project - Research and innovation

A novel and integrated approach to increase multiple and combined stress tolerance in plants using tomato as a model (TOMRES)
A novel and integrated approach to increase multiple and combined stress tolerance in plants using tomato as a model

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Objectives

Tomato is a main EU agricultural commodity, cultivated all over Europe in open and protected field and in glasshouses, representing a biological and agronomical model crop. Combined water and nutrient stress is a major problem for tomato farmers and solutions are needed to safeguard yields, while preserving the environment. The overall goal of TOMRES is to enhance resilience to combined water and nutrient stress in tomato and to maximize water (WUE) and nutrient use efficiency (NUE) by designing and testing in the field (open and protected) novel combinations of genotypes and management practices reducing the environmental impact of agricultural activities.

Objectives

see objectives in English

Activities

1 - Identification of tomato lines with improved water and nutrient use efficiency under combined abiotic stresses, and of resilience traits.

2 - Characterization of molecular and physiological responses to combined water and nutrient stress in tomato.

3 - Design and optimization of Crop management strategies and tools to increase water and nutrient use efficiency.

4 - Analysis and integration in a decision support system (DSS) of resource use efficiency and environmental and socio-economic impact.

5 - On-farm co-innovation and exploitation, to assess and demonstrate technical and economic feasibility of the innovative solutions developed throughout the project.

Kontext

The cultivation of fruits and vegetables requires large volumes of water and fertilizers, but water is scarce, also due to climate change, while fertilizers production consumes high amounts of non-renewable resources.

TOMRES research focuses on tomato, one of the most cultivated crops in the world, representing a biological and agronomical model crop. Combined water and nutrient stress is a major problem for tomato farmers and solutions are needed to safeguard yields, while also preserving the environment.

The project aims at enhancing resilience to combined water and nutrient stress in tomato and to develop cropping systems that reduce the consumption of limited and expensive resources, thus contributing to the adaptation of EU agriculture to global warming and shortage of mineral fertilizers.

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Ort
Main geographical location
Torino

€ 5996175

Total budget

Total contributions including EU funding.

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

23 Practice Abstracts

Steroid hormones called brassinosteroids (BR) are critical for plant growth and they control plant responses to various environmental stresses including drought and limited nutrient availability. Recent studies showed that these stresses also affect BR levels and the signaling they trigger in the plant, including in roots. Therefore, the architecture of the root system is also a result of the interaction between BR signaling and the environment.

One strategy towards improving tomato resilience to single and combined stress is to modulate BR levels or the signals that the hormone triggers. This is expected to influence the morphology of the root system and other physiological mechanisms that would increase

water- and nutrient use efficiency. A moderate elevation and reduction of hormone levels can be achieved by application of BR and brassinazole (BRZ, a small molecule that inhibits BR production) respectively. Indeed, these treatments modified the morphology of the tomato roots. In addition, BR appeared to also improve their water use efficiency under combined stress conditions, where both phosphate and water availability were limited. An alternative approach for modulation of BR is the genomic editing of tomato genes that are involved in BR signaling using the CRISPR-Cas9 technology. Establishing genetic material will enable us to test the effect of BR on tomato throughout its life cycle, in more precise manner.

הורמונים סטרואידים הנקראים ברסינוסטרואידים מהווים גורם מכריע בגדילת הצמח. הורמונים אלו

גם מבקרים את תגובות הצמח לעקות סביבתיות שונות ביניהן עקת יובש ועקה הנובעת מזמינות נמוכה

של חומרי הזנה. מחקרים שבוצעו לאחרונה הראו שעקות אלו גם משפיעות על רמות ההורמון וגם על

.הסיגנלים שהורמונים אלו מעוררים בצמח, ובתוך כך גם בשורש

אחת האסטרטגיות שנבחנו במטרה לשפר את סבילות העגבנייה לעקה יחידה או לשילוב של עקות היא

וויסות רמות ההורמון או הסיגנלים שהוא מעורר. וויסות זה צפוי להשפיע על הצורה של בית השורשים

וכן על מנגנונים פיזיולוגים אשר עשויים להביא לעלייה ביעילות ניצולת המים וחומרי ההזנה בצמח.

ניתן להביא לעליה או לירידה מתונה ברמות ההורמון בעזרת הוספה חיצונית של ההורמון עצמו ובעזרת

הוא מולקולה קטנה שמדכאת ייצור של (BRZ הוספה של ברסינזול בהתאמה. האחרון )הנקרא בקיצור

ברסינוסטרואידים בצמח. אכן, טיפולים אלו הביאו לשינוי הצורה של בית השורשים. בנוסף, נראה כי

ברסינוסטרואיד משפר את יעילות ניצולת המים בשורשים בתנאים של שילוב עקות, בהם קיימת זמינות

נמוכה של זרחן ושל מים. גישה חליפית לוויסות ברסינוסטרואיד היא עריכה גנומית של גנים המעורבים

ייצור של .(Cas9-CRISPR (בהעברת הסיגנאליים של ברסינוסטרואיד, על ידי שימוש בטכנולוגיית קריספר

חומר גנטי כזה יאפשר לנו לבדוק את ההשפעה של ברסינוסטרואיד על עגבנייה משך כל מחזור החיים שלה

.באופן יותר מדויק

Even if soils can be very rich in phosphorus (P), it is not unlikely that only a small amount of this nutrient is immediately available to plants. The majority of P is either adsorbed to soil particles or occurs as insoluble complexes with calcium (Ca), iron (Fe) and aluminium

(Al) or can be locked within the structure of Fe and Al oxides. All these fixation processes undermine the efficacy of mineral fertilizers to replenish soil-P.

Organic acids are one of the components of root exudates that can enhance P mobilization from poorly available P sources. To understand their effects, we tested three organic acids identified in the root exudates of tomato plants after a P-stress period and evaluated their ability, when used alone or in combination, to release P from systems where the nutrient was either adsorbed on the surface or

locked within the structure of a naturally occurring iron oxide. The results showed that combinations of different organic acids had a larger effect than single compounds, highlighting the importance of the whole exudate composition in enhancing P availability. P release was greater and faster from complex systems than from adsorbed

soil particles. The observed release order was: oxalic > ascorbic > citric, depending on the chemical action exerted by the acid on

the oxide. These results show how organic acids, being one of the many components of root exudates, have a key role in helping

plants acquire P from the poorly available forms found in soil.

Nonostante i suoli possano essere molto ricchi di fosforo (P), capita spesso che solo una porzione di esso sia disponibile per l’assorbimento da parte delle piante. La maggior parte del P si trova infatti adsorbita sulla superficie di argille, in forma di complessi insolubili con calcio (Ca), o intrappolata nella struttura di ossidi di ferro (Fe). Questi processi di “fissazione” minano la capacità dei fertilizzanti minerali di rifornire il P del suolo.

Gli acidi organici sono uno dei componenti degli essudati radicali, e possono aumentare la mobilizzazione del P da fonti poco disponibili. Per comprenderne l’effetto, abbiamo testato tre acidi organici presenti negli essudati di piante di pomodoro in seguito a carenza di P e abbiamo valutato la loro capacità, singola o in combinazione, di rilasciare P da sistemi in cui esso si trova sulla superficie o nella struttura di un ossido di ferro. I risultati hanno mostrato che la combinazione di diversi acidi organici ha un effetto maggiore rispetto ai composti singoli, evidenziando l’importanza della composizione globale degli essudati. L’ordine di rilascio osservato è: ossalico > ascorbico > citrico, a seconda del tipo di azione chimica esercitata dall’acido sull’ossido. Questi risultati mostrano come gli acidi organici, nonostante siano solo uno dei tanti componenti degli essudati radicali, svolgano un ruolo chiave nell’aumentare il rilascio di P da fonti poco biodisponibili e quindi aumentarne l’assorbimento da parte delle piante.

Phosphorus (P) is one of the most important inorganic nutrients

for plants, although its limited availability is a common constraint that limits plants productivity in natural as well as in cropping environments. Only a small proportion of P present in soil is immediately available to plants, while the majority of it is not accessible as it is strongly bound to soil components.

Root exudates, a suite of substances secreted into the soil by the roots, are a powerful mean by which plants can increase nutrient uptake. They are composed of sugars, organic acids, ions and many

other chemical compounds whose relative abundance is modulated to

respond to soil nutrient conditions.

