mentioned above, it is worth pointing out particular aspects which have been considered as relevant by the project’s end users and significant stakeholders, namely the effectiveness of the project’s solution in terms of costs/benefits, costs/productivity.
Main recommendations for direct end-users are to actually implement the project’s outcomes trusting on the effectiveness of the proposed solution, especially in the long term. While, for stakeholders main recommendations are focused on the positive feedback provided by the project’s end-users operating both in the related test beds and use cases. The obtained positive effects actually do provide benefits in their operating field at environmental, societal and economic level."""
 

"La metodologia del progetto ha affrontato il coinvolgimento delle parti interessate per la futura commerciabilità. È stato concepito in pieno allineamento con gli obiettivi e le aspettative del progetto e ha affrontato l’identificazione, l’analisi e la mappatura degli stakeholder. Il risultato principale è stata la mappatura dei seguenti principali gruppi di stakeholder: serre, industria, mondo accademico e ricerca, consulenti aziendali e finanziari, responsabili politici e autorità. I rappresentanti di questi gruppi invitati a partecipare agli eventi del progetto hanno dimostrato interesse per i suoi principali risultati e il potenziale sfruttamento nel dominio e nel mercato target.
Alla luce del feedback positivo raccolto durante i principali eventi del progetto sopra menzionati, vale la pena sottolineare aspetti particolari che sono stati considerati rilevanti dagli utenti finali del progetto e dalle principali parti interessate, vale a dire l'efficacia della soluzione del progetto in termini di costi/ benefici, costi/produttività.
Le principali raccomandazioni per gli utenti finali diretti sono quelle di implementare effettivamente i risultati del progetto confidando nell’efficacia della soluzione proposta, soprattutto a lungo termine. Mentre, per le parti interessate, le principali raccomandazioni si concentrano sul feedback positivo fornito dagli utenti finali del progetto che operano sia nei relativi banchi di prova che nei casi d’uso. Gli effetti positivi ottenuti apportano effettivamente benefici nel loro ambito operativo a livello ambientale, sociale ed economico."
 

"Sfera greenhouse is one of the project's case studies, with a Mediterranean climate.
Results achieved with theGreefa solution have been studied exploiting seasonal input provided by Sfera Agricola. More specifically, for the heating season relevant savings were achieved in terms of oil and wood. The performed Life Cycle Assessment outlines also improvements in terms of human health, ecosystem and resources.
Overall, theGreefa solution well demonstrated results in lowering the environmental impacts in Sfera greenhouse, showing that the heating, cooling and humidity control are the energy intensive processes to be monitored in the greenhouse operation.
Main recommendations, besides this monitoring, are: proper actions to lower energy consumption and make the greenhouse operations more efficient through the exploitation of the proposed solution. The latter has positive impact on human health and ecosystem. Furthermore, its adoption allows to reduce direct intervention on the greenhouse infrastructure with economic savings."
 

"La serra di Sfera Agricola è uno dei casi studio del progetto, con clima mediterraneo.
I risultati ottenuti con la soluzione Greefa sono stati studiati sfruttando gli input stagionali forniti da Sfera Agricola. In particolare, per la stagione di riscaldamento sono stati ottenuti risparmi rilevanti in termini di gasolio e legna. Il Life Cycle Assessment effettuato delinea anche miglioramenti in termini di salute umana, ecosistema e risorse.
Nel complesso, la soluzione Greefa ha ben dimostrato di ridurre gli impatti ambientali nella serra Sfera, dimostrando che il riscaldamento, il raffreddamento e il controllo dell'umidità sono i processi ad alta intensità energetica da monitorare nel funzionamento della serra.
Le principali raccomandazioni, oltre a questo monitoraggio, sono: azioni adeguate per ridurre il consumo energetico e rendere più efficienti le operazioni in serra attraverso lo sfruttamento della soluzione proposta. Quest’ultimo ha un impatto positivo sulla salute umana e sull’ecosistema. Inoltre la sua adozione permette di ridurre gli interventi diretti sulle infrastrutture delle serre con un risparmio economico.
Invia commenti"
 

"The objective of the Case Study is to analyse boundary conditions in two representative European countries: Spain, with the largest extension of horticultural greenhouses in Europe, and Italy identified as a initial potential market for TheGreefa. Five cases were selected: unheated Almería-type greenhouses in Spain (1); unheated multispan greenhouses in Spain (2) and Italy (3) and heated multispan in Spain (4) and Italy (5).
The Almería greenhouses (70% of area in Spain) have investment costs of 15-20 €/m2 and productivities lower than 15 kg/m2. They require the lowest energy consumption of 1-1.5 kWh/m2 (30-50 GJ/ha), for the irrigation and ventilation systems, producing emissions of 95-280 kg CO2 eq/tn.
Unheated multispan greenhouses, with investment costs of 25-80 €/m2, allow productions greater than 15 kg/m2. The higher costs obligate farmers to sign contracts directly with supermarket chains to ensure a profit. The greater use of metal in the structure increases the emissions to 150-1200 kg CO2 eq/tn.
Heated greenhouses, with investment of 45-58 €/m2 in Spain and 70-160 €/m2 in Italy, can obtain productivities above 20 kg/m2. The cost of energy for heating represents 20-40% of the total. The heating increases energy consumption to 4600 GJ/ha in Almería and 9000-13000 GJ/ha in Italy, with emissions values of 900-3500 kg CO2 eq/tn.
In heated greenhouses thermochemical fluids could be used to reduce the cost of heating energy and their environmental impact, whereas in unheated multispan greenhouses could be mainly used to cooling and humidity control.
"
 

"El objetivo de los Casos de Estudio es analizar las condiciones de contorno en dos países europeos: España, con la mayor extensión de invernaderos, e Italia, con una robusta industria de invenaderos e identificada como un mercado potencial para TheGreefa. Se seleccionaron 5 casos:  invernaderos tipo Almería sin calefacción en España (1); multitúnel sin calefacción en España (2) e Italia (3) y calefactados en España (4) e Italia (5).
Los invernaderos tipo Almería necesitan una inversión de 15-20 €/m2 y producen menos de 15 kg/m2. Requieren el menor consumo de energía de 1-1,5 kWh/m2, produciendo emisiones de 95-280 kg CO2 eq/tn.
Los invernaderos multitúnel sin calefacción, con una inversión de 25-80 €/m2, permiten producciones superiores a 15 kg/m2. Los mayores costes obligan a los agricultores a firmar contratos directamente con las cadenas de supermercados para asegurar un beneficio. El mayor uso de metal en la estructura aumenta las emisiones a 150-1200 kg CO2 eq/tn.
Los invernaderos calefactados, con una inversión de 45-58 €/m2 en España y de 70-160 €/m2 en Italia, pueden aumentar la producción por encima de los 20 kg/m2. El coste de la energía para calefacción representa el 20-40% del total. La calefacción aumenta el consumo de energía a 4600 GJ/ha en Almería y a 9000-13000 GJ/ha en Italia, con valores de emisiones de 900-3500 kg CO2 eq/tn.
En los invernaderos con calefacción, los fluidos termoquímicos podrían emplearse para reducir el coste de la energía de calefacción y su impacto medioambiental, mientras que en los invernaderos sin calefacción podrían utilizarse principalmente para refrigeración y control de la humedad.
"
 

"TheGreefa technology, while innovative, faces significant commercialization barriers, primarily its readiness level and lack of demonstrated large-scale effectiveness. The technology is currently at TRL 5, indicating it has not yet proven fully operational in real-world conditions. This early stage of development creates uncertainty regarding its scalability and cost-effectiveness, crucial factors for widespread adoption in the agricultural sector.

Key obstacles include technological immaturity, requiring substantial advancements to reach market readiness (TRL 9). Financial and resource constraints also hinder progress, as advancing the technology demands considerable investment in research, development, and testing. Another significant barrier is the absence of comprehensive demonstration projects that validate the technology's performance in commercial settings, which is essential to gain trust from farmers and investors.

For farmers and end-users, staying updated on TheGreefa's development and participating in pilot projects can provide insights into its practical applications and potential benefits. Early engagement with emerging technologies can be advantageous, particularly when they align with strategic needs for cost reduction and enhanced sustainability.

TheGreefa promises significant energy savings and environmental benefits, which could transform agricultural practices by optimizing resource use and reducing operational costs. As the technology develops and overcomes these barriers, it may offer a viable solution for improving productivity and sustainability in farming.
"
 

"La technologie Greefa rencontre des défis pour sa commercialisation en raison de son niveau de développement et du manque de preuves d'efficacité à grande échelle. Actuellement au niveau TRL 5, elle n'a pas encore démontré son fonctionnement complet dans des conditions réelles, ce qui soulève des questions sur son évolutivité et sa rentabilité.

L'immaturité technologique, nécessitant des avancées jusqu'au niveau TRL 9, ainsi que les contraintes financières et de ressources, entravent les progrès, nécessitant d'importants investissements. De plus, l'absence de projets de démonstration complets compromet la validation des performances dans des environnements commerciaux, essentielle pour gagner la confiance des acteurs du secteur.

Pour les agriculteurs et les utilisateurs finaux, suivre le développement de TheGreefa et participer à des projets pilotes peut fournir un aperçu de ses applications pratiques et de ses avantages potentiels. S'engager rapidement dans des technologies émergentes, répondant aux besoins de réduction des coûts et d'amélioration de la durabilité, peut être avantageux.

TheGreefa promet des économies d'énergie significatives et des avantages environnementaux, potentiellement révolutionnaires pour l'agriculture, en optimisant l'utilisation des ressources et en réduisant les coûts d'exploitation. Avec une évolution continue et la résolution des obstacles, elle pourrait offrir une solution viable pour améliorer la productivité et la durabilité du secteur."
 

The economic analysis of the implementation of TheGreefa technology in greenhouses was performed based on real data from two TheGreefa greenhouses located in Switzerland and in Italy. In the study, the operational phase of the greenhouses was analysed considering energy and fuel consumption. The aim was to identify the potential time needed for the return of the investment costs incurred to implement TheGreefa system but also what should be the price for ready-to-market TheGreefa technology to be able to meet the required payback period. For this purpose, the costs related to seasonal consumption of energy and heat generation were collected and analysed. In the market study performed contacting greenhouse operators, it was identified the most expected time for the investment return is 7 to 10 years. It is reasonable considering the expected lifetime of greenhouse installations of approximately 15 years. To perform the economic analysis of the cost efficiency of implementation of the new technology, it is necessary to calculate the seasonal costs the greenhouse must pay for electricity and heat sources. Then the same calculation needs to be performed using real or simulated data presenting consumption of energy and fuels if the new system is in operation. The analysis showed the expected cost savings for the Swiss greenhouse are over €8,500 each year. To have a 10 year long payback period, the cost of TheGreefa solution should be around €85,000. In this case, the energy is provided by an external supplier. Therefore the cost of transport of fuels is not considered. Direct heat generation in a greenhouse could increase cost savings. The savings are more visible in colder climates where more resources in needed for heat generation.
 

Analiza ekonomiczna wdrożenia technologii TheGreefa w szklarniach została przeprowadzona w oparciu o rzeczywiste dane z dwóch szklarni TheGreefa w Szwajcarii i we Włoszech. W badaniu przeanalizowano fazę operacyjną szklarni, biorąc pod uwagę zużycie energii i paliw. Celem było określenie potencjalnego czasu potrzebnego na zwrot kosztów inwestycyjnych poniesionych na wdrożenie systemu, ale także jaka powinna być cena systemu gotowego do wprowadzenia na rynek, aby móc spełnić wymagany okres zwrotu. W tym celu zebrano i przeanalizowano koszty związane z rocznym zużyciem energii i wytwarzaniem ciepła. W badaniu rynku przeprowadzonym wśród operatorów szklarni ustalono, że oczekiwany czas zwrotu inwestycji wynosi od 7 do 10 lat. Jest to rozsądne, biorąc pod uwagę oczekiwany okres eksploatacji instalacji szklarniowych wynoszący ok. 15 lat. Aby przeprowadzić analizę ekonomiczną opłacalności wdrożenia nowej technologii, konieczne jest obliczenie sezonowych kosztów, jakie szklarnia musi ponieść na energię elektryczną i źródła ciepła. Następnie te same obliczenia należy wykonać przy użyciu rzeczywistych lub symulowanych danych przedstawiających zużycie energii i paliw w przypadku działania nowego systemu. Analiza wykazała, że oczekiwane oszczędności kosztów dla szwajcarskiej szklarni wynoszą ponad 8 500 euro rocznie. Aby uzyskać 10-letni okres zwrotu, koszt rozwiązania TheGreefa powinien wynosić około €85 000. W tym przypadku energia jest dostarczana przez zewnętrznego dostawcę i koszt transportu paliw nie jest brany pod uwagę. Bezpośrednie wytwarzanie ciepła w szklarni może zwiększyć oszczędności. Oszczędności są bardziej widoczne w chłodniejszym klimacie, gdzie do wytwarzania ciepła potrzeba więcej zasobów.
 

The environmental impact of TheGreefa technology was assessed in the Life Cycle Analysis (LCA) performed based on real data from two TheGreefa greenhouses located in Switzerland and in Italy. In the study, the operational phase of the greenhouses was analysed considering energy and fuels consumption. The aim was to compare the impacts of 15 years of operation of 1 ha greenhouse before and after the implementation of TheGreefa systems for indoor climate control for the greenhouses. The results obtained in the LCA have shown that the use of the new TheGreefa technology in greenhouses contributes to visible lowering the environmental impacts of the greenhouse operations. The heating, cooling and humidity control are very energy intensive processes in the greenhouse operation. The heat production and electricity consumption are responsible for most of the environmental loads. Therefore, implementation of improvements in these aspects is the right call that can help to reach the EU climate goals by reduction of the use of electricity and natural resources. Besides lower greenhouse gases emissions (CO2 savings), they are not the only benefits of the implementation of TheGreefa system. They are of course responsible for the climate change. But there are other aspects where TheGreefa brings improvements in the long-term period of operation. By big reduction of such factors as human toxicity or photochemical oxidation potentials, the use of the new system can result in 20% to over 50% reduction of the overall human health negative impact. Use of resources like wood and oil, or even natural gas are lower, but can be lowered more when more renewable energy sources is implemented in the greenhouses’ energy systems – heat pumps, geothermal energy, etc.
 