To understand the variation of root exudates composition as a

response to P stress, we collected and characterized the root exudates of tomato plants after a two-weeks period of hydroponic

growth with or without P. The results showed that P-stressed plants exuded a higher quantity of protons, organic acids (mainly oxalic and succinic) and phenolic compounds (as gallic acid), as they can help displacing P from the soil matrix thanks to their interaction with metal ions, to which P is bound.

Also strigolactones, plant hormones acting as signalling compounds that stimulate the beneficial symbiosis with AM fungi, were present in the root exudates of P-stressed plants. All these aspects highlight how root exudates can facilitate soil-P capture, helping tomatoes preparing their own meals in case of P shortage.

Il fosforo (P) è uno dei nutrienti inorganici più importanti per le piante, nonostante la sua limitata disponibilità sia un frequente ostacolo alla produttività in ambienti naturali e agricoli.

Soltanto una piccola porzione del P presente nel suolo è disponibile per le piante, mentre la maggior parte non è accessibile perché fortemente legata alle componenti del suolo.

Gli essudati radicali, rilasciati nel suolo dalle radici, sono una potete arma tramite cui le piante possono aumentare l’assorbimento di nutrienti. Sono composti da zuccheri, acidi organici, ioni e altre sostanze la cui concentrazione viene modulata in risposta alle condizioni nutritive del suolo.

Per capire le variazioni nella composizione degli essudati in risposta alla carenza di P, abbiamo raccolto e caratterizzato gli essudati di pomodoro dopo due settimane di crescita con o senza P. I risultati hanno mostrato che le piante in carenza di P essudano più protoni, acidi organici (acido ossalico e succinico) e composti fenolici (come l’acido gallico), in quanto queste sostanze possono aumentare il rilascio di P dalla matrice del suolo grazie alla loro interazione con gli ioni metallici a cui è legato il P. Gli essudati contengono anche strigolattoni, ormoni che agiscono come molecole segnale in grado di attivare la simbiosi con i funghi micorrizici. Tutti questi aspetti evidenziano come gli essudati radicali possano aiutare i pomodori ad arricchire di P il loro pasto in caso di scarsezza di questo nutriente.

Consumers are increasingly aware of climate change, but their interest for environmental related issues does not always lead to green consumption. When it comes to sustainable food products, it is important to determine whether there exists a behavioural gap, that

is, an inconsistency between consumer attitudes and behaviours. This analysis can be carried out with a consumer survey, developed according to these steps: organization of focus groups with

consumers; development and pilot test of the survey; sample definition (size and composition); survey circulation.

Our survey on the existence of a behavioural gap for a sustainable tomato relies on the attributes suggested by consumers during

two focus groups conducted in Milan and by international experts in the field.

The questionnaire, translated into several European languages, includes questions on tomato consumption, the knowledge of

climate related issues, positive and negative attitude toward TomRes tomato, willingness to pay for a “TomRes tomato”, and socioeconomic characteristics.

We collected approximately 1700 answers (900 in Italy and 800 across Europe). The results confirm the existence of a behavioural gap: More than 90 of 100 respondents show a positive attitude towards TomRes tomato and are willing to taste it, but when it comes to changing their behaviour, consumers showed a higher aversion. In all countries considered, only less than half of them is willing to pay up to 20% more for sustainable tomatoes.

Nonostante una maggiore consapevolezza delle problematiche ambientali, i consumatori non sono sempre disposti ad effettuare delle scelte di acquisto sostenibili da un punto di vista ambientale. Lo studio del comportamento dei consumatori verso prodotti alimentari sostenibili non può prescindere dall’analisi di un loro divario comportamentale, che sussiste quando l’attitudine verso l’ambiente non si trasforma in un consumo sostenibile. Per analizzare questo divario bisogna sviluppare una indagine sul comportamento del consumatore seguendo queste fasi: organizzazione di focus group; sviluppo e test pilota dell’indagine; definizione del campione (dimensioni e composizione); diffusione dell’indagine.

L’indagine sviluppata per valutare l’esistenza di un gap comportamentale verso un pomodoro sostenibile si è basata sugli attributi emersi durante due focus group a Milano e da esperti internazionali del settore. Il questionario, tradotto in diverse lingue europee, comprende domande sul consumo di pomodoro, sulla conoscenza delle problematiche climatiche, sull’atteggiamento positivo e negativo nei confronti del “pomodoro TomRes”, sulla disponibilità a pagare e sulle caratteristiche socio-economiche. Complessivamente sono state raccolte circa 1700 risposte (900 in Italia e 800 nel resto d’Europa).

I risultati confermano l’esistenza di un gap comportamentale: Più di 90 su 100 intervistati mostrano un atteggiamento positivo nei confronti del pomodoro TomRes e sono disposti ad assaggiarlo, ma quando si tratta di cambiare il loro comportamento, i consumatori hanno mostrato una maggiore avversione. In tutti i paesi considerati, meno della metà di loro è disposta a pagare fino al 20% in più per pomodori sostenibili.

Agronomy is actively upgrading the classical research approach of the slow but reliable acquisition of new knowledge (problem, hypothesis, method, data). The intensive digitalisation of agronomy leads to a systematic collection of large amounts of data, which is, unfortunately, not used efficiently. In order to exploit the potential of these data, data mining–part of artificial intelligence–is increasingly used. Data mining uses different algorithms to find patterns and discover new knowledge from large amounts of data. Experts critically compare the patterns with existing knowledge. If a pattern provides a new explanation for

the problem under investigation, we have gained new knowledge with the help of artificial intelligence. In the TomRes project, we applied data mining on data from the digitized monitoring of tomato production in greenhouses and fields. We discovered new patterns that allow a very reliable interpretation and prediction of the responses of tomato varieties to different stress combinations caused by reduced water and nutrient supply.

The obtained knowledge from data is combined with existing agronomic knowledge into decision support systems that help manage environmental stress in tomato production.

The digitalisation of agronomy and the use of advanced artificial intelligence methods have enormous potential to facilitate progress in producing sufficient quantities of healthy food in a sustainable and environmentally friendly way.

Agronomija uspešno nadgrajujejo klasičen raziskovalni pristop počasnega, vendar zanesljivega pridobivanja novega znanja (problem, hipoteza, metoda, podatki). Intenzivna digitalizacija agronomije vodi v sistematično zbiranje velikih količin podatkov. Izkoristek zbranih količin podatkov je žal še vedno zelo nizek. Da bi povečali izkoristek razpoložljivega podatkovnega potenciala, v agronomijo uvajamo podatkovno rudarjenje, ki sodi v širši okvir umetne inteligence. Pri podatkovnem rudarjenju uporabljamo različne algoritme za iskanje vzorcev povezav v velikih količinah podatkov. Domenski (agronomski) strokovnjaki vzorce kritično primerjajo z že obstoječim znanjem. Ko v podatkih odkrijemo vzorec, ki poda novo pojasnitev preučevanega problema, govorimo o novem znanju, ki smo ga iz podatkov pridobili s pomočjo umetne inteligence.

V projektu TomRes uporabljamo metode podatkovnega rudarjenja na podatkih digitaliziranega spremljanja pridelave paradižnika v steklenjakih in na poljih. Odkrili smo številne nove vzorce povezav, ki omogočajo razlago in zanesljivo napovedovanje odzivov različnih sort paradižnika na različne kombinacije stresa povzročenega z zmanjšano oskrbo rastlin z vodo in hranili. Znanje pridobljeno iz podatkov povezujemo z obstoječim agronomskim znanjem v sisteme za podporo odločanja v pridelavi paradižnika. Digitalizacija agronomije in uporaba sodobnih metod umetne inteligence omogočata velik napredek v razvoju trajnostne in okolju prijazne pridelave hrane.

Agronomy is obliged to meet the objectives of several sustainable development goals and must provide a wide range of ecosystem services. This requires quick and correct decisions. Thus, decision-making in agronomy has become an extremely complex process that can be improved using objective scientific approaches.

Due to the intensive digitalisation of agronomy, both data and existing knowledge increase rapidly. Decision analysis has made significant progress in solving complex problems with data and knowledge-based decision models developed by various methods of artificial intelligence (AI). Within the TomRes project, we are developing a decision support system (DSS) that will help farmers select management measures for the production of tomatoes exposed to environmental stress. It is based on decision analysis that is supported by AI. DSS first assesses the efficiency of resource use of different production

systems (different tomato varieties, growing conditions) exposed to nutrient and water stress. It also provides information on the environmental impact and socio-economic performance of the Assessed production systems. In the second step, the DSS provides

modifications of the production systems (fields, glasshouses) to optimise the tomato production under different stress conditions.