Wpływ środowiskowy technologii TheGreefa został oceniony w analizie cyklu życia (LCA) przeprowadzonej na podstawie realnych danych z dwóch szklarni TheGreefa zlokalizowanych w Szwajcarii i we Włoszech. W badaniu przeanalizowano fazę eksploatacji szklarni, biorąc pod uwagę zużycie energii i paliw. Celem było porównanie wpływu 15-letniej pracy szklarni o powierzchni 1 ha przed i po wdrożeniu systemów TheGreefa do kontroli klimatu wewnątrz szklarni. Wyniki LCA wykazały, że zastosowanie nowej technologii TheGreefa w szklarniach przyczynia się do widocznego obniżenia wpływu działalności szklarni na środowisko. Ogrzewanie, chłodzenie i kontrola wilgotności w szklarni to bardzo energochłonne procesy. Produkcja ciepła i zużycie energii elektrycznej są odpowiedzialne za większość obciążeń środowiskowych. Zatem wdrożenie usprawnień w tych aspektach jest właściwym rozwiązaniem, które może pomóc osiągnąć cele klimatyczne UE przez zmniejszenie zużycia energii elektrycznej i zasobów naturalnych. Oprócz niższej emisji gazów cieplarnianych (oszczędność CO2), nie są to jedyne korzyści z wdrożenia systemu TheGreefa. Są one oczywiście odpowiedzialne za zmiany klimatyczne. Istnieją jednak inne aspekty, w których TheGreefa przynosi poprawę w długoterminowym okresie eksploatacji. Dzięki znacznej redukcji takich czynników, jak np. toksyczność dla ludzi, zastosowanie nowego systemu może skutkować 20% do ponad 50% redukcją ogólnego negatywnego wpływu na zdrowie ludzi. Zużycie zasobów, takich jak drewno i ropa naftowa, a nawet gaz ziemny, jest niższe, ale można je jeszcze bardziej obniżyć, gdy w systemach energetycznych szklarni zostanie wdrożonych więcej odnawialnych źródeł energii – pomp ciepła, energii geotermalnej itp.
 

"The European greenhouse market is set to grow significantly, from €5.87 billion in 2018 to €9.6 billion by 2023, at a compound annual growth rate of 10.3%. Amidst challenges such as climate change and energy crises, the demand for energy-efficient and sustainable farming solutions is increasing. TheGreefa, a microclimate management system, stands out as a promising innovation designed to enhance energy efficiency in greenhouse farming.

This technology offers precise climate control and energy savings by integrating renewable energy sources, making it a sustainable choice for modern agriculture. It’s projected to have an annual market value ranging from €350 to €1,729 million. By adopting TheGreefa, farmers can significantly reduce their energy costs and carbon footprint. The system is especially suited for large markets in Spain, Italy, and France, where greenhouse infrastructure and climatic conditions are favorable.

For agricultural professionals, implementing TheGreefa could mean not only a reduction in operational costs but also an increase in crop yield and quality due to better climate management. The technology provides a strategic advantage by aligning with European decarbonization goals and improving the competitiveness of European agricultural products.

In practical terms, TheGreefa can be easily integrated into current greenhouse operations, improving both immediate profitability and long-term environmental sustainability. This solution is a step towards future-proof farming, providing a competitive edge in an increasingly challenging agricultural market."
 

"Le marché européen des serres, estimé à 5,87 milliards d'euros en 2018, devrait atteindre 9,6 milliards d'euros d'ici 2023, avec un taux de croissance annuel de 10,3%. Dans un contexte de changement climatique et de crises énergétiques, la demande pour des solutions agricoles durables et écoénergétiques augmente. TheGreefa, un système de gestion du microclimat, promet d'améliorer l'efficacité énergétique en serre.

Cette technologie offre un contrôle précis du climat et permet des économies d'énergie par l'utilisation de sources renouvelables, idéale pour l'agriculture moderne. Elle pourrait générer entre 350 et 1 729 millions d'euros par an. En utilisant TheGreefa, les agriculteurs pourraient nettement réduire leurs coûts énergétiques et leur impact écologique. Ce système convient particulièrement bien aux marchés espagnol, italien et français, où les infrastructures de serres et les conditions climatiques sont optimales.

Pour les professionnels de l'agriculture, la mise en œuvre de TheGreefa pourrait signifier non seulement une réduction des coûts d'exploitation, mais aussi une augmentation du rendement et de la qualité des cultures grâce à une meilleure gestion du climat. La technologie offre un avantage stratégique en s'alignant sur les objectifs européens de décarbonisation et en améliorant la compétitivité des produits agricoles européens.

TheGreefa peut être facilement intégré dans les  serres, améliorant à la fois la rentabilité immédiate et la durabilité environnementale à long terme. Cette solution est un pas en avant vers l'agriculture de demain, offrant un avantage concurrentiel sur un marché agricole de plus en plus exigeant."
 

Energy savings in hot and dry regions related to protected agriculture are possible in the area of water recovery (replacing energy consuming desalination) and humidity control during winter and midseason (replacing a relevant part of heat energy). TheGreefa is aimed at solutions for the recovery of water using liquid desiccants within an evapo-condensation cycle. In a precursor project, already a recovery of 85% of water was approved. In TheGreefa, a cycle of heat- and humidity uptake into a desiccant storage volume during daytime is followed by heat release and desiccant regeneration during night time with condensation at the inner wall of the greenhouse. The hygroscopic property of the desiccant allows a higher dewpoint temperature in the daytime phase compared to a system only using water as a storage material. In this way, less cool (generated passively by night time temperature) is required for the process and cool is replaced by heat, as more heat is required during the regeneration phase, in order to regain the initial desiccant concentration for the next daytime phase. If only using the heat from the daytime phase for regeneration, it may appear, that the maximum possible concentration of the desiccant is not reached. This would cause higher electric energy demand for ventilation. Alternatively, additional heat (solar, residual heat) can be used to arrive at the maximum concentration finally. The system requires economic optimisation between these two options. 
 

Energieeinsparungen in heissen und trockenen Regionen im Zusammenhang mit geschützter Landwirtschaft sind im Bereich der Wassergewinnung (Ersatz von energieintensiver Entsalzung) und der Feuchtigkeitskontrolle während des Winters und der Zwischensaison (Ersatz eines relevanten Teils der Heizenergie) möglich. TheGreefa zielt auf Lösungen zur Wassergewinnung unter Verwendung von flüssigen Trockenmitteln innerhalb eines Verdunstungskondensationszyklus ab. In einem Vorläuferprojekt wurde eine Wassergewinnung von 85% nachgewiesen. Bei TheGreefa folgt auf einen Zyklus der Wärme- und Feuchtigkeitsaufnahme in ein Trockenmittelspeichervolumen während des Tages eine Wärmeabgabe und Trockenmittelregeneration während der Nacht mit Kondensation an der Innenwand des Gewächshauses. Die hygroskopische Eigenschaft des Trockenmittels ermöglicht eine höhere Taupunkttemperatur in der Tagesphase im Vergleich zu einem System, das Wasser als Speichermaterial verwendet. Auf diese Weise wird weniger Kühlung (passiv durch Nachttemperatur erzeugt) für den Prozess benötigt und die Kühlung wird durch Wärme ersetzt, da mehr Wärme während der Regenerationsphase erforderlich ist, um die anfängliche Trockenmittelkonzentration für der nächsten Tage wiederzuerlangen. Wenn nur die Wärme aus der Tagesphase für die Regeneration verwendet wird, kann es vorkommen, dass die maximale mögliche Konzentration des Trockenmittels nicht erreicht wird. Dies würde einen höheren Strombedarf für die Belüftung verursachen. Alternativ kann zusätzliche Wärme (solar, Restwärme) verwendet werden, um schließlich die maximale Konzentration zu erreichen. Das System erfordert eine wirtschaftliche Optimierung zwischen diesen beiden Optionen
 