The DSS can be adapted for use under different climatic and field conditions, as well as under different cultivation conditions in glasshouses.

Agronomija mora izpolnjevati številne cilje trajnostnega razvoja in zagotavljati široko paleto ekosistemskih storitev. Te zahteve postavljajo agronomijo v položaj, ko se morajo sprejeti hitre in pravilne odločitve. Odločanje je v agronomiji zato postalo izjemno kompleksen proces, ki ga je mogoče obvladovati le z objektivnim znanstvenim pristopom.

Zaradi intenzivne digitalizacije agronomije se kopičenje podatkov in zbirk obstoječega znanja hitro povečuje. Uporaba različnih metod umetne inteligence je pripomogla k razvoju analize odločanja, saj omogoča izgradnjo odločitvenih modelov iz podatkov in obstoječega znanja.

V projektu TomRes razvijamo sistem za podporo odločanja o izbiri ukrepov, ki bi zagotavljali pridelavo paradižnika izpostavljenega okoljskemu stresu. Za izgradnjo odločitvenih modelov uporabljamo najnovejše pristope umetne inteligence. Naš sistem najprej ovrednoti učinkovitost rabe virov različnih proizvodnih sistemov (sorte paradižnika, rastne razmere), ki so izpostavljeni stresu zaradi pomanjkanja hranili in vode.

Zagotavlja tudi informacije o vplivih pridelave na okolje in o socialno-ekonomski uspešnosti pridelave. V drugem koraku sistem predlaga spremembe upravljanja proizvodnih sistemov (polja, steklenjaki), ki bi zagotovile optimalno pridelavo paradižnika v različnih stresnih pogojih. Sistem za podporo odločanja je mogoče prilagoditi za uporabo v različnih pridelovalnih pogojih na poljih ali v steklenjakih.

Urban development and climate change exacerbate the competition for water and critical resources. Therefore it is important to improve both Water Use Efficiency (WUE) and Nutrient/Nitrate Use Efficiency (NUE) of commercial vegetables in order to reduce the environmental impacts of agriculture.

When different tomato genotypes were grown under four nutrient and water regiments, genotypes and traits that are responsible for increased WUE and NUE could be identified.

With the help of quantitative RT-PCR technology, that allows a targeted analysis of genetic information, stress tolerant genotypes could be identified. Within the TOMRES project, one of the strategies is to find tomato varieties that are resistant toward these stress conditions by determining effects of water and nutrient deficiencies on

the concentrations of secondary plant metabolites. One example of tested gene was LEA (Late Embryogenesis Abundant), a drought stress marker that accumulates in response to cellular dehydration (desiccation) in plants and protects other proteins from aggregation.

Testing the expression of this gene in our tomato genotypes showed that two of them have different sensitivity and gene expression profiles.

As expected, the genotype that performed well under low water condition had higher LEA expression value compared to the drought sensitive genotype. This indicates that under drought condition, high LEA expression values can be used as a measure of the response to

water deficit conditions and thus help to identify suitable tomato breeding lines.

Lo sviluppo urbano e I cambiamenti climatici esasperano la competizione per l’acqua e le risorse. Pertanto è importante migliorare sia l’efficienza dell’uso dell’acqua (WUE) che l’efficienza dell’uso di nutrienti / nitrati (NUE) delle colture ortive al fine di ridurre l’impatto dell’agricoltura sull’ambiente. Attraverso l’analisi di genotipi di pomodoro coltivati in quattro diverse condizioni di apporto idrico e fertilizzanti azotati, è stato possibile identificare varietà e tratti responsabili dell’aumento di WUE e NUE. Con l’ausilio della tecnologia RT-PCR quantitativa, che consente un’analisi mirata delle informazioni genetiche, è stato possibile identificare genotipi tolleranti allo stress.

Un esempio di gene testato è stato LEA (Late Embryogenesis Abundant), un marcatore di stress che si accumula in risposta alla siccità e protegge le proteine dall’aggregazione. La verifica dell’espressione di questo gene nei nostri genotipi di pomodoro ha mostrato che due di loro hanno diversi profili di sensibilità e di espressione genica. Come atteso, il genotipo che si è comportato meglio in condizioni di ridotta irrigazione aveva un valore di espressione di LEA più elevato rispetto al genotipo sensibile alla siccità.

Ciò indica che in condizioni di siccità, alti valori di espressione di LEA potrebbero essere utilizzati come misura della risposta a condizioni di deficit idrico e quindi aiutare nella identificazione di linee di pomodoro utili in programmi di miglioramento genetico.

TOMRES-WP4 applied a “systematic approach” to achieve an unbiased overview of the literature-based evidence. For this, a strictly controlled methodology or “Systematic Protocol”, was applied to ensure objectivity at all stages of data gathering and analysis.

Identifying and applying a Systematic Protocol is a major undertaking, demanding great control and consistency in literature gathering, sifting, and data extraction. Consequently, regular “consistency checks” are necessary to ensure very high levels of agreement among

those sifting the literature and extracting data - especially when a team of scientists must work together to complete these stages. TOMRES-WP4 applied a Systematic Mapping Protocol, to catalogue

the variety of approaches reported in the literature to address the specific research question - What evidence exists on the effectiveness

of the techniques and management approaches used to improve the

productivity of field grown tomatoes under conditions of water-, nitrogen- and/or phosphorus-deficit? The detailed findings of the mapping exercise have been reported in detail, and a summary of the insights will feature as a short article in a future TOMRES-Newsletter.

TOMRES-WP4 applied a “systematic approach” to achieve an unbiased overview of the literature-based evidence. For this, a strictly controlled methodology or “Systematic Protocol”, was applied to ensure objectivity at all stages of data gathering and analysis.

Identifying and applying a Systematic Protocol is a major undertaking, demanding great control and consistency in literature gathering, sifting, and data extraction. Consequently, regular “consistency checks” are necessary to ensure very high levels of agreement among

those sifting the literature and extracting data - especially when a team of scientists must work together to complete these stages. TOMRES-WP4 applied a Systematic Mapping Protocol, to catalogue

the variety of approaches reported in the literature to address the specific research question - What evidence exists on the effectiveness

of the techniques and management approaches used to improve the

productivity of field grown tomatoes under conditions of water-, nitrogen- and/or phosphorus-deficit? The detailed findings of the mapping exercise have been reported in detail, and a summary of the insights will feature as a short article in a future TOMRES-Newsletter.

Tomatoes are not only appreciated for their delicate taste and beautiful colors, but they are also known for their content in bioactive Compounds that makes them an important everyday part of a healthy diet. These compounds, secondary plant metabolites like polyphenols and carotenoids, are produced by the plant for numerous reasons – the response to stress is one of them. Limited water and nutrient availability as consequences of climate change are stress factors that plant breeders and their plants are increasingly faced with. Within the TOMRES project, one of the strategies is to find tomato varieties that are resistant toward these stress conditions by determining effects of water and nutrient deficiencies on the concentrations of secondary plant metabolites. For their analysis, the compounds are extracted from the fruits and are quantified after chromatographic separation. By the knowledge of the individual concentrations of the distinct Secondary plant metabolites, a deeper insight into the plants physiology is enabled. While some plants produce more

secondary plant metabolites under stress conditions, others respond

with a lowering of production. The reason for this is the different strategy of the plant to use limited supplies.

Good breeding candidates are those TOMRES plants that maintain

high concentrations of bioactive compounds while concomitantly

maintain high yield and crop quality.

Neben dem attraktiven Geschmack und der intensiven Farben werden Tomaten auch für ihren Gehalt an bioaktiven Inhaltsstoffen geschätzt, die als wichtiger und gesunder Bestandteil der täglichen Ernährung gelten. Diese Verbindungen, die sekundären Pflanzeninhaltsstoffe, werden von den Pflanzen u.a. als Abwehr von Pflanzenkrankheiten oder bei Wasser- und Nährstoffmangel gebildet.

Im TOMRES Projekt werden daher die Effekte von Wasser- und Nährstoffstress auf sekundäre Pflanzeninhaltsstoffe bei Tomate bestimmt, um solche Sorten zu identifizieren, die sowohl robust als auch ertragsreich unter diesen Stressfaktoren sind und gleichzeitig qualitativ hochwertige Früchte liefern.

Für die Bestimmung werden Verbindungen, wie Polyphenole und Carotinoide, zunächst aus dem Pflanzenmaterial extrahiert und nach einer chromatographischen Trennung quantifiziert. Durch Kenntnisse der Profile – der individuellen Konzentration von Sekundärmetaboliten - wird ein tieferer Einblick in die Physiologie der Pflanze ermöglicht.