"The use of thermochemical fluids (TCF) for the air humidity and temperature control in greenhouses improves the economic and competitiveness under different aspects:

•    Reduce energy costs for end users: Exploitation of unused heat from renewables as hot air from the backside of PV panels. In an initial phase, that can be realised as “single stakeholder” model with PV on the roof of farm buildings and electricity for on-farm consumption. In a more developed, multi stakeholder model external producers of unused heat can be connected to farm activities. This may also include industrial waste heat. 
•    Reduce investment costs: Offering of multiple services in one system, thinner ducts without insulation, higher energy density, seasonal thermal storage.
•    Improving the farm productivity: The humidity control allows the increase in production as the phenomenon of rotting of the tomato and pepper plants is eliminated, the fruit set is increased, and the physiological state of the plant improves. Furthermore, the contact with TCF (salt) has a disinfection effect, killing viruses and pathogens.
•    Costs of land in agriculture are strongly related to availability of water. Higher independence from ground water may reduce the pressure on areas with low water resources and will improve the value of the related farmland, thus stabilizing the situation of many farmers.  Farmland with available water resources is subject of financial speculation. A higher independence on water using water cycling technology may reduce instabilities raising from this kind of speculation. "
 

"L'uso di fluidi termochimici (TCF) per il controllo dell'umidità e della temperatura nelle serre migliora l'economia e la competitività sotto diversi aspetti:
Riduzione dei costi energetici utilizzando il calore porodotto dalle fonti rinnovabili come l'aria calda proveniente dal retro dei pannelli fotovoltaici. In una fase iniziale, ciò può essere realizzato come modello ""a singolo stakeholder"" con fotovoltaico sul tetto degli edifici agricoli e elettricitàprodotta usata in azienda. In un modello multi-stakeholder, i produttori esterni di calore inutilizzato possono essere collegati alle attività agricole. Questo può includere anche il calore residuo industriale.
   Riduzione dei costi di investimento: offerta di più servizi in un unico sistema, isolamento termico non necessarrio, maggiore densità energetica, stoccaggio termico stagionale.
   Migliorare la produttività dell'azienda agricola: il controllo dell'umidità consente di aumentare la produzione in quanto viene eliminato il fenomeno della marcescenza, aumenta l'allegagione e migliora lo stato fisiologico della pianta. Inoltre, il contatto con il TCF (sale) ha un effetto disinfettante, uccidendo virus e patogeni.
   I costi del terreno in agricoltura sono fortemente legati alla disponibilità di acqua. Una maggiore indipendenza dalle acque sotterranee può ridurre la pressione sulle aree con scarse risorse idriche e migliorarne il valore dei terreni agricoli, stabilizzando così la situazione di molti agricoltori. I terreni agricoli con risorse idriche disponibili sono oggetto di speculazione finanziaria. Una maggiore indipendenza dall'acqua grazie alla tecnologia di riciclo dell'acqua può ridurre le instabilità derivanti da questo tipo di speculazione"
 

"Thermochemical fluids (TCF) are solutions with high hygroscopicity and reduce the air humidity. Different TCFcan be selected for the control of humidity in greenhouses. 
The main aspects to be considered are:
-    Technological feasibility: Are the required hygroscopic properties available for the reduction of the humidity?
-    Toxicity: Lethal dose of the TCF serves as indictor for this aspect.
-    Cost: TCFare required in relatively high amount. Costs of TCF are an indicator for the selection
-    Lifecycle impact (LCI): the environmental impact from the production and the transportation of the TCF to the final users.
-    Crystallisation point: Is the crystallisation point below the lowest ambient temperature avoind thermal isolation of the system?
The main candidates are:
-    MgCl2 is from low LCI, toxicity and costs very interesting. The limited hygroscopic potential (at 20°C the minimum reachable air humidity is around 30%) is not a limit for application in greenhouse but is not suitable is drying processes.
-    CaCl2 is a candidate with similar properties of MgCl2. However, the LCI is higher due to a more complicated production process.
-    NaOH is high available, the cost is interesting but in open system the Na reacts with CO2 in the air forming sodium carbonate which can damage and block the pipes and component.

Further state of art TCF are not considered for agricultural applications due to high costs and/or toxicity. 
-    LiBr and LiCl are substances used in closed systems with very good hygroscopic properties. However, the price of the material is very high and the availability of Li could be problematic in the future.
-    Ca(NO3)2 is a material of bit higher cost as MgCl2, but with a higher crystallisation temperature"
 

"Termochemische Flüssigkeiten (TCF) sind Lösungen mit hoher Hygroskopizität und reduzieren die Luftfeuchtigkeit. Verschiedene TCFs können zur Kontrolle der Luftfeuchtigkeit in Gewächshäusern ausgewählt werden. Die wichtigsten Aspekte sind:
- Technologische Machbarkeit: Sind die erforderlichen hygroskopischen Eigenschaften zur Reduzierung der Luftfeuchtigkeit vorhanden?
- Toxizität: Die Letaldosis des TCF dient als Indikator;
- Kosten: TCFs werden in relativ grossen Mengen benötigt. Die Kosten von TCF sind wichtig;
- Lebenszyklus-Auswirkungen (LCI): die Umweltbelastung durch die Produktion und den Transport der TCFs zu den Endnutzern;  - Kristallisationspunkt: Liegt der Kristallisationspunkt unter der niedrigsten Umgebungstemperatur, um die Wärmedämmung des Systems zu vermeiden?
Die Hauptkandidaten sind:
- MgCl2: tiefe LCI, Toxizität und Kosten. Das begrenzte hygroskopische Potenzial  ist kein Limit für den Einsatz im Gewächshaus, aber nicht geeignet für Trocknungsprozesse.
- CaCl2 hat ähnliche Eigenschaften wie MgCl2. Allerdings ist der LCI aufgrund eines komplizierteren Produktionsprozesses höher.
- NaOH ist in grosser Menge verfügbar, die Kosten sind interessant, aber das Na reagiert  mit CO2 in der Luft und bildet Natriumcarbonat, das die Rohre und Komponenten beschädigen und blockieren kann.
Weitere aktuelle TCFs werden aufgrund hoher Kosten und/oder Toxizität nicht für landwirtschaftliche Anwendungen in Betracht gezogen.
  - LiBr und LiCl werdenin Kältemaschinen werden. Allerdings ist der Preis sehr hoch und die Verfügbarkeit von Li könnte in der Zukunft problematisch sein.
  -  Ca(NO3)2 ist ein Material mit etwas höheren Kosten als MgCl2, aber mit einer höheren Kristallisationstemperatur."
 

The overall Greenhouse system model of TheGreefa is based on an innovative use of absorption processes in the greenhouse air-conditioning (also referred as sorptive air conditioning). The energy carrier is an aqueous magnesium chloride solution (MgCl2). To predict and check the behaviour, energy efficiency and further properties of systems using the technology, the use of simulation is inevitable. Therefore, methods for transient simulation of a node-based model are being developed. This system simulation is sufficient for most of practical problems in this project, such as the development and testing of smart control strategies. The aim is to maximize energy efficiency, crop production and water production, and take full advantage of fluctuating renewable energy, by reasonable and intelligent control of variables, such as indoor/outdoor temperature and humidity, etc. For this purpose, the simulation of temperatures and humidity in the greenhouse and its control by the new technology is crucial. The Modelica library of developed component models has already been developed and validated, which includes the absorber model, desorber model and thermal chemical fluid network model. Besides, the CFD simulation is considered, if air conditions in the green house are not constant and there are differences of conditions in greenhouse and at absorber inlet. If necessary, in order to integrate the CFD model and system model, the reduced order model of CFD model will be developed to increase the computational efficiency.