Während manche Sorten mehr Sekundärmetabolite unter den Stressbedingungen produzieren, reagieren andere mit einer verringerten Biosynthese. Der Grund dafür sind unterschiedliche biosynthetische Strategien der Pflanze mit dem geringen Maß an Ressourcen umzugehen. Dabei gilt es in TOMRES insbesondere die Kandidaten für die Pflanzenzucht zu identifizieren, die auch unter Stress ein hohes Maß an den ernährungsphysiologisch wertvollen Verbindungen sowie hohe Erträge und Qualität behalten.

Depuis la révolution verte des années 1960, la sélection traditionnelle a été le principal moteur de l'amélioration du rendement des plantes cultivées. Néanmoins, au cours des dernières décennies, de nouvelles menaces majoritairement dues à l’agriculture intensive, aux pratiques agricoles et aux changements climatiques affectent l'agriculture d'aujourd'hui. Bien qu’efficace, la sélection traditionnelle ne permet pas à elle seule de répondre rapidement à ces nouvelles contraintes.

Au sein de la communauté scientifique internationale, d'énormes progrès ont été réalisés dans la compréhension des mécanismes moléculaires contrôlant les processus biologiques, et chaque jour de nouvelles découvertes sont publiées. Par exemple, les gènes contrôlant la croissance des plantes ainsi que leurs résistances aux maladies et aux contraintes de l’environnement, telle que la sècheresse, ont été identifiés et caractérisés. Malheureusement, l’exploitation de ces découvertes pour développer de nouvelles variétés pouvant être cultivées de manière durable n'a pas été à la hauteur des progrès réalisés.

Le TILLING permet de faire le pont entre la recherche fondamentale et la recherche appliquée. Dans le projet européen TOMRES, nous recherchons des mutations qui peuvent aider les plants de tomates à faire face au déficit hydrique. Pour atteindre cet objectif, les chercheurs qui étudient les mécanismes contrôlant la résilience aux stress environnementaux, collaborent avec la plateforme de recherche translationnelle de l’INRAE, EPITRANS, pour développer les variétés adaptées aux variations climatiques.

Depuis la révolution verte des années 1960, la sélection traditionnelle a été le principal moteur de l’amélioration du rendement des plantes cultivées. Néanmoins, au cours des dernières décennies, de nouvelles menaces majoritairement dues à l’agriculture intensive, aux pratiques agricoles et aux changements climatiques affectent l’agriculture d’aujourd’hui. Bien qu’efficace, la sélection traditionnelle ne permet pas à elle seule de répondre rapidement à ces nouvelles contraintes. Au sein de la communauté scientifique internationale, d’énormes progrès ont été réalisés dans la compréhension des mécanismes moléculaires contrôlant les processus biologiques, et chaque jour de nouvelles découvertes sont publiées. Par exemple, les gènes contrôlant la croissance des plantes ainsi que leurs résistances aux maladies et aux contraintes de l’environnement, telle que la sècheresse, ont été identifiés et caractérisés. Malheureusement, l’exploitation de ces découvertes pour développer de nouvelles variétés pouvant être cultivées de manière durable n’a pas été à la hauteur des progrès réalisés. Le TILLING est un outil d’édition de génome, permettent de faire le pont entre la recherche fondamentale et la recherche appliquée. Dans le projet européen TOMRES, nous recherchons des mutations qui peuvent aider les plants de tomates à faire face au déficit hydrique. Pour atteindre cet objectif, les chercheurs qui étudient les mécanismes contrôlant la résilience aux stress environnementaux, collaborent avec la plateforme de recherche translationnelle de l’INRAE, EPITRANS, pour développer les variétés adaptées aux variations climatiques.

Different soils and varying conditions of the plants need a site-specific supply of nutrients and water, that requires specific equipment, designed and developed with the purpose of managing in an entirely autonomous way a precise and site-specific distribution of these

agronomic factors. Within the Tomres project, Casella had the specific goal to design and optimize fertilizer spreaders and irrigation hose reels, both having specific features in order to be suitable for VRT (Variable Rate Technology) activities over stress-resilient tomato plants selected in the project. Spreadsat (VRT-based fertilizer spreader): suitable for each kind of tractor, it’s a specific implementation for tomatoes in open fields that has an automatic and electronic control of a distribution based on georeferenced maps.

Hydrosat (VRT-based hose reel): the most important feature of Casella’s hose reels is the hydraulic system which controls the rewinding speed of the trolley. A computer regulates the speed through an electric motor which opens and closes the oil flow in a hydraulic unit coupled with a hydraulic motor and a planetary gear box. The computer is fed by an additional VRT Control Unit which modulates the water inputs according to georeferenced irrigation maps.

The hose reel uses an electronic sprinkler which shows peculiar features like the possibility to control 4 different angles along the path of the sprinkler, and an easy control of the tool through an app for mobile devices.

Suoli differenti e condizioni delle piante variabili necessitano di un apporto sito-specifico di acqua e nutrienti, cosa che richiede attrezzature progettate e sviluppate con l’obbiettivo di gestire interamente in maniera autonoma la distribuzione precisa di questi fattori agronomici.

All’interno del progetto Tomres Casella, ha come obiettivo la progettazione ed ottimizzazione di spandiconcime e irrigatori aventi entrambi specifiche caratteristiche al fine di essere utilizzabili

per attività VRT (Variable Rate Technology) su pomodori resistenti allo stress selezionati nel progetto. Spreadsat (spandiconcime VRT): adatto per ogni tipo di trattore, è un’attrezzatura specifica

per pomodori in campo aperto e ha un controllo automatico ed elettronico della distribuzione basato su mappe georeferenziate.

Hydrosat (irrigatore VRT): la caratteristica più importante dell’irrigatore Casella è il sistema idraulico di controllo della velocità di rientro del carrello. Un computer regola la velocità mediante un motore elettrico che apre e chiude il flusso dell’olio nell’unità idraulica accoppiata

a un motore idraulico e a un riduttore epicicloidale. Il computer è governato da un’unità di controllo VRT che modula i comandi in relazione a mappe di irrigazione georeferenziate.

L’irrigatore utilizza un getto elettronico che mostra caratteristiche peculiari quali la possibilità di controllare 4 angoli differenti sul percorso del getto stesso e un semplice utilizzo tramite app per device mobili.

MECS-CROP (Micro Environment and Canopy Sensor, CROP version) is a multi-parameter sensor, specifically developed for the Characterization of the vegetation canopy and the microenvironment of open field crops, that is extensively used within the TOMRES project with the goal to monitor and map stress-resilient tomato plants. MECS-CROP combines a GPS receiver and a series of specific sensors. A post-processing software, called MECS-MAPS, transforms the logged data into a set of different maps, that are co-registered and can therefore be displayed overlaid each other.

The most important provided maps are: • CI (Canopy Index): a quantification of the vegetation covering the field, based on computer

vision algorithms instead of usual NDVI-derived approaches;

• ST (Surface Temperature): a direct measurement of the surface temperature of the crop/soil surveyed;

• RH (Relative Humidity): direct measurement of the relative humidity of the microenvironment.

A second software tool (PF-VRT), is used to translate the parameter-maps (for example, CI maps) into prescription maps that can be used in VRT (Variable Rate Technlogy) activities (for example, variable rate fertilization and irrigation).

As beneficial measure for tomato production, MECS-CROP can also be used to control VRTenabled implements in real time; in that case, the data collected by the sensor attached to the front of the tractor are directly used to adjust the work done by the machinery attached to the

back of the tractor.

MECS-CROP (Micro Environment and Canopy Sensor, versione CROP) è un sensore multiparametrico specificamente sviluppato per la caratterizzazione della vegetazione (canopy) e il micro-ambiente di colture in campo aperto, che viene utilizzato estensivamente nel progetto TOMRES con lo scopo di monitorare e mappare le piante di pomodoro resistenti allo stress. MECS-CROP combina un ricevitore GPS e una serie di sensori specifici. Un software di postprocessing,

MECS-MAPS, converte i dati rilevati in una serie di mappe coregistrate e quindi visualizzate in maniera sovrapponibile tra loro.

Le mappe più importanti sono:

• CI (Canopy Index): una quantificazione della vegetazione ricoprente il campo, basata su algoritmi e logiche di computer vision invece che sul tradizionale approccio fondato sul calcolo dell’NDVI;

• ST (temperatura superficiale): una misura diretta della temperatura superficiale della coltura/del suolo rilevato;

• RH (umidità relativa): una misura diretta dell’umidità relativa dell’aria.

Un secondo software (PF-VRT), è usato per tradurre i parametri mappati (ad esempio CI) in mappe di prescrizione che possono essere impiegate in operazioni VRT (Variable Rate Technology), come irrigazione e concimazione a rateo variabile.

MECS-CROP può anche essere utilizzato per controllare attrezzature VRT in tempo reale; in questo caso i dati rilevati dal sensore sono utilizzati per regolare il lavoro svolto dai macchinari posti posteriormente al trattore.

In the digital age, learning through physical interaction remains one of the most effective ways of learning. The objective of the field trainings is to disseminate knowledge, thereby increasing the impact of research, such as in TOMRES. The approach is based on learning through discovery and education through participation.

TOMRES trainings were divided into two parts. Initially, TOMRES partners and experts present their existing and acquired knowledge. The first part includes speeches and audiovisual material which is then followed by an open discussion. In the second part of the training, a

field visit is organized to present the technologies and methods used and to evaluate the results of the cultivation process. The training can be repeated at different stages of the growing season. Participants, mainly farmers, prefer traditional approaches. A significant part of the training is about the activities that need to take place in the field, something that can be done only or mainly at the field. The training provides input to the farmers, but at the same time farmers provide input for the participatory training. The strengths of this kind of training are: the interaction between the trainer and the participant, the complementarity, the adaptability, the involvement of the participant’s behavior and body language.

Field trainings are considered important to create the enabling environment to introduce innovative technologies in agriculture but also encourage the active participation of farmers.

They serve as a tool for the acceptance of the importance of resource efficiency, a tool for the tomato producers, this acceptance is required for the future of agriculture and the viability of the farming sector.

Στην ψηφιακή εποχή, η μάθηση μέσω της αλληλεπίδρασης των συμμετεχόντων παραμένει ένας από τους πιο αποτελεσματικούς τρόπους μάθησης. Στόχος της εκπαίδευσης στον αγρό είναι η διάδοση της γνώσης στους γεωργούς και γεωπόνους, οδηγώντας στην αύξηση

του αντικτύπου της έρευνας του TOMRES. Η προσέγγιση βασίζεται στην εκμάθηση μέσω της ανακάλυψης και στην εκπαίδευση μέσω της συμμετοχής. Η εκπαίδευση στο πλαίσιο του TOMRES μπορεί να διαιρεθεί σε δύο μέρη. Αρχικά παρουσιάζεται η υπάρχουσα και

αποκτηθείσα γνώση μέσω ομιλιών και οπτικοακουστικού υλικού την οποία ακολουθεί ανοιχτή συζήτηση. Ακολουθεί επίσκεψη στον αγρό για την επίδειξη των τεχνολογιών και μεθόδων που χρησιμοποιούνται και αξιολόγηση των αποτελεσμάτων της καλλιεργητικής διαδικασίας. Η διαδικασία μπορεί να επαναληφθεί στα διάφορα στάδια της καλλιεργητικής περιόδου. Οι εκπαιδευόμενοι, κυρίως αγρότες, προτιμούν τις παραδοσιακές προσεγγίσεις. Καθώς σημαντικό μέρος της κατάρτισης αφορά δραστηριότητες που διεξάγονται στον αγρό,

ο αγρός είναι το κατάλληλο μέρος για την πρακτική εφαρμογή των γνώσεων. Η εκπαίδευση παρέχει γνώση στους αγρότες, αλλά ταυτόχρονα οι αγρότες παρέχουν τις δικές τους γνώσεις.

Δυνατά σημεία της εκπαίδευσης αυτής είναι: η αλληλεπίδραση εκπαιδευτή-συμμετέχοντα , η προσαρμοστικότητα, η συμμετοχή περισσότερων αισθήσεων. Για την εισαγωγή καινοτόμων τεχνολογιών στη γεωργία αλλά και για την ενθάρρυνση της ενεργού συμμετοχής των

αγροτών, ως εργαλείο για την αποδοχή τεχνολογιών αποδοτικής χρήσης των πόρων, εργαλείο για τους παραγωγούς τομάτας, οι εκπαιδεύσεις στον αγρό είναι αναγκαίες, όπως και για το μέλλον της γεωργίας και για την βιωσιμότητα των εκμεταλλεύσεων γενικότερα.

Global food demand will increase in next years, being climate change a clear impediment to reach these future demands. In this sense, grafting has been purposed as an effective technique to increase crop productivity. Several rootstocks are commercialized to improve tolerance of “elite” genotypes to soil-borne diseases, and to increase plant vigor. However, new rootstocks that would contribute to increase plant water-use efficiency (WUE) and nutrient use efficiency (NUE) with no impairment in yield are demanded. Several landraces showed an enhanced WUE and NUE in previous TOMRES experiments. We tested some of those as rootstocks for an “elite” genotype under greenhouse conditions. Plants grafted onto a landrace were compared to plants grafted onto a commercial rootstock and to non-grafted plants. We found no differences among graft combinations under non-stressing conditions, although plants grafted onto a landrace had the highest yield under combined drought and low-nutrient conditions. The highest yield of this graft combination coincides with several leaf morphology adaptions, which conferred an increased WUE and NUE. On the other hand, plants grafted onto the commercial rootstock had a dramatic yield decrease. In conclusion, our results indicate the suitability of landraces to be used as rootstocks in order to increase plant WUE and NUE and maintain acceptable yield under stress conditions.

La demanda global d’aliments s’incrementarà en els pròxims anys, sent el canvi climàtic un gran impediment per arribar a aquests requeriments futurs. En aquest sentit, l’empelt s’ha proposat com una tècnica efectiva per incrementar la productivitat dels cultius. Molts portaempelts són comercialitzats per tal de millorar la tolerància de genotips “elit” front a malalties del sòl, i incrementar-ne el vigor. No obstant, cada vegada més són necessaris nous portaempelts que ajudin a incrementar l’eficiència en l’ús de l’aigua (EUA) i l’eficiència en l’ús del nitrogen (EUN) sense perjudicar la producció. Diverses varietats locals han mostrar un increment tant de l’EUA com l’EUN a experiments previs del projecte TOMRES. En un experiment, vàrem utilitzar diverses varietats locals com a portaempelts d’un genotip “elit” en condicions d’hivernacle. Les plantes empeltades sobre les varietats locals varen ser comparades amb plantes empeltades sobre un peu comercial i plantes no empeltades. No es varen trobar diferències entre combinacions d’empelts quan les plantes no estaven estressades, mentre que baix condicions de sequera i falta de nutrients les plantes empeltades sobre les varietats locals tingueren la major producció. Aquest increment en la producció respecte d’altres combinacions coincideix amb diverses adaptacions en la morfologia de la fulla, atorgant-li una major EUA i EUN. Per l’altre costat, les plantes empeltades sobre el portaempelt comercial tingueren un gran descens en la producció. En conclusió, els nostres resultats indiquen la idoneïtat de les varietats locals per ser usades com a portaempelts per tal d’incrementar l’EUA i l’EUN mantenint una producció acceptable en condicions d’estrès.

In order to identify new genotypes with increased drought tolerance, new easy-to-use and low-cost methods are required. Nowadays there are several techniques to measure water use efficiency (WUE), involving complex physiological processes, expensive equipment, and specialized laboratory staff. The emergence of unmanned aerial vehicles (UAV) has supposed a change in agricultural management. The objective of our experiment was to test different high-throughput techniques which can easily detect tomato genotypes with an enhanced drought tolerance. Using a UAV, we took images using a conventional camera and a hyperspectral camera from many genotypes that previously showed different WUE. The conventional camera was used to measure the plant surface area. On the other hand, hyperspectral camera gave information about the leaf pigmentation, revealing the greenness level of plants. We found clear differences with both conventional and hyperspectral images for those genotypes with enhanced photosynthetic performance, but also higher yield under well-watered and drought and low-nutrient stress conditions. Also, hyperspectral images were able to detect those genotypes with increased fruit quality in terms of sugar content and acidity. Hence, use of conventional cameras and other more sophisticated but easy-to-use imagery are good candidates to be used for farmers to detect those genotypes with increased drought tolerance and low nutrient inputs. On the same line, these techniques can be used to easily identify plants that have a deficient irrigation and are not exhibiting their maximum agronomic performance.