Das Gesamtsystemmodell Gewächshaus von TheGreefa basiert auf einer innovativen Nutzung von Absorptionsprozessen in der Gewächshausklimatisierung. Die Energie wird durch eine wässrige Magnesiumchloridlösung (MgCl2) transportiert. Um das Verhalten, die Energieeffizienz und weitere Eigenschaften von Systemen mit Hilfe der Technologie vorherzusagen und zu überprüfen, ist der Einsatz von Simulation unumgänglich. Daher werden Methoden zur transienten Simulation eines knotenbasierten Modells entwickelt. Diese Systemsimulation reicht für die meisten praktischen Probleme in diesem Projekt aus, wie z. B. die Entwicklung und Erprobung intelligenter Steuerungsstrategien. Ziel ist es, die Energieeffizienz, die Pflanzenproduktion und die Wasserproduktion zu maximieren und die schwankenden erneuerbaren Energien voll auszunutzen, indem Variablen wie Innen-/Außentemperatur und Luftfeuchtigkeit usw. sinnvoll und intelligent gesteuert werden. Zu diesem Zweck die Simulation von Temperaturen und Luftfeuchtigkeit im Gewächshaus und deren Kontrolle durch die neue Technologie entscheidend. Die Modelica-Bibliothek entwickelter Komponentenmodelle wurde bereits entwickelt und validiert, darunter das Absorbermodell, das Desorbermodell und das Modell des thermisch-chemischen Flüssigkeitsnetzwerks. Außerdem wird die CFD-Simulation berücksichtigt, wenn die Luftbedingungen im Gewächshaus nicht konstant sind und es unterschiedliche Bedingungen im Gewächshaus und am Absorbereintritt gibt. Um das CFD-Modell und das Systemmodell zu integrieren, wird bei Bedarf das Modell reduzierter Ordnung des CFD-Modells entwickelt, um die Berechnungseffizienz zu erhöhen.

The stakes of agriculture (and horticulture) are well-known: produce more on less surface, with a smaller environmental and energetic footprint, a better quality and a broader social involvement, considering sustainability in all its aspects. To achieve those challenges the symbiosis between nature and technology must be total to get the best from both worlds.

TheGreefa H2020 project embodies this union with an all-in-one technological package through  a single process powered by low heat renewable energies. Moreover, the project deals with pre (heating, cooling and humidity control) but also post harvesting technologies, such as water recovery or food drying process.

The three innovative integrated solutions developed in the project to address temperature control, humidity management and water conservation in enclosed greenhouses are not limited to indoor agriculture. In fact, these technologies could be applied to any enclosed environment requiring de-/humidification and temperature control. For this reason, other sectors that make extensive use of HVAC systems have been targeted such as building construction with air control.

Air conditioning is energy intensive and polluting, it contributes to global warming because of leaks or poor recycling of refrigerants, which are powerful greenhouse gases.

All sectors combined, TheGreefa could allow a significant reduction of the carbon footprint and the struggle against global warming. Its energy savings (gas, oil), its circularity (water), its use of solar heat (green energy) and ambient heat, translate into a low environmental impact.

Les enjeux de l'agriculture sont connus: produire plus sur moins de surface, avec une empreinte environnementale et énergétique moindre, une meilleure qualité et une implication sociale plus large, en considérant la durabilité sous tous ses aspects. Pour relever ces défis, la symbiose entre la nature et la technologie doit être totale pour tirer profit du meilleur des deux mondes.TheGreefa incarne cette union avec un ensemble technologique tout-en-un à travers un processus unique alimenté par des énergies renouvelables à faible chaleur. De plus, le projet traite des technologies de pré(chauffage, refroidissement, contrôle de l' humidité) mais aussi post-récolte, comme la récupération d'eau ou le processus de séchage des aliments.Les 3 solutions innovantes développées dans le cadre du projet pour contrôler la température, la gestion de l'humidité et l'économie d'eau dans les serres ne sont pas limitées à l'agriculture d'intérieur. En fait, ces technologies pourraient s'appliquer à tout environnement fermé nécessitant une déshumidification et un contrôle de la température. D'autres secteurs utilisant les systèmes CVC ont donc été ciblés, tels que la les bâtiments avec contrôle de l'air. La climatisation est énergivore et polluante, elle contribue au réchauffement climatique à cause des fuites ou du mauvais recyclage des fluides frigorigènes,puissants gaz à effet de serre.Tous secteurs confondus,TheGreefa pourrait permettre une diminution significative de l'empreinte carbone et la lutte contre le réchauffement climatique. Ses économies d'énergie (gaz, pétrole), sa circularité (eau), son utilisation de la chaleur solaire (énergies vertes) et de la chaleur ambiante, se traduisent par son faible impact environnemental.

High product quality is one of the key issues in food drying industries. During the process, food structure, appearance and aroma can change through the modification of important bioactive constituents and the nutrients can deteriorate.

The selection of parameters, as temperature and duration, influences the quality of dried food. Some agricultural goods like herbs and fruits must be dried immediately after harvesting, in order to avoid their deterioration and rotting. To guarantee the quality, many agricultural drying processes are preferably operated at low temperatures (e.g. max 35°C).  The used of hygroscopic fluid salt solutions (called thermo-chemical fluid, TCF) allows to reduce the absolute air humidity of the drying air, without direct use of thermal energy, but by adsorption of water vapour of the air. The temperature of the drying air is not so increased and the drying process can take places at low temperature. During this process the TCF becomes diluted and when its water content is too high, it loses its hygroscopic properties. To be reused, the TCF shall be regenerated evaporating part of its water content. This regeneration process needs heat, temperatures around 40°C-70°C are enough: solar heat or waste heat, otherwise not used, fulfil this purpose. The regenerated TCF can be then store without any energy losses, and without time limitation. In this way, the drying process can be driven by renewable energy stored in form of regenerated TCF, independently from fluctuation or periodically availability of the renewable energy source. The quote of usage of renewable energy can be increased in an economically way. The absorption-based drying systems are investigated in TheGreefa and in SONITRO (Swiss Federal Office for Energy).

La qualità del prodotto è una fondamentale nelle industrie di essiccazione degli alimenti. Durante l'essicatura, la struttura, l'aspetto e l'aroma degli alimenti possono cambiare per la modifica di costituenti bioattivi e le sostanze nutritive deteriorarsi.