Per tal d’identificar nous genotips amb una major tolerància a la sequera, es necessiten tècniques fàcils i barates d’utilitzar. Avui en dia existeixen diverses maneres per mesurar l’eficiència en l’ús de l’aigua (EUA), que involucren processos fisiològics complexos, material car i personal especialitzat. La popularització dels vehicles aeris no tripulats (VANT) ha suposat un canvi en el monitoratge de l’agricultura. L’objectiu del nostre experiment era provar diferents tècniques d’alt rendiment per detectar genotips de tomàtiga amb una major tolerància a la sequera. Usant VANT, vàrem prendre imatges usant una càmera convencional i una càmera hiperespectral de diversos genotips que prèviament havien mostrat una EUA diferent. La càmera convencional es va utilitzar per mesurar l’àrea de la planta. La càmera hiperespectral va donar informació sobre la pigmentació de la fulla, revelant com de verda era la planta. Es varen trobar diferències clares utilitzant tant la càmera convencional com la hiperespectral per aquells genotips amb una major fotosíntesi i major producció tant en condicions de reg com baix estrès per sequera i falta de nutrients. A més, les imatges hiperespectrals varen detectar aquells genotips amb una major qualitat del fruit (tant en contingut de sucres com acidesa). Per tant, l’ús de càmeres convencionals i d’altres més sofisticades però fàcils d’utilitzar són opcions vàlides per als agricultors per tal de detectar genotips amb major tolerància a la sequera i manca de fertilització. Igualment, aquestes tècniques poden ser utilitzades per detectar plantes que tenen un reg deficient i no tenen el seu rendiment agronòmic màxim.

Drought periods are expected to increase due to climate change. Nutrient optimization in agriculture may help reducing costs and preventing soil and water contamination. Finding genotypes with increased tolerance to drought and low nutrient, together with low impairment in agronomic traits is a prime. Across the Mediterranean, cultivation practices and selection criteria over centuries gave rise to landraces adapted to local growth conditions: it is usual to find landraces with increased drought tolerance in the Mediterranean basin. However, there is still poor knowledge about the tolerance of such genotypes to low-nutrient stress. In our experiment, we tested the agronomic performance of a wide diversity of landraces from many origins along the Mediterranean basin, together with “elite” varieties under control (well-watered, WW) and combined drought and low-nutrient stress conditions (combined stress, CS). The results highlighted the large variability among tomato genotypes under WW, even from regions with similar climatic conditions and selection criteria. CS conditions lead to a general decrease in yield but a notable increment of fruit quality in terms of total soluble solids content (most of them sugars) and acidity. Several landraces had low yield reduction under CS, while “elite” varieties showed the larger yield reductions. Particularly, “elite” cultivars obtained through hybridization of local landraces showed also lower effect of CS regarding yield and other plant agronomic indicators. Hence, the use of landraces can be effective to maintain productivity under CS as compared to other “elite” varieties. Also, we demonstrated that landraces are a valuable genetic source to improve tomato stress tolerance

Els períodes de sequera augmentaran degut al canvi climàtic. La optimització en l’ús de nutrients pot prevenir la contaminació del sòl i l’aigua. Trobar genotips amb una millor tolerància a la sequera i la falta de nutrients però sense disminuir el seu rendiment agronòmic és una tasca urgent. A la conca mediterrània, les pràctiques agronòmiques realitzades durant segles han donat lloc a varietats locals adaptades a condicions particulars i amb una elevada tolerància a la sequera. No obstant, encara hi ha poc coneixement sobre la tolerància d’aquests genotips a la manca de nutrients. Al nostre experiment vàrem avaluar el rendiment agronòmic d’un llarg nombre de varietats locals provinents de diversos llocs de la conca mediterrània, juntament amb altres varietats “elit” baix condicions de control (reg) i d’estrès combinat de sequera i falta de nutrients (EC). Els resultats mostraren una alta variabilitat entre els genotip baix condicions de reg, fins i tot d’aquelles provinents de la mateixa zona. Sota condicions d’EC, es va produir una disminució general de la producció però un increment de la qualitat del fruit pel que fa als sòlids solubles totals (molts d’ells sucres) i acidesa. Moltes varietats locals mostraren una menor baixada de la producció en condicions d’EC, mentre que les “elit” tingueren les majors baixades. Concretament, els genotips “elit” obtinguts a partir d’hibridacions de varietats locals mostraren també un menor efecte de l’EC sobre la producció i altres paràmetres agronòmics. Així doncs, les varietats locals poden ser una font per mantenir la producció baix condicions d’EC si ho comparem amb altres genotips “elit”. A més, es va demostrar que les varietats locals són un recurs genètic valuós que permeten millorar la tolerància a l’estrès.

The root system of plants is of key importance for the acquisition of water and essential nutrients to support growth. The volume of soil explored by the root system is defined by its architecture and therefore modifications to its 3D shape can impact on the plant’s efficiency to acquire water and nutrients. The depth, width, degree of branching, surface area and angle of a root system are regulated by a complex interplay between the genetic and environmental factors. Understanding how plant roots respond to unfavourable environmental conditions may have benefits to crop breeding programmes by selection of adaptive root traits that can confer stress resilience. However, visualising how roots grow in soil is no easy task. Not only is the soil opaque, making it impossible to see how they are growing, but digging them up intact is very difficult and key shape information is often lost (e.g. root angle). Over the last 10 years, the application of X-ray Computed Tomography imaging (originally developed for diagnostic medicine) has enabled the non-destructive measurement of root systems grown in soil under a range of environmental conditions. The technology allows detailed information of the 3D shape of the roots systems and how the develop over time to stress with the goal to discover resilience traits for the plant.

The root system of plants is of key importance for the acquisition of water and essential nutrients to support growth. The volume of soil explored by the root system is defined by its architecture and therefore modifications to its 3D shape can impact on the plant’s efficiency to acquire water and nutrients. The depth, width, degree of branching, surface area and angle of a root system are regulated by a complex interplay between the genetic and environmental factors. Understanding how plant roots respond to unfavourable environmental conditions may have benefits to crop breeding programmes by selection of adaptive root traits that can confer stress resilience. However, visualising how roots grow in soil is no easy task. Not only is the soil opaque, making it impossible to see how they are growing, but digging them up intact is very difficult and key shape information is often lost (e.g. root angle). Over the last 10 years, the application of X-ray Computed Tomography imaging (originally developed for diagnostic medicine) has enabled the non-destructive measurement of root systems grown in soil under a range of environmental conditions. The technology allows detailed information of the 3D shape of the roots systems and how the develop over time to stress with the goal to discover resilience traits for the plant.

Recent climate model projections identified the Mediterranean region as a hot-spot of climate change, resulting in yield loss for crops. Among annual crops, tomato is one of the most impacted and innovative solutions, from genotype selection to growing practices, are required. In the context of a “next-generation” sustainable agriculture, knowledge on beneficial soil microbes is crucial as they affect plant responses to stresses. A great interest is given to arbuscular mycorrhizal (AM) fungi which establish symbiosis with roots and help plants to cope with drought and low nutrient availability improving mineral nutrients and water uptake from the soil.

Within the TOMRES project we are testing a number of tomato accessions, including commercial genotypes and wild-relative species, for their responsiveness to AM symbiosis looking at root colonization and growth effect under water and nutrient stress. Microscopy analysis showed that plant’s ability to be colonized by an AM fungus seems a constant trait in tomato accessions with few exceptions. Molecular analyses highlighted that also in low-colonized tomatoes genes are activated that are responsive to AM symbiosis. However, the amount of mycorrhizal colonization and the effect on plant growth varies significantly across genotypes. These results provide insights on which tomato accessions are most likely to benefit from the AM symbiosis under normal and combined stress conditions.

I modelli climatici indicano l’area mediterranea come un hot-spot dei cambiamenti climatici fenomeno responsabile della diminuzione della produttività delle colture. Tra quelle annuali, il pomodoro è una delle colture più colpite ed è auspicabile che soluzioni innovative, dalla selezione di genotipi a nuove pratiche agronomiche, vengano sviluppate. In un contesto di agricoltura sostenibile, è fondamentale capire come i microrganismi del suolo influenzino le risposte delle piante agli stress. Grande attenzione è rivolta ai funghi micorrizici arbuscolari (AM), che instaurano simbiosi con le radici ed aiutano le piante ad affrontare stress ambientali migliorando l’assorbimento di nutrienti e acqua dal suolo.

Grazie al progetto TOMRES stiamo caratterizzando alcune varietà commerciali di pomodoro e specie selvatiche, analizzando la risposta alla simbiosi AM considerando sia il tasso di colonizzazione radicale che l’effetto crescita sulla pianta in condizioni di stress idrico e di nutrienti. La suscettibilità alla simbiosi AM sembra essere una caratteristica costante in molti dei genotipi analizzati. Analisi molecolari hanno mostrato che anche i pomodori meno colonizzati attivano geni marker della simbiosi AM. Tuttavia, la frequenza di colonizzazione AM e gli effetti sulla crescita delle piante variano molto tra i diversi genotipi. Questi risultati stanno dando indicazioni su quali siano le varietà in grado di beneficiare della simbiosi AM, in condizioni di crescita normale e stress combinato.

Today’s Agriculture is facing serious challenges like excessive population growth, climate change and environmental pollution jeopardizing crop-/food-security and shrinking natural resources. Currently, more and more modern-day farmers quit conventional farming, mainly based on overusing nitrogen-based fertilizers and pesticides looking for sustainable solutions to fulfil evolving demands. The application of biofertilizers is a renewable resource-conserving practice with low agro-input cost, minimizing also the environmental footprint and increasing agricultural productivity.

Biofertilizers are microbial inoculants made up of various rhizobacteria and/or fungi strains possessing individually significant properties (e.g. nitrogen fixation, phosphate solubilization, plant immunity enhancement). The appropriate combination of microbial consortia and the selection of effective and competitive isolates, well adaptive to environmental stressful conditions, remain a crucial issue to achieve high quality bioinoculants. Root-nodule microbiota of legumes is a natural source to find out indigenous microorganisms with desired features for making biofertilizers. Nowadays, studies aim at defining the microbial composition of root nodules in order to discover new rhizobacterial combinations with desired features, well-adapted to different habitats, with the objective to provide new bioinoculants and to contribute to the promotion of biofertilizers as a sustainable solution for agriculture.

Ο γεωργικός τομέας αντιμετωπίζει προβλήματα όπως η υπέρμετρη αύξηση του πληθυσμού, η κλιματική αλλαγή και η περιβαλλοντική ρύπανση, που θέτουν σε κίνδυνο την ασφάλεια των καλλιεργειών-/τροφίμων και συρρικνώνουν τους φυσικούς πόρους. Για την αντιμετώπιση αυτών των προβλημάτων, σύγχρονοι αγρότες εγκαταλείπουν τη συμβατική γεωργία που στηρίζεται στην υπέρμετρη χρήση κυρίως νιτρικών λιπασμάτων και φυτοφαρμάκων, αναζητώντας λύσεις που να ανταπεξέρχονται στις εξελισσόμενες ανάγκες. Μια χαμηλών εισροών ανανεώσιμη πρακτική εξοικονόμησης πόρων, που ελαχιστοποιεί το περιβαλλοντικό αποτύπωμα και αυξάνει την αγροτική παραγωγικότητα, είναι η χρήση βιολιπασμάτων.

Τα βιολιπάσματα είναι μικροβιακά σκευάσματα που περιέχουν μίγμα μικροβιακών στελεχών διαφόρων ριζοβακτηρίων ή/και μυκήτων, που μεμονωμένα εμφανίζουν σημαντικές ιδιότητες (π.χ. αζωτοδέσμευση, διαλυτοποίηση φωσφόρου, βελτίωση γονιμότητας εδάφους, ενίσχυση φυτικού ανοσοποιητικού συστήματος κ.α.). Αν και αυτά τα στελέχη παρέχουν πολύ-λειτουργικά χαρακτηριστικά, ο κατάλληλος συνδυασμός των μικροβιακών κοινοτήτων που θα είναι καλά προσαρμοσμένα σε περιβαλλοντικές καταπονήσεις είναι πολύ σημαντικός για την επίτευξη υψηλής ποιότητας βιολιπάσματος. Μια φυσική πηγή εύρεσης γηγενών μικροοργανισμών με επιθυμητά χαρακτηριστικά για τη σύνθεση βιολιπασμάτων είναι το μικροβίωμα των ριζικών φυματίων από ψυχανθή. Τελευταίες μελέτες στοχεύουν στον προσδιορισμό της μικροβιακής σύστασης των φυματίων, προκειμένου να οδηγήσουν στην ανακάλυψη νέων ριζοβακτηρίων με επιθυμητά γνωρίσματα, προσαρμοσμένα σε διαφορετικά περιβάλλοντα, και με απώτερο σκοπό την παραγωγή νέων σκευασμάτων που θα συμβάλουν στην προώθηση των βιολιπασμάτων ως μια βιώσιμη επιλογή λίπανσης στη γεωργία.

Grafting commercial “elite” cultivars onto selected vigorous rootstocks can lead to plants which are adapted to environmental stresses . In vegetable production, grafting is already used for more than 50 years in many parts of the world. It is not associated with the input of agrochemicals to the crops and therefore is considered to be an environment-friendly operation important to integrated and organic crop management systems. Grafting is a very effective technique as it controls soilborne diseases and may confer tolerance to abiotic stress conditions such as salinity, heavy metal, nutrient stress, thermal stress, water stress, organic pollutants and soil alkalinity.

In tomato crops, grafting is widely used but up to now, the major selection driver for rootstocks has been resistance to soilborne pathogens, while tolerance to abiotic stress and resource use efficiency have rarely been addressed. Many rootstocks were used in the past as highly efficient and were spread to farmers quickly, until new more resistance species replaced them. Breeding of appropriate rootstocks is still a matter of trial and error for every stress factor and depends strongly on the overall conditions and problems a crop is facing. Until now, the general knowledge about the physiology behind a successful rootstock is limited, but the use of specific genetic and physiological parameters (genetic and bio-markers) to select plants in the breeding process is unprecedented for future rootstock breeding.

Ο εμβολιασμός εκλεκτών εμπορικών ποικιλιών πάνω σε επιλεγμένα εύρωστα υποκείμενα αποτελεί μια κατάλληλη μέθοδο για την προσαρμογή και αντοχή των φυτών στις περιβαλλοντικές καταπονήσεις. Στην παραγωγή κηπευτικών, ο εμβολιασμός χρησιμοποιείται ήδη περισσότερα από 50 χρόνια σε πολλά μέρη του πλανήτη, μιας και δεν είναι συνυφασμένος με την εισροή χημικών στις καλλιέργειες, συνεπώς θεωρείται ως ένας φιλικός προς το περιβάλλον χειρισμός για την ουσιαστική και βιώσιμη ολοκληρωμένη παραγωγή. Η τεχνική του εμβολιασμού είναι πολύ αποτελεσματική, αφού ελέγχει τις εδαφογενείς ασθένειες και μπορεί να προσφέρει ανοχή σε αβιοτικές καταπονήσεις όπως η αλατότητα, τα βαρέα μέταλλα, η τροφοπενία θρεπτικών στοιχείων, η θερμική καταπόνηση, η έλλειψη νερού, οι αέριοι ρύποι και η αλκαλικότητα του εδάφους.

Στις καλλιέργειες της τομάτας, ο εμβολιασμός χρησιμοποιείται ευρέως, όμως έως τώρα η επιλογή του υποκειμένου πραγματοποιούνταν με βάση την αντοχή του στις εδαφογενείς ασθένειες, ενώ η ανοχή στις αβιοτικές καταπονήσεις σπάνια λαμβάνονταν υπόψιν. Πολλά υποκείμενα χρησιμοποιήθηκαν στο παρελθόν ως ιδιαίτερα αποτελεσματικά γι’ αυτό και διαδόθηκαν ταχύτατα στους αγρότες, ώσπου αντικατασταθήκαν από νέα πιο ανθεκτικά υποκείμενα. Η επιλογή των κατάλληλων υποκειμένων είναι ακόμη ένα θέμα δοκιμής και απόρριψης για κάθε περιβαλλοντικό παράγοντα και εξαρτάται σημαντικά από τις γενικότερες συνθήκες και προβλήματα που έχει ένας αγρός. Για την ώρα, υπάρχει ελλιπής γνώση γύρω από την φυσιολογία-συμπεριφορά των επιτυχημένων υποκειμένων, όμως τελευταία, η χρήση γενετικών και φυσιολογικών παραμέτρων (γενετικοί δείκτες και βιοδείκτες) για την επιλογή των φυτών θα συντελέσει χωρίς προηγούμενο στην επιλογή των υποκειμένων του μέλλοντος.

Insufficient or discontinuous water availability is jeopardizing the high yields expected from tomato production in Mediterranean climates. Understanding how tomato plants cope with drought at the molecular level may lead to new ways to overcome such productivity constraints.

Plant hormones are small molecules that the producing organism uses to harmonize growth needs and resource availability, and several among them are important for maintaining good performances under stress. For example, we are exploring the possibility of using the recently discovered strigolactones (SL) as SL-enriched biostimulants, and of selecting tomato lines exhibiting a naturally boosted SL production, to potentiate the physiological response of tomato plants under drought. Our experimental trials in the greenhouse demonstrated that indeed, tomato plants that cannot produce SL perform very poorly under drought and wilt rapidly; conversely, treatments with SL-enriched biostimulants, as well as with synthetic SL, can improve the plant’s performance by making it lose less water. This happens because SL make stomata close faster under drought; stomata are little pores on the leaf surface from which gaseous water is normally lost. On the same line, plants in which drought induces a more intense SL synthesis in the leaves are good candidates for breeding purposes towards tolerance to drought stress.

Una disponibilità insufficiente o discontinua d’acqua mettono a rischio la produttività della coltura del pomodoro in area Mediterranea. Comprendere come la pianta risponde alla siccità può portare a nuovi modi di aggirare queste limitazioni.

Gli ormoni vegetali sono piccole molecole che la pianta usa per armonizzare esigenze di crescita e disponibilità di risorse; alcuni sono necessari per mantenere buone rese sotto stress. Per esempio, stiamo esplorando l’uso di biostimolanti arricchiti in strigolattoni (SL) e linee di pomodoro con una produzione di SL naturalmente alta, per potenziare la tolleranza della coltura alla siccità. Le nostre sperimentazioni effettivamente dimostrano che piante di pomodoro che non producono SL appassiscono rapidamente in caso di siccità; per contro, trattamenti con biostimolanti a base di SL, così come con SL di sintesi, possono migliorare le prestazioni della pianta facendole perdere meno acqua. Questo avviene perché gli SL fanno chiudere gli stomi più rapidamente sotto stress; gli stomi sono piccole aperture sulla superficie della foglia dalle quali il vapore acqueo si perde nell’aria. Analogamente, linee di pomodoro nelle cui foglie la siccità induce una più intensa sintesi di SL sono buoni candidati per programmi di miglioramento genetico, diretti all’acquisizione di una maggiore tolleranza alla carenza d’acqua.

Intensive tomato production will be increasingly affected by environmental conditions such as limited water and nutrient availability. This severely affects the production of sufficient amounts of high quality fruits. One starting point to improve this situation is the use of tomato plants which perform well under both water and nutrient shortage without negative effects on yield and fruit quality.

During sensor-based testing of tomato lines, we found that light reflected from leaf surfaces can be used to determine the amount of specific leaf compounds. These leaf compounds absorb parts of the incoming light, thus change the reflected light, which can be measured with spectral sensors. A leaf that contains less water absorbs less light and thus reflects more light of a specific wavelength (1241 nm). By comparing the signal of this specific wavelength with another wavelength not influenced by the water content, we can find differences between plants that are supplied better with water than plants receiving less. Such ratios, so-called vegetation indices, can be calculated also for the absorption spectra of other compounds in leaves. Besides a reduced water content, stressed plants also often show increased index values of sun-blocking pigments, such as anthocyanins. Plants produce these protection pigments when water and other growth factors are limited to prevent damage by excessive light exposure. Thus, plants that show almost no difference in vegetation indices between control and stress conditions can be considered as tolerant against these stresses and appropriate candidates for resistance breeding purposes.

Thus, the reflected light from plants can inform about resilience traits and support breeding selections.

Eine große Herausforderung beim Erhalt von Ertrag und Fruchtqualität in der Tomatenproduktion sind Umwelteinflüsse, z.B. limitierte Wasser- und Nährstoffverfügbarkeit. Der Einsatz von stressresistenten Pflanzen, die sowohl unter reduzierter als auch bei bestmöglicher Ressourcenverfügbarkeit einen qualitativ hochwertigen Ertrag erbringen, ist hierbei eine ressourcenschonende Maßnahme.

Bei der Sensor-basierten Untersuchung von Tomatenlinien fanden wir, dass das von Blattoberflächen reflektierte Licht Aufschluss über die Inhaltsstoffe in Tomatenblättern geben kann. Diese Pflanzenstoffe nehmen einen bestimmten Teil des einfallenden Lichtes auf und verändern somit das reflektierte Licht. Dies kann mit spektralen Sensoren erfasst werden. Enthält ein Blatt wenig Wasser in den Zellen, wird weniger Licht absorbiert bzw. ein größerer Teil des Lichtspektrums einer bestimmten Wellenlänge (1241 nm) reflektiert. Vergleicht man die Menge des reflektierten Lichtes in diesem Wellenlängenbereich mit einem Bereich des Lichtes, der durch den Wassergehalt nicht beeinflusst wird, so zeigt dieser Wert den Unterschied zwischen optimal mit Wasser versorgten Pflanzen und solchen, die an Wassermangel leiden. Solche Werte können für verschiedene Inhaltsstoffe mit deren speziellen Absorptionsbereichen berechnet werden. Pflanzen, die nur einen geringen Unterschied zwischen den Indexwerten von Kontroll- und Stressbedingungen zeigen, gelten als stress-tolerant und sind somit geeignete Kandidaten für die Resistenzzüchtung.

Somit kann die spektrale Erfassung des Reflexionsspektrums von Tomatenblättern Aufschluss über Resistenzeigenschaften geben und die Auswahl geeigneter Linien für die Züchtung unterstützen.

Intensive tomato production will be increasingly affected by environmental conditions such as limited water and nutrient availability hampering farmers to produce high yield as well as quality fruits. One starting point to improve this scenario is the use of tomato plants performing well under both water and nutrient shortage without negative effects on fruit production and quality.

During sensor-based testing of tomato lines, we found that the plant’s temperature is an appropriate parameter to judge the plant performance under this kind of stress: control plants were cooler than stressed plants. This can be explained by a reduced transpiration of stressed plants. Due to the limited water availability, plants closed most of their stomata needed to absorb carbon dioxide, but also to exude water as “sweat” in the process of photosynthesis. Because of a reduced transpiration on the leaf surface, plants could not cool the leaves as much as well-watered plants. By accessing the heat radiation from the leaf surface with a thermographic camera, differences in temperature can be visualized between control and stressed plants within one month of plant growth. Plants showing almost no differences in temperature under control and stress conditions can be considered as appropriate candidates for resistance breeding purposes. Thus, plant temperature can inform about resilience traits and support breeding selections.

Die Tomatenproduktion wird zunehmend durch Umwelteinflüsse beeinträchtigt, wie z.B. limitierte Wasser- und Nährstoffverfügbarkeit, die besonders Produzenten beim Erhalt des Ertrags bzw. der Fruchtqualität vor große Herausforderungen stellt. Eine umweltschonende entgegenwirkende Maßnahme ist der Einsatz von stressresistenten Pflanzen, die sowohl unter reduzierter als auch bestmöglicher Ressourcenverfügbarkeit einen qualitativ hochwertigen Ertrag erbringen.

Bei der Sensor-basierten Untersuchung verschiedener Tomatenlinien fanden wir heraus, dass die Temperatur der Pflanzen ein vielversprechender Wert ist, um die Pflanzenfitness unter Stressbedingungen abzuschätzen: Kontrollpflanzen hatten eine kühlere Blattfläche als Pflanzen unter Stress. Dies ist auf ein reduziertes „Schwitzen“ der Pflanze zurückzuführen. Aufgrund der reduzierten Wasserverfügbarkeit schließen diese Pflanzen einen großen Teil der Schließöffnungen auf der Blattfläche, die u.a. für die Aufnahme von Kohlenstoffdioxid und die Abgabe von Wasser als „Schweiß“ während der Fotosynthese notwendig sind. Dadurch können gestresste Pflanzen ihre Blätter nicht so weit abkühlen wie Pflanzen unter einer optimalen Wasserversorgung. Mit einer Wärmebildkamera können Temperaturunterschiede zwischen Kontroll- und Stresspflanzen innerhalb von einer einmonatigen Pflanzenkultivierung visualisiert werden. Pflanzen, die kaum einen Temperaturunterschied unter Kontroll- und Stressbedingungen zeigen, können als geeignete Kandidaten für die Resistenzzüchtung in Betracht gezogen werden. Somit kann die Pflanzentemperatur Aufschluss über Resistenzeigenschaften geben und die Auswahl geeigneter Linien für die Züchtung unterstützen.

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Contacts

Project coordinator

  • Project coordinator

Project partners

  • Project partner