La selezione dei parametri, quali la temperatura e la durata, influenza la qualità degli alimenti essiccati. Alcuni prodotti come erbe e frutta devono essere essiccati subito dopo la raccolta, per evitare che si deteriorino. Per garantire la qualità, molti processi devono avvenire a bassa temperatura (max 35°C). L'uso di soluzioni saline igroscopiche (dette fluido termochimico, TCF) consente di ridurre l'umidità assoluta dell'aria di essicatura, senza impiego diretto di energia termica, ma mediante assorbimento del vapore acqua. La temperatura dell'aria di essicuratura non è così aumentata e il processo di essicatura può avvenire a temperatura neutra. Durante questo processo il TCF si diluisce e quando il suo contenuto di acqua è troppo alto, perde le sue proprietà igroscopiche. Per essere riutilizzato, il TCF deve essere rigenerato evaporando parte del suo contenuto d'acqua. Questo processo di rigenerazione necessita calore, temperature intorno ai 40-70°C sono sufficienti: il solare termico o il calore di scarto, altrimenti non utilizzati, soddisfano questo scopo. Il TCF rigenerato può essere stoccato senza perdite energetiche e senza limiti di tempo: l'energia usata nell'essicazione è energia rinnovabile che è stata stoccata in forma di TCF rigenerato, indipendentemente dalla fluttuazione o dalla periodicità della fonte di energia stessa. I sistemi di essiccazione ad assorbimento sono studiati in TheGreefa e in SONITRO (Ufficio Federale Svizzero dell'Energia).

2022 has come loaded with new realities.

We already had great challenges to face in Europe: Reduction of around 55% in greenhouse gas emissions by 2030, Climate-neutral by 2050 ; Paris Agreement objective to keep the global temperature increase to well below 2°C ; European Green Deal and inside Farm to fork Strategy.

In addition, the instability in the supply of gas due to the war in Ukraine, the dependence on countries outside the EU and the increase in the frequency and intensity of extreme weather events.In a shifting geopolitical environment, the EU needs to continue strengthening its resilience and open strategic autonomy in critical sectors linked to the transitions. In the energy sector, intensified efforts are needed on green energy sources, replacing our reliance on fossil fuels.

In this context, TheGreefa is a technology that uses an inexpensive material and contributes both the reduction of emissions gases and the use of renewable energy. TheGreefa takes advantage of solar energy and waste heat to achieve a level of cooling, air humidity control and water recovery using salt water.

Essentially it is a process that takes advantage of the source of solar thermal energy in greenhouses, and the water condensation that occurs inside it to recreate an ideal atmosphere for crops at the temperature and humidity level, through a technological innovation BAT-NEC, for greenhouse farming.

In this way, TheGreefa contributes against climate change, in an elementary model of circular economy and renewable energy sources.

Solar thermal technologies and other renewable energies benefit from several laws and decrees which facilitate their installation or financially support investors.

El 2022 ha llegado cargado de nuevas realidades.

Ya teníamos grandes retos que afrontar en Europa: Reducción de alrededor del 55% en las emisiones de gases de efecto invernadero para 2030, Neutralidad climática para 2050, El objetivo del Acuerdo de París de mantener el aumento de la temperatura global muy por debajo de los 2°C, Pacto Verde Europeo y estrategia interna de "Farm to Fork".

A ello se suma la inestabilidad en el suministro de gas debido a la guerra de Ucrania, la dependencia de países extracomunitarios y el aumento de los fenómenos meteorológicos extremos.

En un entorno geopolítico cambiante, la UE necesita seguir fortaleciendo su resiliencia y abrir su autonomía estratégica en sectores críticos vinculados a las transiciones. En el sector energético, se necesitan esfuerzos intensificados en fuentes de energía verde, reemplazando nuestra dependencia de los combustibles fósiles.

TheGreefa es una tecnología que utiliza un material económico (agua salada) y contribuye tanto a la reducción de emisiones de gases como al uso de energías renovables. TheGreefa aprovecha la energía solar y el calor residual para mantener la temperatura del invernadero y también logra un nivel de refrigeración, control de la humedad del aire y recuperación de agua mediante conversión termoquímica.

Esencialmente es un proceso que aprovecha la fuente de energía solar térmica en los invernaderos, y la condensación del agua que se produce en su interior para recrear un ambiente ideal para los cultivos a nivel de temperatura y humedad, a través de una innovación tecnológica BAT-NEC, para invernadero agricultura.

De esta manera, TheGreefa contribuye contra el cambio climático, en un modelo elemental de economía circular y fuentes de energía renovables.

Tunnel greenhouses are simple constructions for protected crop production used all over the world. They can be covered by just one sheet of plastic foil, allowing to create a sealed surface without complicated means of construction. A modified version of a tunnel greenhouse is developed in The Greefa, allowing to be used to effectively create a closed atmosphere, by only using one piece of foil from one side to the other at a length of an entire roll of foil. By the reduction of foil connectors, losses of (elevated) CO2 and water vapor from the closed atmosphere are effectively reduced. For climate control in a closed greenhouse, a huge roof surface area is required, as all heat entering as solar radiation needs to be withdrawn by heat conduction within a 24 hours period. An increased surface is realized by a zig-zag structure between high points along construction bows and low points along tension belts. By using this structure, the surface area can be increased by a factor of 2-3, also allowing to withdraw 200-300% of heat, compared to a standard design. A secondary advantage relates to the strong slope between the high points and the low points, allowing to collect condensation droplets from the roof area during nighttime. This hinders a fallback of the droplets onto the vegetation, which would cause hygiene problems, mainly related to fungal growth on the leaves. The construction of a closed greenhouse can be provided by this design at low cost. The cost can even be lower than a standard tunnel greenhouse, as no ventilation flaps and openings have to be included.

Tunnel Gewächshäuser sind einfache Konstruktionen. Sie können mit nur einem Stück Plastikfolie abgedeckt werden, so dass eine geschlossene Oberfläche geschaffen wird. The Greefa entwickelte eine modifizierte Version eines Tunnelgewächshauses und schafft eine geschlossene Atmosphäre, indem nur ein Stück Folie von einer Seite zur anderen verwendet wird, und zwar bis zu der Länge einer ganzen Folienrolle. Durch die Reduzierung der Folienanschlüsse werden die Verluste von CO2 und Wasserdampf aus der geschlossenen Atmosphäre wirksam reduziert. Für die Klimatisierung eines geschlossenen Gewächshauses ist eine große Dachfläche erforderlich, da die gesamte, durch Sonneneinstrahlung eintretende Wärme innerhalb eines Zeitraums von 24 Stunden durch Wärmeleitung abgeführt werden muss. Eine vergrößerte Oberfläche wird hierbei durch eine Zick-Zack-Struktur zwischen Hochpunkten entlang von Konstruktionsbögen und Tiefpunkten entlang von Spanngurten realisiert. Durch diese Struktur kann die Oberfläche um den Faktor 2-3 vergrößert werden, so dass im Vergleich zu einer Standardkonstruktion 200-300% der Wärme abgeführt werden kann. Ein weiterer Vorteil ist das starke Gefälle zwischen den Hoch- und Tiefpunkten, das es ermöglicht, nachts Kondensationstropfen aus dem Dachbereich aufzufangen. Dies verhindert ein Zurückfallen der Tropfen auf die Vegetation, was zu hygienischen Problemen führt, vor allem im Zusammenhang mit dem Pilzwachstum auf den Blättern. Der Bau eines geschlossenen Gewächshauses ist mit dieser Konstruktion zu geringen Kosten möglich. Sie können sogar niedriger sein als bei einem Standard-Tunnelgewächshaus, da keine Lüftungsklappen und -öffnungen eingebaut werden müssen.

A closed greenhouse qualifies for plant production at elevated CO2 levels with the advantage of enhanced photosynthesis and increased production rates. In a normal greenhouse, cooling is mainly provided by the evaporative cooling of the plants and withdrawal of humid/hot air combined with supply of dryer and colder ambient air. In a closed greenhouse, cooling works totally different. An increased greenhouse surface allows to withdraw heat by conduction from hot greenhouse air through the surface to the colder ambient air without air exchange between inside and outside. A large portion of heat needs to be stored from daytime to nighttime, to compensate the lower cooling capacity of the heat conduction process and to use the heat conduction from inside to outside within all 24 hours of a day. Thermochemical solutions allow to uptake a huge amount of heat during the hot period of the day by using the phase change between water vapor and water. Evaporative cooling of the plants is combined with the absorption process, which allows air de-humidification in the greenhouse atmosphere and heat transport from the air to a solution storage. Heat and water from the air is captured and is released back to the greenhouse volume during nighttime. In this second period, greenhouse air is heated. The hot air remains at moderate relative humidity and is distributed between the vegetation, hindering condensation in this area, while the cold greenhouse surface forces condensation and allows water recovery. Condensation droplets can be captured by a specific design of the roof area. Up to 85% of the irrigation water can be recycled. The desiccant is re-generated and cooled in this process which qualifies for the next daytime period. 

Ein geschlossenes Gewächshaus hat einen erhöhten CO2-Gehalt, d.h eine verbesserte Photosynthese und Produktionsraten. In einem normalen Gewächshaus erfolgt die Kühlung hauptsächlich durch die Verdunstungskühlung der Pflanzen und Luftaustausch. In einem geschlossenen Gewächshaus funktioniert die Kühlung anders. Eine vergrößerte Gewächshausoberfläche ermöglicht eine Kühlung durch Wärmeleitung von der heißen Gewächshausluft durch die Oberfläche an die kältere Umgebungsluft ohne Luftaustausch. Ein Teil der Wärme muss zwischen Tag- und Nachtbetrieb gespeichert werden, um die geringere Kühlleistung des Wärmeleitungsprozesses zu kompensieren und die Wärmeleitung von innen nach außen über die vollen 24 Stunden zu nutzen: durch den Phasenwechsel zwischen Wasserdampf und Wasser absorbieren thermochemische Lösungen Wärmemenge während der heißen Tageszeit. Die Verdunstungskühlung der Pflanzen wird mit dem Absorptionsprozess kombiniert, der die Entfeuchtung der Luft und den Wärmetransport aus der Luft in einen Lösungsspeicher ermöglicht. Wärme und Wasser aus der Luft werden aufgefangen und während der Nacht wieder an das Gewächshaus abgegeben. In der Nacht wird die Gewächshausluft erwärmt und bei mäßiger relativer Luftfeuchtigkeit zwischen der Vegetation verteilt, wodurch die Kondensation in diesem Bereich verhindert wird. Auf der kalten Gewächshausoberfläche wird Kondensation erzwungen und so eine Wasserrückgewinnung ermöglicht. Durch eine gezielte Gestaltung der Dachfläche kann Kondenswasser aufgefangen werden, bis zu 85% des Bewässerungswassers können wiederverwendet werden. Das Trockenmittel wird in diesem Prozess neu regeneriert und gekühlt, was Voraussetzung für die nächste Tagesperiode ist.

Thermochemical solutions allow to uptake water from the air without additional mechanical cooling. Depending on the specific liquid desiccant (usually solutions of salt and water), air can be dehumidified to a level between 35% (MgCl2) to 10% (LiCl2) relative humidity. This means that air with humidity beyond these values can be captured for the purpose of water production.

If ambient air relative humidity is above these values, humidity can be captured within the solution, while also the released heat from the phase change energy can be stored. Water and heat can be captured e.g., from daytime to nighttime. During night, the heat can be used to evaporate the water again back to the air (desiccant de-sorption process) and within a second process, the water can be captured within a condensation process.

As nighttime temperatures are usually lower, the process can potentially be driven without mechanical cooling, but passively by the cool of ambient air. This process only works at specific climatic conditions of daytime and nighttime temperature and air humidity. To extend toward a universal solution, the desiccant can be heated during daytime by a solar thermal collector and can be further cooled (after the de-sorption process) during nighttime within the same collector, working as a sky radiator then.

A further variation relates to a process, in which the desiccant absorbs water during nighttime, using the higher relative humidity during this period. Directly after the absorption, the solution is heated well above the ambient temperature by solar heat stored from daytime to nighttime, allowing to evaporate the water in a parallel process, again using the condensation driven by low nighttime temperatures.

Thermochemische Lösungen ermöglichen die Aufnahme von Wasser aus der Luft ohne zusätzliche mechanische Kühlung. Flüssigen Trockenmittel (Salz und Wasser) kann die relative Luftfeuchtigkeit auf einen Wert zwischen 35% (MgCl2) und 10% (LiCl2) reduzieren. Das bedeutet, dass Luft mit einr Luftfeuchtigkeit, die über diesen Werten liegt, für die Wasserproduktion in Frage kommt: die Feuchtigkeit in der Lösung kann aufgefangen werden, während gleichzeitig die freigesetzte Wärme aus der Phasenwechselenergie gespeichert werden kann. Wasser und Wärme können z. B. zwischen Tag und Nacht angereichert werden. Während der Nacht kann die Wärme genutzt werden, um das Wasser wieder zurück an die Luft zu verdampfen (Desorptionsprozess). In einem zweiten Ablauf kann das Wasser durch Kondensation aufgefangen werden.

Da die Temperaturen in der Nacht in der Regel niedriger sind, kann der Prozess unter bestimmten Bedingungen passiv durch die kühle Umgebungsluft betrieben werden. Im Sinne einer universellen Lösung kann das Trockenmittel tagsüber durch einen solarthermischen Kollektor erwärmt und nachts (nach dem De-Sorptionsprozess) im selben Kollektor weiter abgekühlt werden, wobei der Kollektor dann als Himmelsstrahler fungiert.

Eine weitere Variante ist ein Verfahren, bei dem das Trockenmittel während der Nacht Wasser absorbiert und dabei die meist wesentlich höhere relative Luftfeuchtigkeit während dieser Zeit nutzt. Unmittelbar nach der Absorption wird die Lösung durch vom Tag bis zur Nacht gespeicherter Sonnenwärme weit über die Umgebungstemperatur hinaus erwärmt, so dass das Wasser in einem parallelen Prozess verdampft werden kann, wobei wiederum die durch die niedrigen Nachttemperaturen bedingte Kondensation genutzt wird.

Crops transpiration produces water vapour inside greenhouses which needs to be removed to maintain suitable humidity. In continental climate, the excess humidity is removed venting the indoor air opening windows and simultaneously is heated to compensate the heat losses due to the venting and to reduce relative humidity increasing air temperature, but without modify absolute humidity. This system is very energy intensive.

The use of hygroscopic salt solutions (called thermo-chemical fluid, TCF) allows to reduce the energy consumption:

1) the TCF reduces the absolute air humidity absorbing the water vapour of the air. There will be a zeroing of the heat loss for ventilation because the air is recirculated, and the humidity removed by the TCF;

2) furthermore, during this absorption process the water vapour is converted in water liquid releasing heat used for heating the greenhouse.

A further advantage of the TCF’s use is the control of the air temperature independently from the control of the air humidity: the temperature of the TCF determinates the air temperature, while its content of salt (concentration of TCF) determinates the air humidity

Different TCFs are available, the main aspects to be considered are their hygroscopic properties, cost, availability, crystallisation point and toxicity. The main candidate for greenhouse air conditioning is the aqueous magnesium chloride solution (MgCl2); its hygroscopic potential allows to dehumidify the air down to 30% relative humidity at 20°C. The calcium chloride solution (CaCl2) has similar properties, but a more complicated production process.  The magnesium chloride solution has been used in TheGreefa project (better performance/cost ratio) for the air control in the greenhouses.

La traspirazione delle piante produce vapore acqueo all'interno delle serre che deve essere rimosso per mantenere un'umidità adeguata. In clima continentale, l'umidità in eccesso viene rimossa ventilando l'aria aprendo le finestre e contemporaneamente viene riscaldata per compensare le dispersioni di calore e per ridurre l'umidità relativa aumentando la temperatura dell'aria.. Questo sistema è molto energivoro.

L'utilizzo di soluzioni saline igroscopiche (dette fluido termochimico, TCF) permette di ridurre i consumi energetici:

1) il TCF riduce l'umidità assoluta dell'aria assorbendone il vapore acqueo.La dispersione termica per la ventilazione è azzerata perché l'aria viene ricircolata,e l'umidità rimossa dal TCF;

2) durante questo processo di assorbimento il vapore acqueo viene convertito in acqua cedendo calore utilizzato per il riscaldamento della serra.

Un ulteriore vantaggio è il controllo della temperatura dell'aria indipendentemente dal controllo dell'umidità: la temperatura del TCF determina la temperatura dell'aria, mentre il suo contenuto di sale determina l'umidità.

Diversi TCF possono essere selezionati in base alle loro proprietà igroscopiche, il costo, la disponibilità, il punto di cristallizzazione e la tossicità. Il principale candidato per il condizionamento dell'aria in serra è la soluzione di cloruro di magnesio (MgCl2); il suo potenziale igroscopico consente di deumidificare l'aria fino al 30% di umidità relativa a 20°C. La soluzione di cloruro di calcio (CaCl2) ha proprietà simili, ma un processo di produzione più complicato. La soluzione di cloruro di magnesio è stata utilizzata nel progetto TheGreefa (miglior rapporto prestazioni/costo) per il controllo dell'aria nelle serre.

Crops transpiration produce water vapour inside greenhouses which need to be dehumidified to maintain suitable humidity. The main humidity control methods used in greenhouses are ventilation, heating, condensation on cold surfaces and adsorption by hygroscopic materials. In greenhouses of warm regions, as Mediterranean countries, ventilation is the most common method used due to its low cost. In colder climates, as Continental Europe, heating systems are used to reduce relative humidity increasing air temperature, but without modify absolute humidity.

The use of heat exchanger with cold surfaces for dehumidification allow to capture and re-use the latent heat released in condensation. A heat pump can be used as a dehumidifier to prevent condensation on the crop. In cold areas, the use of a heat pump can reduce 3-8 times the energy consumed by venting-heating dehumidification and to increase 2–3 times the coefficient of performance of conventional air-conditioning systems.

The use of hygroscopic fluid salt solutions (called thermo-chemical fluid, TCF) also allows to reduce absolute air humidity by adsorption of vapour and convert the latent heat of condensation to sensible heat used for heating the greenhouse. The difference of absolute humidity between air inside the greenhouse and outside is the main factor affecting the desiccant dehumidification. Water vapour adsorption onto silica-gel, activated carbon powder and activated carbon fibre can be used for climate control with solar operated air-conditioning system 5. An aqueous magnesium chloride solution (MgCl2) has been used in TheGreefa project (better performance/cost ratio) for the air control in the greenhouses.

La transpiración produce vapor de agua dentro de los invernaderos que se tienen que deshumidificar para mantener una humedad adecuada. Los principales métodos de control de humedad en invernaderos son la ventilación, la calefacción, la condensación en superficies frías y la adsorción mediante materiales higroscópicos. En invernaderos de regiones cálidas la ventilación es el método más usado por su bajo coste. En climas fríos la calefacción se utilizan para reducir la humedad relativa aumentando la temperatura del aire, pero sin modificar la humedad absoluta.

El uso de intercambiadores de calor con superficies frías para la deshumidificación permite capturar y reutilizar el calor latente liberado en la condensación. Se puede utilizar una bomba de calor como deshumidificador para evitar la condensación sobre el cultivo. En zonas frías, el uso de una bomba de calor puede reducir  3-8 veces la energía consumida por la deshumidificación con ventilación-calefacción y aumentar 2-3 veces el rendimiento de los sistemas de climatización convencionales.

El uso de soluciones salinas higroscópicas (llamadas fluidos termoquímicos) también permite reducir la humedad absoluta del aire por adsorción de vapor y convertir el calor latente de condensación en sensible y utilizarlo para calentar el invernadero. La diferencia de humedad entre el interior y el exterior es el principal factor que afecta a la deshumidificación con desecantes. La adsorción de vapor de agua sobre gel de sílice, polvo de carbón activado y fibra de carbón activado se puede utilizar para climatización basada en energía solar. En el proyecto TheGreefa se ha utilizado una solución acuosa de cloruro de magnesio (MgCl2) (mejor relación rendimiento/coste) para el control climático.

Air humidity is an important factor in the greenhouse climate as it affects the processes of transpiration and photosynthesis, and can cause the development of fungal diseases. In crops with commercial leaf value, such as lettuce and ornamental plants, an increase in humidity can contribute to the loss of production, quality and commercial value.

One of the main reasons for controlling humidity in greenhouses is to avoid the incidence of fungal diseases.

Under unsuitable humidity conditions the growth of some crops can decrease, anatomical changes and alterations or delays in the development of plants can occur.

A moderate humidity (55-75%) allows to increase the rate of net assimilation of plants due to the rise in stomatal conductance that facilitates the processes of exchange of water vapour (transpiration) and CO2 (photosynthesis) between plants and air.

A high humidity (75-95%) can produce beneficial effects, such as an increase in the individual surface of the leaves, although it can also cause adverse effects on flowering, setting and fruit growth of crops such as pepper. Relative humidity between 50-70% is considered optimal for tomato pollination, since high values close to 90% can decrease the viability of pollen due to thermal stress.

La humedad del aire es un factor importante en el clima del invernadero ya que afecta a los procesos de transpiración y fotosíntesis, y puede favorecer el desarrollo de enfermedades fúngicas. En cultivos con valor comercial de las hojas, como lechuga y ornamentales, un aumento de la humedad puede contribuir a la pérdida de producción, calidad y valor comercial.

Una de las principales razones para el control de la humedad en los invernaderos es evitar la incidencia de enfermedades fúngicas.

Bajo condiciones no adecuadas de humedad el crecimiento de algunos cultivos puede disminuir, se pueden producir cambios anatómicos y alteraciones o retrasos en el desarrollo de las plantas. Una humedad relativamente baja (55-75%) permite aumentar la tasa de asimilación neta de las plantas debido al incremento de la conductancia estomática que facilita los procesos de intercambio de vapor de agua (transpiración) y CO2 (fotosíntesis) entre las plantas y el aire.

Una humedad alta (75-95%) puede producir efectos beneficiosos, como un incremento de la superficie individual de las hojas, aunque también puede originar efectos adversos sobre la floración, el cuajado y el crecimiento de frutos de cultivos como el pimiento. Una humedad relativa del 50-70% se considera óptima para la polinización del tomate, ya que altos valores cercanos al 90% pueden disminuir la viabilidad del polen por estrés térmico.

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Contacts

Project coordinator

  • Project coordinator

Project partners

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner