project - Research and innovation

Farmer Clusters for Realising Agrobiodiversity Management across Ecosystems (FRAMEwork)
Farmer Clusters for Realising Agrobiodiversity Management across Ecosystems

Ongoing | 2020 - 2025 Other, United Kingdom
Ongoing | 2020 - 2025 Other, United Kingdom
Currently showing page content in native language where available

Objectives

The FRAMEwork project represents a novel initiative combining research and innovation to promote a transition to biodiversity sensitive farming (BSF) that will support biodiversity and benefit from the ecosystem services biodiversity provides, while safeguarding against any potential risks. To achieve this, the project seeks to design, test, and implement the FRAMEwork System for BSF, which acknowledges the foundational role of farmers in generating effective biodiversity management strategies by placing Farmer Clusters at its heart. Hence, the project seeks to deliver an ecologically sound, technically robust, and socio-economically desirable solution to BSF in Europe.

Objectives

The FRAMEwork project represents a novel initiative combining research and innovation to promote a transition to biodiversity sensitive farming (BSF) that will support biodiversity and benefit from the ecosystem services biodiversity provides, while safeguarding against any potential risks. To achieve this, the project seeks to design, test, and implement the FRAMEwork System for BSF, which acknowledges the foundational role of farmers in generating effective biodiversity management strategies by placing Farmer Clusters at its heart. Hence, the project seeks to deliver an ecologically sound, technically robust, and socio-economically desirable solution to BSF in Europe.

Activities

FRAMEwork will establish 11 Farmer Clusters across 10 countries. Cluster Facilitator will be appointed to help the cluster to work with other local actors to identify and work towards shared biodiversity goals, and to access specialist knowledge and resources to support biodiversity monitoring and management. Cluster farmers and facilitators will be supported in building a community of practice through the development of an open access online platform, the Citizen Observatory and Information Hub for sharing activities, information, data and resources between farmers, scientists, policy makers, and citizens.

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Location
Main geographical location
Perth & Kinross and Stirling

EUR 7 997 600.00

Total budget

Total contributions including EU funding.

Currently showing page content in native language where available

43 Practice Abstracts

The most effective form of natural pest control is often hidden from view, leading to an underestimation of its true value. Scientific research clearly demonstrates that incorporating grass strips with diverse vegetation into simple landscapes dominated by large fields enhances the abundance of both pollinators and predatory insects. However, this benefit may not be immediately evident through simple observation. Ground-dwelling predatory insects, in particular, are frequently overlooked due to their inconspicuous appearance and often nocturnal lifestyle. To help producers in evaluating the impact of grassy fieldstrips and determine whether their inclusion in the landscape benefits agricultural fields, it is crucial to employ suitable and easy survey methods. We have developed a manual for using pitfall traps tailored for farmers and other nature enthusiasts, complete with images of common ground and rove beetles found in agricultural landscapes. 
With the help of detailed images and descriptions, farmers can independently identify which predatory insects are present in their fields, grassland strips, and other landscape elements. During the FRAMEwork Farmer Cluster Field Day, we demonstrated the correct setup of the traps and installed several traps to collect insects while discussing the ecological impact of herbaceous field edges. Among the first findings was the producers' helper, the granulated ground beetle (Carabus granulatus), whose diet includes both snails and beetles. 
Farmer cluster members and other interested parties can monitor changes in abundance and species composition, as well as compare results over the years. Additionally, they will also learn to identify the insects. 

Looduslik kahjuritõrje on sageli silmale nähtamatu, mistõttu võib see olla alahinnatud. Kuigi teadusuuringud näitavad, et lisades mitmekesise taimestikuga rohuribasid lihtsale maastikule, kus domineerivad suured põllud, toetame nii tolmeldajate kui ka röövtoiduliste lülijalgsete esinemist, kuid me ei pruugi seda lihtsalt vaatluse teel märgata. Eriti raske on märgata maapinnal liikuvaid röövtoidulisi putukaid, sest paljud neist on öise eluviisiga ja mullaga sama värvi. Selleks, et põllumajandustootjad saaksid paremini hinnata looduslike rohuribade mõju lülijalgsete esinemisele ja teha kindlaks, kas nende lisamine suurendab loodusliku kahjuritõrjet, tuleb kasutada lihtsaid ja sobivaid meetodeid. Me koostasime pinnasepüüniste valmistamise/kasutamise juhendi põllumeestele ja teistele loodushuvilistele ning lisasime juhendisse ka pildid kohalike enamlevinud lühitiiblaste ja jooksiklaste liikidest.
Detailsete piltide ja kirjelduste abil on tootjatel võimalik iseseisvalt määrata, millised röövtoidulised putukad esinevad nende põldudel, rohumaaribadel ja teistel maastikuelementidel. Põllumeeste ühenduste põllupäeval tutvustasime klastri tootjatele pinnasepüüniste õiget paigaldamist, seadsime üles mitu püünist ning samal ajal, kui need putukaid kogusid arutasime rohtsete põlluservade ökoloogilist mõju. Esimeste leidude hulgas oli tootjate abimees sõmerjooksik (Carabus granulatus), kelle toidubaasi kuuluvad nii teod kui mardikad. Põllumeeste ühenduse liikmed jt huvilised saavad  arvukuse ja liigilise koosseisu muutusi jälgida ning tulemusi aastate lõikes võrrelda. Lisaks sellele õpivad nad ka putukaid määrama. 

A BioBlitz is a structured event where a group of people meet at a designated area for a set timeframe to record biodiversity. BioBlitzes can range from large global events like the City Nature Challenge (CNC) with thousands of participants worldwide, to local events, e.g., for a local school. 
Several FRAMEwork Farmer Clusters have participated in the CNC or organised their own BioBlitz. Common to these local community events was careful planning, considering:

1)    when and where to have the BioBlitz;
2)    who from the local community to invite, such as schools or the general public; 
3)    identify, invite and secure the participation of biodiversity experts;
4)    design interactive activities to enhance engagement beyond using a biodiversity app such as iNaturalist. Activities could include expert guided walks, self-guided walks, pond dipping, sweep netting, bug hunting, bird walks, etc.;
5)    decide on motivational activities for participants such as stickers, competitions, or nest building for children;
6)    promoting the event and recruit participants, e.g., through social media, local organisations, newsletters, etc.;
7)    plan and organise the logistics, including maps, signs, information on how to register observations, nets, other equipment and anything else for planned activities;
8)    how to evaluate the outcomes and communicate findings back to participants.

When well organised, BioBlitzes a great way to involve the public in biodiversity monitoring and increase participants understanding and appreciation of biodiversity as well as their trust in science. They also provide valuable data and understanding of local concerns when organisers interact and listen to community members participating.
 


En BioBlitz er en struktureret begivenhed, hvor deltagere tager til et udpeget område inden for et bestemt tidsrum for at registrere biodiversitet. BioBlitz spænder fra store globale begivenheder som City Nature Challenge (CNC) med tusindvis af deltagere verden over, til lokale begivenheder, fx for en lokal skole. Flere FRAMEwork Farmer Clusters har deltaget i CNC eller organiseret deres egen BioBlitz. Vellykkede BioBlitz-begivenheder kræver omhyggelig planlægning, herunder:
1)    Hvor og hvornår BioBlitz’en skal foregå.
2)    Hvem fra lokalsamfundet skal inviteres, såsom skoler, eller om der skal være åbent for alle.
3)    Sikre biodiversitetseksperters deltagelse.
4)    Design af interaktive aktiviteter under BioBlitz’en for at øge engagementet ud over at bruge en biodiversitetsapp som fx iNaturalist. Det kunne være ekspert-/selvguidede gåture, brug af net i vandhuller eller på vegetation for at finde dyr, insektjagt, fuglevandringer, osv.
5)    Brug af motiverende aktiviteter for deltagere såsom klistermærker, konkurrencer eller redekasse-bygning for børn.
6)    Promovering af arrangementet og rekruttering af deltagere, fx gennem sociale medier, lokale organisationer og nyhedsbreve.
7)    Organisering af logistik, herunder kort, skilte, information om registrering af observationer, net og andet udstyr til planlagte aktiviteter.
8)    Evaluering af resultater og feedback til deltagerne.
Når Bioblitz‘en er velorganiseret, er det en fantastisk måde at involvere offentligheden i biodiversitetsovervågning og øge deltagernes forståelse og påskønnelse af biodiversitet samt deres tillid til videnskaben. Det giver også værdifulde data og forståelse af lokale bekymringer, når arrangører interagerer og lytter til deltagerne.

The olive fruit fly is one of the worst pests in olive production systems. The fly produces several generations per year, and it is crucial to control the early summer generation when olive drupes start to appear on the trees. Since the ban on use of dimethoate, the most effective way to reduce the population is through mass trapping using pheromone traps. Olive fruit flies are mobile, and mass trapping is therefore more effective if performed at a landscape scale, covering at least 5ha. 
The SSSA team has set up a programme to teach the olive farmers how to set up traps and monitor the growth of the first summer generation of the olive fruit fly. Monitoring lasted from mid-June to mid-July and farmers performed a weekly count of the number of female flies (ovipositor at abdomen) on one or two yellow sticky traps that had a small pheromone flask attached to them. This information was uploaded to the Poderi App and served as the bases for determining the installation time of the pheromone traps. These traps were provided by the Framework project and were set up at the recommended density of 50 traps per ha. In the Monte Pisano area, this corresponds to 1 trap every 5 or 6 trees. By the end of July, another 25 traps were added in case of heavy infestation levels. From July to September the olives were monitored and assessed for the presence of oviposition punctures. 
Each farmer collected one hundred olives from 100 different trees and counted the number of olives with a puncture hole. This information was analysed by the researchers and the App Poderi, and recommendations about the time of harvest were made based on the population development. 

La mosca dell'olivo è uno dei peggiori nemici nei sistemi olicivoli. La mosca produce diverse 
generazioni all'anno ed è fondamentale controllare la generazione di inizio estate, quando le drupe di olivo iniziano ad apparire sugli alberi. Dal divieto di utilizzo del dimetoato, il modo più efficace per ridurre la popolazione è attraverso la cattura di massa con trappole a feromoni. Le mosche sono mobili e la cattura di massa è più efficace se eseguita su ampia scala, coprendo almeno 5 ha. Il team SSSA ha insegnato agli olivicoltori come installare le 
trappole e monitorare l'andamento della prima generazione estiva. Il monitoraggio è durato da metà giugno a metà luglio e gli agricoltori hanno eseguito un conteggio settimanale del numero di mosche femmine (ovipositori all'addome) su una o due trappole gialle che avevano una piccola fiaschetta a feromoni attaccata. Queste informazioni sono state caricate sull'App Poderi e, in base a queste informazioni, è stato deciso il momento di installazione delle trappole a feromoni. Queste trappole sono state fornite dal progetto Framework e sono state installate alla densità consigliata di 50 trappole per ettaro. Nell'area del Monte Pisano ciò corrisponde a 1 trappola ogni 5 o 6 alberi. Entro la fine di luglio sono state aggiunte altre 25 trappole in caso di livelli di infestazione elevati. Da luglio a settembre anche gli ulivi sono stati monitorati e valutati per la presenza di punture di ovideposizione. Ogni agricoltore ha raccolto cento olive da 100 alberi diversi e ha contato il numero di olive con un foro di puntura. Queste informazioni sono state analizzate dai ricercatori e dall'App Poderi e sono state fornite raccomandazioni sul momento della raccolta in base allo sviluppo della popolazione.

The Farmland Ecosystem Assessment Support Tool (FEAST) is a Microsoft Windows-based software designed to assess farmland biodiversity and ecosystem services. It enables users to model the interactions between land use and biodiversity, supporting conservation planning and ecosystem management.
FEAST offers four core functions: 
1.    biodiversity monitoring, allowing users to input or import species data and visualize it spatially; 
2.    performance assessment, evaluating landscape features for habitat suitability and ecosystem services; 
3.    mapping, creating data-driven maps to identify ecological strengths and weaknesses; and,
4.    planning, generating reports and action plans for ecosystem improvement.
Biodiversity data can be directly entered or imported from external sources like GBIF, and habitat suitability is assessed in two steps—evaluating individual landscape features and analysing spatial configuration for species requirements. FEAST currently includes 64 indicator species and 25 ecosystem service indicators, covering aspects like pollination, carbon storage, and water filtration.
The FEAST tool supports the work undertaken in the FRAMEwork’s Farmer Clusters by identifying suitable habitats that are present in both time and space (habitat complementarity) so each farmland species of interest can complete its life cycle. It identifies where additional habitats may be created so that they become ‘bigger, better and joined’, improving habitat networks between farms and throughout the cluster.
To learn more and download the tool, go to https://sitem.herts.ac.uk/aeru/feast/index.htm.

The Farmland Ecosystem Assessment Support Tool (FEAST) is a Microsoft Windows-based software designed to assess farmland biodiversity and ecosystem services. It enables users to model the interactions between land use and biodiversity, supporting conservation planning and ecosystem management.
FEAST offers four core functions: 
1.    biodiversity monitoring, allowing users to input or import species data and visualize it spatially; 
2.    performance assessment, evaluating landscape features for habitat suitability and ecosystem services; 
3.    mapping, creating data-driven maps to identify ecological strengths and weaknesses; and,
4.    planning, generating reports and action plans for ecosystem improvement.
Biodiversity data can be directly entered or imported from external sources like GBIF, and habitat suitability is assessed in two steps—evaluating individual landscape features and analysing spatial configuration for species requirements. FEAST currently includes 64 indicator species and 25 ecosystem service indicators, covering aspects like pollination, carbon storage, and water filtration.
The FEAST tool supports the work undertaken in the FRAMEwork’s Farmer Clusters by identifying suitable habitats that are present in both time and space (habitat complementarity) so each farmland species of interest can complete its life cycle. It identifies where additional habitats may be created so that they become ‘bigger, better and joined’, improving habitat networks between farms and throughout the cluster.
To learn more and download the tool, go to https://sitem.herts.ac.uk/aeru/feast/index.htm.

Within the FRAMEwork project, Farmer Clusters developed and implemented biodiversity and Ecosystem Services observation and monitoring activities with and for farmers using an action-based approach and citizen science methods. Capacity building has been essential as farmer-based monitoring empowers farmers to actively engage through structured training, participatory methods, and accessible digital resources:
•    citizen science tools include iNaturalist, BioBlitz events, and specialized monitoring techniques like earthworm sampling and pest monitoring. 
•    practical field demonstrations and expert-led workshops strengthen engagement, ensuring that farmers gain both theoretical and experiential knowledge. 
•    standardized citizen science protocols simplify data collection, providing clear guidelines on methodology, tools, and data submission to maintain accuracy and accessibility. 
By integrating existing tools and materials, the FRAMEwork project has compiled a comprehensive collection of over 70 protocols, apps, and training resources to support biodiversity monitoring across farming communities. This is available at https://zenodo.org/records/13832188.
This citizen science approach has a number of benefits, such as:
    practical insights: demonstrating clear benefits, such as understanding soil health or pest control, can make data collection more appealing.
    knowledge exchange: fosters a culture of joint knowledge generation and exchange among farmers.
    evidence-based perspectives: supports evidence-based perspectives and opens pathways for difficult conversations and better resolutions.
For more details on the use of this approach in the FRAMEwork project, go to https://zenodo.org/records/13842809.

Within the FRAMEwork project, Farmer Clusters developed and implemented biodiversity and Ecosystem Services observation and monitoring activities with and for farmers using an action-based approach and citizen science methods. Capacity building has been essential as farmer-based monitoring empowers farmers to actively engage through structured training, participatory methods, and accessible digital resources:
•    citizen science tools include iNaturalist, BioBlitz events, and specialized monitoring techniques like earthworm sampling and pest monitoring. 
•    practical field demonstrations and expert-led workshops strengthen engagement, ensuring that farmers gain both theoretical and experiential knowledge. 
•    standardized citizen science protocols simplify data collection, providing clear guidelines on methodology, tools, and data submission to maintain accuracy and accessibility. 
By integrating existing tools and materials, the FRAMEwork project has compiled a comprehensive collection of over 70 protocols, apps, and training resources to support biodiversity monitoring across farming communities. This is available at https://zenodo.org/records/13832188.
This citizen science approach has a number of benefits, such as:
    practical insights: demonstrating clear benefits, such as understanding soil health or pest control, can make data collection more appealing.
    knowledge exchange: fosters a culture of joint knowledge generation and exchange among farmers.
    evidence-based perspectives: supports evidence-based perspectives and opens pathways for difficult conversations and better resolutions.
For more details on the use of this approach in the FRAMEwork project, go to https://zenodo.org/records/13842809.

Effective communication within Farmer Clusters provides internal advantages such as keeping members informed, motivating participation, and encouraging knowledge sharing. Externally, it helps build networks, attract support, and increase visibility.
Key Communication Strategies
1.    Involve Organisations – Partner with relevant initiatives, fostering a diverse network.
2.    Engage Communities – Collaborate with local groups and leverage community events.
3.    Utilise Media – Establish connections with local, national, and international media.
Communication Channels & Audiences
•    Traditional Media: Newspapers, TV, and radio can target specific farming and environmental audiences.
•    Social Media: Use quick, engaging content with visuals to reach a broad audience efficiently.
•    Collaborators' Platforms: Leverage existing networks for wider reach.
Mapping Stakeholders
1.    Identify the cluster’s focus areas.
2.    Categorize stakeholders (local, regional, national).
3.    Use a Venn diagram to map key actors and audiences.
Best Practices
•    Use Scheduling Tools: Plan and streamline social media posts.
•    Adopt the Right Tone: Match communication style to the audience.
•    Test & Adapt: Track engagement and refine strategies.
•    Prepare for Challenges: Have ready responses for diverse viewpoints.
By implementing these strategies, Farmer clusters can maximize engagement and drive meaningful collaboration.
To learn more about Farmer Clusters Engagement and Communications, see our guidelines at https://zenodo.org/records/8142698.

Effective communication within Farmer Clusters provides internal advantages such as keeping members informed, motivating participation, and encouraging knowledge sharing. Externally, it helps build networks, attract support, and increase visibility.
Key Communication Strategies
1.    Involve Organisations – Partner with relevant initiatives, fostering a diverse network.
2.    Engage Communities – Collaborate with local groups and leverage community events.
3.    Utilise Media – Establish connections with local, national, and international media.
Communication Channels & Audiences
•    Traditional Media: Newspapers, TV, and radio can target specific farming and environmental audiences.
•    Social Media: Use quick, engaging content with visuals to reach a broad audience efficiently.
•    Collaborators' Platforms: Leverage existing networks for wider reach.
Mapping Stakeholders
1.    Identify the cluster’s focus areas.
2.    Categorize stakeholders (local, regional, national).
3.    Use a Venn diagram to map key actors and audiences.
Best Practices
•    Use Scheduling Tools: Plan and streamline social media posts.
•    Adopt the Right Tone: Match communication style to the audience.
•    Test & Adapt: Track engagement and refine strategies.
•    Prepare for Challenges: Have ready responses for diverse viewpoints.
By implementing these strategies, Farmer clusters can maximize engagement and drive meaningful collaboration.
To learn more about Farmer Clusters Engagement and Communications, see our guidelines at https://zenodo.org/records/8142698.

Biodiversity encompasses the variety of life in ecosystems, including plants, animals, fungi, and bacteria. It is vital for ecosystem stability but is often threatened by human activities like climate change. Monitoring biodiversity helps track species populations, identify risks, and take action to prevent declines. 
To establish an effective monitoring system, a baseline survey should be conducted when a Farmer Cluster is formed, providing a reference point for future assessments. Progress surveys should follow annually or every three to five years, depending on the species monitored. Surveys should take place multiple times during spring and summer when species activity is highest, while winter surveys can focus on species like harvest mice that are less disturbed in colder months. 
Key species groups for monitoring include butterflies, farmland birds, vegetation, and bumblebees, while priority species such as corn buntings, brown hares, long-eared bats, and pearl-bordered fritillaries require focused observation. Mapping the landscape is crucial for effective monitoring. By dividing the area into survey grids, researchers can ensure a representative sample of biodiversity across different habitats. Transect surveys, where observers walk designated routes recording species, are widely used. Longer transects are suited for bird monitoring, while shorter ones capture insect and plant populations. Essential equipment includes data sheets, binoculars, nets, GPS devices, and apps like iNaturalist for digital data collection. To learn more about monitoring biodiversity, see our guidelines at https://zenodo.org/records/13880020.

Biodiversity encompasses the variety of life in ecosystems, including plants, animals, fungi, and bacteria. It is vital for ecosystem stability but is often threatened by human activities like climate change. Monitoring biodiversity helps track species populations, identify risks, and take action to prevent declines. 
To establish an effective monitoring system, a baseline survey should be conducted when a Farmer Cluster is formed, providing a reference point for future assessments. Progress surveys should follow annually or every three to five years, depending on the species monitored. Surveys should take place multiple times during spring and summer when species activity is highest, while winter surveys can focus on species like harvest mice that are less disturbed in colder months. 
Key species groups for monitoring include butterflies, farmland birds, vegetation, and bumblebees, while priority species such as corn buntings, brown hares, long-eared bats, and pearl-bordered fritillaries require focused observation. Mapping the landscape is crucial for effective monitoring. By dividing the area into survey grids, researchers can ensure a representative sample of biodiversity across different habitats. Transect surveys, where observers walk designated routes recording species, are widely used. Longer transects are suited for bird monitoring, while shorter ones capture insect and plant populations. Essential equipment includes data sheets, binoculars, nets, GPS devices, and apps like iNaturalist for digital data collection. To learn more about monitoring biodiversity, see our guidelines at https://zenodo.org/records/13880020.

A Farmer Cluster is a community of farmers in the same region who collaborate to enhance biodiversity and ecological health on their farms. The facilitator plays a key role in supporting the cluster by organising activities, securing funding, providing environmental guidance, and fostering group cohesion. Understanding the local farming landscape and building trust through one-on-one and group meetings are essential. Farmers should feel a strong sense of ownership over the group’s goals to maintain motivation.
The first meeting should be informal and farmer-led, setting the tone for collaboration. Ongoing meetings should be structured yet concise, ensuring all members can participate. Attendance issues can be addressed through flexible scheduling and personal follow-ups. Keeping farmers engaged requires clear objectives, training sessions, monitoring activities, and occasional friendly competition. Public recognition, such as media coverage or awards, can further strengthen commitment.
To sustain momentum, regular meetings and training sessions should be held, and progress should be tracked through wildlife and environmental monitoring. Engaging with the public through events builds awareness, while identifying and securing funding opportunities ensures long-term success.
To learn more about Farmer Clusters, see our guidelines: Managing A Farmer Cluster (https://zenodo.org/records/8142725) and Monitoring biodiversity (https://zenodo.org/records/13880020).

A Farmer Cluster is a community of farmers in the same region who collaborate to enhance biodiversity and ecological health on their farms. The facilitator plays a key role in supporting the cluster by organising activities, securing funding, providing environmental guidance, and fostering group cohesion. Understanding the local farming landscape and building trust through one-on-one and group meetings are essential. Farmers should feel a strong sense of ownership over the group’s goals to maintain motivation.
The first meeting should be informal and farmer-led, setting the tone for collaboration. Ongoing meetings should be structured yet concise, ensuring all members can participate. Attendance issues can be addressed through flexible scheduling and personal follow-ups. Keeping farmers engaged requires clear objectives, training sessions, monitoring activities, and occasional friendly competition. Public recognition, such as media coverage or awards, can further strengthen commitment.
To sustain momentum, regular meetings and training sessions should be held, and progress should be tracked through wildlife and environmental monitoring. Engaging with the public through events builds awareness, while identifying and securing funding opportunities ensures long-term success.
To learn more about Farmer Clusters, see our guidelines: Managing A Farmer Cluster (https://zenodo.org/records/8142725) and Monitoring biodiversity (https://zenodo.org/records/13880020).

A Farmer Cluster is a community of farmers in the same region who collaborate to enhance biodiversity and ecological health on their farms. By working together with a facilitator, they can achieve greater environmental benefits on a landscape scale than individual efforts allow. These include improved soil, water, and wildlife conservation, as well as increased knowledge-sharing and innovation among farmers.
Key roles in a Farmer Cluster include the Lead Farmer, who coordinates efforts; the Facilitator, who provides expertise and administrative support; and Volunteers, who assist in data collection and fieldwork. Clusters can be formed by farmers or external organizations, requiring local collaboration, facilitator support, and funding to be sustainable. 
Starting a farmer cluster involves identifying a lead farmer who gathers local farmers for an initial meeting to discuss shared goals. The group defines its members, geographic scope, and potential legal agreements. A facilitator is then selected to coordinate activities, seek funding, and provide environmental guidance. The farmers collectively set priorities, assess biodiversity potential, and establish a work plan. Training events, funding sources, and biodiversity monitoring are key components.
To learn more about Farmer Clusters, see our guidelines: Starting a Farmer Cluster (https://zenodo.org/records/8142741) and Managing a Farmer Cluster (https://zenodo.org/records/8142725).

A Farmer Cluster is a community of farmers in the same region who collaborate to enhance biodiversity and ecological health on their farms. By working together with a facilitator, they can achieve greater environmental benefits on a landscape scale than individual efforts allow. These include improved soil, water, and wildlife conservation, as well as increased knowledge-sharing and innovation among farmers.
Key roles in a Farmer Cluster include the Lead Farmer, who coordinates efforts; the Facilitator, who provides expertise and administrative support; and Volunteers, who assist in data collection and fieldwork. Clusters can be formed by farmers or external organizations, requiring local collaboration, facilitator support, and funding to be sustainable. 
Starting a farmer cluster involves identifying a lead farmer who gathers local farmers for an initial meeting to discuss shared goals. The group defines its members, geographic scope, and potential legal agreements. A facilitator is then selected to coordinate activities, seek funding, and provide environmental guidance. The farmers collectively set priorities, assess biodiversity potential, and establish a work plan. Training events, funding sources, and biodiversity monitoring are key components.
To learn more about Farmer Clusters, see our guidelines: Starting a Farmer Cluster (https://zenodo.org/records/8142741) and Managing a Farmer Cluster (https://zenodo.org/records/8142725).

A trademark of the Mostviertel region are the many orchards. There are also many fruit trees on the land of the Mostviertel Farmer Cluster. Therefore, correct tree pruning plays an important role for the farmers in the cluster. 
Fruit trees are pruned to produce high-quality fruit and to keep the tree healthy. The fruit trees can be pruned in winter as well as in summer. The former stimulates growth, and the flower buds are less sensitive because they have not yet swollen. In addition, the tree crown has no leaves, which means it is easy to see. When pruned in summer, the tree's wounds heal very well, growth is slowed down, and flower formation is stimulated for the next year. In addition, perfect sunlight for the fruit can be taken into account. Depending on how much you shorten a branch, it will sprout the next year: 
•    No cut: A single, very strong shoot is created.
•    Long cut: Means that the branch sprouts weakly.
•    Short cut (in the middle of the shoot): Strong sprouts.
When cutting, the middle shoot of the tree crown should be kept longer than the leading shoots. 3 to 4 leading branches that are in a favourable position at a 45° angle to the trunk are selected and cut to the same height; this is called "adjusting the sap balance". Weaker leading branches can be removed. Then the side branches, the so-called fruit branches, of the leading branches are shortened to subordinate them. Finally, the wounds on the tree are treated with tree wax or something similar.

Ein Markenzeichen der Mostviertel Region sind die vielen Streuobstwiesen. Auch auf den Flächen des Mostviertel Farmer Clusters gibt es viele Obstbäume. Daher spielt der richtige Baumschnitt eine bedeutende Rolle für die Landwirte des Clusters.  
Obstbäume werden geschnitten, um Früchte hoher Qualität zu produzieren und den Baum gesund zu halten. Die Obstbäume können in der Winter- sowie in der Sommerzeit geschnitten werden. Bei ersterem wird das Wachstum angeregt und die Blütenknospen sind weniger empfindlich, weil sie noch nicht aufgequollen sind. Zusätzlich trägt die Baumkrone kein Laub, wodurch sie gut einsehbar ist. Beim Schnitt im Sommer ist die Wundheilung des Baumes sehr gut, der Wuchs wird gebremst und dadurch die Blütenbildung für das nächste Jahr, angeregt. Überdies kann auf eine perfekte Besonnung der Früchte Rücksicht genommen werden. Je nachdem wie weit man einen Ast einkürzt treibt er im nächsten Jahr aus: 
•    Kein Anschnitt: Es entsteht eineinzelner, sehr starker Trieb
•    Langer Anschnitt: Bedeutet, dass der Ast schwach austreibt
•    Kurzer Anschnitt (im mittleren Bereich des Triebes): starker Austrieb 
Beim Schneiden sollte man den mittleren Trieb der Baumkrone länger halten, als die Leittriebe. Es werden 3 bis 4 günstig stehende Leitäste im 45 °Winkel zum Stamm ausgesucht und auf eine gleiche Höhe geschnitten, dies wird „Einstellen der Saftwaage“ genannt. Schwächere Leitäste können entfernt werden. Anschließend werden die Seitenäste, die sogenannten Fruchtäste, der Leitäste gekürzt um diese unterzuordnen. Zum Schluss werden die Wunden des Baumes mit Baumwachs oder Ähnlichem versorgt.

A methodology on natural asset profiling was developed to assess dependencies and impacts on natural capital of Farmer Clusters. The protocol was tested at the Cranborne Chase (UK). 
We found that its main dependency is on nitrogen consumption, while the use of energy and pesticides is below the EU average farm use benchmark. Main crop system impacts are on faunal diversity, but some positive impacts come from the adoption of regenerative practice (e.g., low tillage, crop rotation, cover crop) and the high presence (as percent of the utilised agricultural area) of landscape features, with the exception for hedgerows. Two environmental aspects influence biodiversity: permanent grassland and hedgerows. The first is correlated with birds’ biodiversity, the second with pollinators. Moreover, we explored the role of avoided erosion and found it to contribute to 20% of crop production, while pollinators account for 55% of the yield of pollinators dependent crops. 
The Cranborne Chase Farmer Cluster exemplifies the necessity of planning natural features at landscape scale rather than addressing the issue at farm level. We found that the high value of pollination demand does not occur on farms where the pollinators are supplied, but spillover emerges as an element in the production-biodiversity relationship across the landscape. The use of natural capital indicators supports the idea that incentivizing and optimizing a correct landscape planning (possibly based on connectivity of the natural and semi-natural patches) can be considered an optimal solution to achieve a more effective use of agri-environmental subsidies, and that natural features addressing the decline of biodiversity should be implemented by adopting a cooperative approach.

A methodology on natural asset profiling was developed to assess dependencies and impacts on natural capital of Farmer Clusters. The protocol was tested at the Cranborne Chase (UK). 
We found that its main dependency is on nitrogen consumption, while the use of energy and pesticides is below the EU average farm use benchmark. Main crop system impacts are on faunal diversity, but some positive impacts come from the adoption of regenerative practice (e.g., low tillage, crop rotation, cover crop) and the high presence (as percent of the utilised agricultural area) of landscape features, with the exception for hedgerows. Two environmental aspects influence biodiversity: permanent grassland and hedgerows. The first is correlated with birds’ biodiversity, the second with pollinators. Moreover, we explored the role of avoided erosion and found it to contribute to 20% of crop production, while pollinators account for 55% of the yield of pollinators dependent crops. 
The Cranborne Chase Farmer Cluster exemplifies the necessity of planning natural features at landscape scale rather than addressing the issue at farm level. We found that the high value of pollination demand does not occur on farms where the pollinators are supplied, but spillover emerges as an element in the production-biodiversity relationship across the landscape. The use of natural capital indicators supports the idea that incentivizing and optimizing a correct landscape planning (possibly based on connectivity of the natural and semi-natural patches) can be considered an optimal solution to achieve a more effective use of agri-environmental subsidies, and that natural features addressing the decline of biodiversity should be implemented by adopting a cooperative approach.

The Czech Farmer Cluster was interested in reducing soil erosion, increasing agricultural productivity, and producing farm-grown fruit while supporting awareness and research on agroforestry in temperate climates. The lead farm - Ekofarma PROBIO - decided to establish an 8.78 ha agroforestry system in 2024, following advice from experts at the Czech University of Life Science Prague and the farmer cluster. The system integrates 866 newly planted trees, 65 shrubs, and 12 existing trees, with species such as winter oak, sorb tree, wild cherry, norway maple, and common almond selected for their suitability to local conditions. The trees serve as a windbreak, improving microclimatic conditions as well as habitat and food for birds, contributing to bird population support. A major challenge was the fragmented land ownership, with 140 individual plots involved—common in South Moravia. However, in the Czech Republic, agroforestry establishment is now supported by agricultural subsidies, covering both the initial planting and five years of management. The expertise within the farmer cluster contributed to the decision-making and design of the system, ensuring trees were effectively integrated into the farm’s cropping system. 

Czech Farmer Cluster měl zájem o snížení eroze půdy, zvýšení zemědělské produktivity a produkci ovoce pěstovaného na farmě, zároveň chtěl podpořit povědomí a výzkum agrolesnictví v mírném klimatickém pásmu. V roce 2024 se vedoucí farma – Ekofarma PROBIO – rozhodla na základě doporučení odborníků z České zemědělské univerzity v Praze a zemědělského klastru založit agrolesnický systém na ploše 8,78 ha. Systém zahrnuje 866 nově vysazených stromů, 65 keřů a 12 stávajících stromů. Mezi vybrané druhy patří dub zimní, jeřáb oskeruše, třešeň ptačí, javor mléč a mandloň obecná – tedy druhy vhodné pro místní podmínky. Stromy slouží jako větrolamy, zlepšují mikroklimatické podmínky a zároveň poskytují útočiště a potravu pro ptáky, čímž přispívají k podpoře ptačích populací. Hlavní výzvou byla roztříštěná vlastnická struktura půdy – do projektu bylo zapojeno 140 jednotlivých pozemků, což je v jižní Moravě běžné. V České republice je však nyní zakládání agrolesnických systémů podporováno zemědělskými dotacemi, které pokrývají jak počáteční výsadbu, tak pět let následné péče. Odborné znalosti uvnitř zemědělského klastru přispěly k rozhodování a návrhu systému, díky čemuž byly stromy efektivně začleněny do osevního postupu farmy.

Once a biodiversity-sensitive farming system was established, customers need to be attracted and ideally be informed about the production methods and the role of biodiversity. In case of the Born Farmer Cluster, the City Nature Challenge (CNC) was identified as an opportunity for informing and attracting cider customers. The CNC is one of the major global citizen science events that aims primarily at motivating people to find and document wildlife in their region. The headquarters of the local stakeholder Ramborn Cider Co., which is located between the orchards of the Farmer Cluster, served as a base camp for the event, where participants were welcomed and made familiar with the app iNaturalist (https://www.inaturalist.org/). A project named “FRAMEwork – Biodiversity in orchards of the Mullerthal” was established in iNaturalist and the participants of the CNCs were asked to link their observations with this project. During the event, digital images of organisms are taken by the citizen scientists along the orchard trail using smartphones, uploaded to the iNaturalist platform and subsequently identified by experts. This event was organised in the years 2022, 2023 and 2024 during the period of apple bloom and allowed potential customers to learn first-hand of the biodiversity, that can be found in the orchards of the Born cluster.  

Sobald ein biodiversitätssensibles Bewirtschaftssystem etabliert ist, müssen Kunden gewonnen und idealerweise über die Produktionsmethoden informiert werden. Im Falle des Born-Clusters wurde die City Nature Challenge (CNC) als Möglichkeit zur Informierung und Gewinnung von Kunden für den Apfelwein identifiziert. Die CNC ist eine der größten globalen Citizen-Science-Veranstaltungen, die in erster Linie darauf abzielt, Menschen zu motivieren, Tiere und Pflanzen in ihrer Region zu finden und zu dokumentieren. Das Hauptquartier von Ramborn Cider Co., das sich zwischen den Obstwiesen des Advanced Farmer Clusters befindet, diente als Basislager für die Veranstaltung, wo die Teilnehmer begrüßt und mit der App iNaturalist (https://www.inaturalist.org/) vertraut gemacht wurden. In iNaturalist wurde ein Projekt namens „FRAMEwork – Biodiversity in orchards of the Mullerthal“ eingerichtet und die Teilnehmer der CNCs wurden gebeten, ihre Beobachtungen mit diesem Projekt zu verknüpfen. Die Besucher nehmen mit Smartphones entlang des Pfades, der durch die Obstwiesen führt, digitale Bilder von Pflanzen und Tieren auf, die ihnen auf dem Weg begegnen und laden diese auf die iNaturalist-Plattform hoch, wo sie anschließend von Experten identifiziert werden. Diese Veranstaltung fand in den Jahren 2022, 2023 und 2024 während der Apfelblüte statt und ermöglichte potenziellen Kunden, sich aus erster Hand von der Artenvielfalt in den Obstwiesen zu überzeugen.

Traditional olive groves are often in hilly areas and on steep slopes in terraced systems, making it very difficult to plough the soil. Hence, the natural vegetation is managed according to the farmers’ abilities. In some cases, sheep, horses, donkeys or goats graze underneath the trees, while other farmers perform one main cut per year, often later in the growing season, when the vegetation is dry. On the one hand, this is necessary to prevent wildfires, frequent in the Mediterranean region, and on the other hand, it facilitates the olive harvest as nets are placed underneath the trees. However, in these systems, the flower abundances are variable and mostly rich in spring, while scarce from July onwards. Diverse flower resources are a great support for diverse bee and butterfly communities, and it would therefore be important to stimulate late-flowering species. A diversified vegetation management may result in more diversified flower resources throughout the year.  
To test the possibility of diversifying the vegetation management in olive groves while respecting the above-mentioned constraints, farmers of the Val Graziosa Farmer Cluster have been interviewed and a personalised alternative cutting scheme tested. After only one year of implementation, the vegetation composition has not changed significantly yet. The composition is very different in two out of five farms and sampling time (spring, summer autumn) seems to affect the vegetation composition more than farmers’ management.

Negli oliveti tradizionali, spesso in zone collinari e su pendii ripidi nei sistemi terrazzati, non è
possibile arare il terreno. La vegetazione naturale è gestita secondo le possibilità degli agricoltori. In alcuni casi, pecore, cavalli, asini o capre pascolano sotto gli alberi, mentre altri agricoltori eseguono un taglio principale all'anno, spesso più tardi nella stagione di crescita, quando la vegetazione è secca. Da un lato lo fanno per contrastare gli incendi frequenti nell'area mediterranea, dall'altro la raccolta delle olive avviene ponendo delle reti sotto gli alberi e la vegetazione deve essere bassa per non ostacolare la raccolta. Tuttavia in questi sistemi l'abbondanza dei fiori è variabile e per lo più ricca in primavera mentre diminuisce da luglio in poi. La presenza di risorse floreali diversificate nel tempo e nello spazio ha un grande valore per le comunità di api e farfalle. Da qui nasce la domanda se è possibile aumentare le specie a fioritura tardiva attraverso una gestione mirata degli sfalci. Una gestione diversificata della vegetazione può comportare risorse floreali più diversificate durante tutto l’anno.  
Al fine di testare la possibilità di diversificare la gestione della vegetazione negli oliveti rispettando i vincoli sopra menzionati, sono stati intervistati gli agricoltori ed è stato proposto e testato uno schema di taglio alternativo e personalizzato. Dopo solo un anno la composizione della vegetazione non è ancora cambiata in modo significativo. La composizione è molto diversa in due aziende agricole su cinque e il periodo di campionamento (primavera, estate, autunno) influisce sulla composizione della vegetazione più della gestione dell’agricoltore.

In commercial olive groves, the advance of mechanization and the use of herbicides brought an intensification of actions and the removal of any type of vegetation between olive trees. This has led to a loss of fertile soil and erosion, the formation of gullies and ravines, along with an increase in evapotranspiration and reduced soil infiltration and water retention capacity.

The recovery of vegetation cover can be used to mitigate these losses. Firstly, raise awareness and train farmers to implement the covers or any equivalent management practices. Secondly, manage the cover crops especially in terms of the timing and manner of their disposal, to ensure their positive effects on the soil and on wildlife is preserved. 

Natural spontaneous vegetation covers evolve over time and are highly dependent on the climate. Initially they tend to be rather monospecific, with plants with a large taproot and large size, over time, they are dominated by the species best adapted to the terrain. This can be implemented in all olive groves, except in those with a slope and erosion, where implantations must always be carried out perpendicular to the line of maximum slope. Allow the covers to produce seeds for self-seeding. 

Green covers can increase the risk of fire in summer, which can be reduced by partially removing the cover at the beginning of the season. It is also recommended to gradually remove the vegetation cover and in newly established olive groves, to reduce the removal of vegetation in the vicinity of trees. This approach has shown no reduction in olive production. There is no magic recipe that works for all olive groves. Each farmer must determine the best vegetation cover to develop based on the characteristics of their plot and management practices.

En el olivar comercial, el avance de la mecanización y el uso de herbicidas trajo consigo una intensificación de las actuaciones y la eliminación de cualquier tipo de vegetación entre los olivos. Esto ha provocado una pérdida de suelo fértil y erosión, la formación de cárcavas y barrancos, junto con un aumento de la evapotranspiración y la reducción de la capacidad de infiltración y retención de agua del suelo.

Se puede aprovechar la recuperación de la cubierta vegetal para mitigar estas pérdidas. En primer lugar, sensibilizar y capacitar a los agricultores para que implementen las cubiertas o cualquier práctica de manejo equivalente. En segundo lugar, gestionar los cultivos de cobertura, especialmente en lo que respecta a la fecha y la forma de su eliminación, para garantizar que se conserven sus efectos positivos en el suelo y en la fauna silvestre.

Las cubiertas vegetales espontáneas naturales evolucionan con el tiempo y dependen en gran medida del clima. Inicialmente tienden a ser bastante monoespecíficos, con plantas con una gran raíz principal y un gran tamaño, con el tiempo, son dominadas por las especies mejor adaptadas al terreno. Esto se puede implementar en todos los olivares, excepto en aquellos con pendiente y erosión, donde las implantaciones deben realizarse siempre perpendiculares a la línea de máxima pendiente. Permita que las cubiertas produzcan semillas para la autosiembra.  

Las cubiertas vegetales pueden aumentar el riesgo de incendio en verano, que puede reducirse mediante la eliminación parcial de la cubierta al comienzo de la temporada. También se recomienda eliminar gradualmente la cubierta vegetal y en olivares recién establecidos, reducir la eliminación de vegetación a la proximidad de los árboles. Este enfoque no ha mostrado ninguna reducción en la producción de aceitunas.

No existe una receta mágica que funcione para todos los olivares. Cada agricultor debe determinar la mejor cubierta vegetal para desarrollar en función de las características de su parcela y las prácticas de manejo. 

The size of field blocks plays a crucial role in farmland biodiversity. Smaller field blocks and the presence of non-crop elements can significantly enhance biodiversity in intensively managed arable landscapes. FBO, a precision agriculture approach, has been applied at EKOFARMA PROBIO (CZ), which operates on 360 ha of erosion-prone arable land. Field blocks have been optimized, i.e., the size reduced, and shapes adjusted, to balance productive and non-productive areas, with the aim to enhance both agricultural efficiency and biodiversity. The optimization process has effectively reduced erosion risks, showcasing the practical benefits of this approach. The designated non-productive areas also enhance water retention, support ecological networks, while improving landscape permeability for public recreational activities. Further, FBO reduces greenhouse gas emissions due to lower fossil fuel and fertilizer usage, decreases soil compaction, and limits nutrient loss. These benefits, combined with the stabilization of the energy balance and protection of water bodies from eutrophication and sedimentation, underscores FBO’s role in enhancing the ecological stability of agricultural landscapes. To implement FBO, we recommend using an expert to achieve an optimal result. The workload should not be underestimated; this is an expert and knowledge intensive innovative system. One of the example locations is EKOFARMA PROBIO Velké Hostěrádky (Czech Republic). The farm operates in an organic  farming system on approximately 360 hectares of arable land, where the vast majority of land consists of areas at risk of erosion. Field block optimization helps reduce the risk of erosion.

Velikost půdních bloků hraje zásadní roli pro biodiverzitu zemědělské půdy. Menší půdní bloky a přítomnost nezemědělských prvků mohou významně zvýšit biologickou rozmanitost v intenzivně obhospodařované zemědělské krajině. OPB, nástroj precizního zemědělství, byl aplikován na EKOFARMĚ PROBIO (CZ), která hospodaří na 360 ha erozně ohrožené orné půdy. Půdní bloky byly optimalizovány, tj. zmenšena jejich velikost a tvary upraveny tak, aby byly vyváženy produkční a neprodukční plochy, s cílem zvýšit efektivitu zemědělství i biologickou rozmanitost. Proces optimalizace účinně snížil rizika eroze a ukázal praktické výhody tohoto přístupu. Vymezené neprodukční plochy také zvyšují retenci vody, podporují ekologické sítě a zároveň zlepšují prostupnost krajiny pro rekreační aktivity. Dále OPB snižuje emise skleníkových plynů díky nižší spotřebě fosilních paliv a hnojiv, snižuje utužení půdy a omezuje ztráty živin. Tyto výhody spolu se stabilizací energetické bilance a ochranou vodních útvarů před eutrofizací a sedimentací podtrhují úlohu OPB při zvyšování ekologické stability zemědělské krajiny. K realizaci OPB doporučujeme využít odborníka, aby bylo dosaženo optimálního výsledku. Pracovní zátěž by neměla být podceňována, jedná se o odborně a znalostně náročný inovativní systém.

Příklad realizace: Jednou z příkladových lokalit je EKOFARMA PROBIO Velké Hostěrádky (Česká republika). Farma hospodaří v systému ekologického zemědělství na přibližně 360 hektarech orné půdy, kde převážnou většinu půdy tvoří plochy ohrožené erozí. Optimalizace půdních bloků pomáhá snižovat riziko eroze.

Video abstracts (VAs) summarise publications, offering an innovative way to communicate research. Studies suggest that VAs can boost academic engagement metrics like readership and citations. They also enable access to broader audiences, enhancing dissemination impacts. Our workflow helps researchers in varying circumstances create the necessary materials in eight simple steps:

1.    Define Narrative: identify your target audience(s) and key research takeaways. (~30 mins if your research draft is ready).
2.    Choose Format: a longer (~3 mins, horizontal) or shorter (1 min, vertical) format depending on your preferred release destination (~10-15 mins).
3.    Produce Narrative: write a script or conduct an interview about the research. Use vocabulary accessible to your target audiences (~1-2 hrs.).
4.    Discuss Narrative: get feedback from colleagues or target audience reps (~1 hr.).
5.    Record Media (~1-2 hrs.):
a.    Personally record yourself communicating your research using your script or interview material.
b.    Use AI tools to communicate your research, e.g., ‘Text-to-Speech’ tools generate voiceovers while ‘AI Avatar’ tools generate talking heads. AI can also generate versions in additional languages. Search online to find a tool suitable to your needs and budget. 
6.    Add Visuals: source infographics, animations, stock footage, or footage recorded for your research project (~1-2 hrs.).
7.    Edit Media: use software or collaborate with a professional (~3-7 hrs.). Tips: web search ‘Text-Based Video Editing’ for easy DIY editing options. Don’t forget to generate subtitles, as videos are often viewed muted.
8.    Review and Deliver: review, refine, and incorporate feedback. Deliver your VA to a journal and/or post on social platforms (~1-3 hrs.).

See summary in English.

The Czech Farmer Cluster in Velke Hosteradky worked with local and regional partners to develop a 7,8 km long path to promote the contributions of local farming to biodiversity and the local landscape. The path links several farms that are part of the Farmer Cluster and includes six information boards focussing on different environmental themes. Ideally, the walk is started at Ecofarma Probio, where the Bio region of Velke Hosteradky - the first in the Czech Republic - is introduced. Along the circuit walk visitors can enjoy sweeping views while learning about organic farming practices, farmland birds, butterflies and bees. The barcode of the i-Naturalist app, including a ‘project’ that is linked to the path, is provided on the information boards for download. It encourages visitors to take photographs of plants, birds and insects for identification via the app and for collecting biodiversity data for the ‘project’. Since the official opening of the path one month ago, 977 observations were made by 94 observers, and 464 species identified by 255 identifiers. Hence, the path provides ongoing opportunities for data collection by citizen scientists and collaboration, e.g., between citizens, farmers and scientists, including hands-on activities that can support learning. Anyone interested in doing something similar in their local area should check possible funding opportunities first and invite relevant local and regional partners to progress ideas together for a joint project that can serve multiple goals. 

Farmářský klastr BIO REGION ve Velkých Hostěrádkách, ve spolupráci s místními a regionálními partnery, vytvořil 7,8 km dlouhou stezku, která má za cíl ukázat přínos lokálního zemědělství na biodiverzitu a okolní krajinu. Tato stezka propojuje několik farem zapojených do BIO REGIONU a obsahuje šest informačních tabulí věnovaných různým environmentálním tématům. Ideálním místem pro zahájení procházky je Ekofarma Probio, kde se návštěvníci seznámí s Bioregionem Velké Hostěrádky – prvním svého druhu v České republice. Během okružní trasy mohou návštěvníci obdivovat okolní krajinu a zároveň se dozvědět více o ekologickém zemědělství, ptácích zemědělské krajiny, motýlech a včelách. Na informačních tabulích jsou k dispozici QR kódy aplikace iNaturalist a "projektu" spojeného s touto stezkou, který návštěvníky motivuje k fotografování rostlin, ptáků a hmyzu. Tyto fotografie slouží nejen k identifikaci druhů, ale také k sběru dat o biologické rozmanitosti v této oblasti.
Od oficiálního otevření stezky v květnu 2024 zaznamenalo 94 pozorovatelů celkem 977 pozorování, přičemž 255 odborníků identifikovalo 464 druhů. Stezka tak nadále podporuje nepřetržitý sběr dat veřejností a zároveň poskytuje příležitosti ke spolupráci mezi místními obyvateli, zemědělci a vědci, což přispívá ke vzdělávání a podněcuje učení se zábavnou formou. Každý, kdo má zájem realizovat podobný projekt ve svém okolí, by měl nejprve prozkoumat možnosti financování a přizvat k diskusi příslušné místní a regionální partnery, aby společně navrhli a realizovali projekt.

Traditional high stem orchards have the advantage that cattle may graze underneath the trees. This dual use of land that somewhat resembles the concept of agroforestry was implemented in the Born cluster. During summertime, Limousin cows graze  the orchards, thereby making use of the vegetation growing below the trees and preventing an overgrowing of the fruit trees as can be observed in abandoned orchards. Typical plant species that can quickly overgrow fruit trees in the area of the Born cluster are wild hops and blackberry. Furthermore, the all-year cover of the soil reduces the risk of erosion in the mostly sloped orchards and contributes to carbon sequestration. Traditional orchards tend to have a higher aesthetic value compared with intensively managed orchards. The price that the growers have to pay for the dual use of the land is that each young tree needs to be protected from the cows, as they tend to damage the bark, while the bark of old trees is in most cases rather unattractive. For further promoting functional agrobiodiversity, perennial flower strips may be useful. However, they will need protection from the cattle just as the young trees do.

Traditionelle Hochstammplantagen haben den Vorteil, dass Vieh unter den Bäumen grasen kann. Diese doppelte Landnutzung, die ein wenig dem Konzept der Agroforstwirtschaft ähnelt, wurde im  Born Cluster umgesetzt. Im Sommer beweiden Limousin-Kühe die Streuobstwiesen, nutzen so die Vegetation unter den Bäumen und verhindern ein Überwachsen der Obstbäume, wie es in aufgegebenen Obstanlagen zu beobachten ist. Typische Pflanzenarten, die Obstbäume im Bereich des Born Clusters relativ schnell überwuchern können, sind Wildhopfen und Brombeere. Darüber hinaus verringert die ganzjährige Bedeckung des Bodens die Erosionsgefahr auf den zumeist geneigten Flächen des Clusters und trägt zur Kohlenstoffspeicherung bei. Der Preis, den die Landwirte für die doppelte Nutzung des Landes zahlen müssen, besteht darin, dass jeder junge Baum vor den Kühen geschützt werden muss, da diese dazu neigen, die Rinde zu beschädigen, während die Rinde alter Bäume in den meisten Fällen eher unattraktiv für die Kühe ist. Zur weiteren Förderung der funktionellen Agrobiodiversität können mehrjährige Blühstreifen sinnvoll sein. Allerdings benötigen sie ebenso wie die jungen Bäume Schutz vor dem Vieh.

Soil Biological Quality (QBS) index is used to evaluate the entire community of edaphic micro-arthropods considering their adaptability in different environments. The presence or the absence of the different edaphic groups can be used to assess the stability and quality of soil, and in particular its capacity to maintain its functionality in sustaining ecosystem quality. This method does not request a robust and specific taxonomic preparation and can be applied to small and large-scale since it is very affordable. In our study, we investigate the QBS in traditional organic olive groves treated with olive pomace, the solid by-product from olive oil extraction, composed of kernel fragments, peel and residual pulp. Each sampling consists of a soil cube that needs be transferred and processed in a laboratory under controlled conditions within a few hours. The micro-arthropods are grouped depending on their morphological similarities, following the Eco-Morphological Indexes (EMI) table. All the identified biological forms receive an EMI score, proportionate to their adaptation level. Preliminary results on QBS suggest that the olive pomace improves soil biodiversity and abundance of edaphic micro-arthropods that may have crucial roles for the cycle of organic matter. Considering the characteristics of Monte Pisano, defined by low-fertility soil, the re-use of a by-product as the olive pomace may help soil restoration.

L'indice di qualità biologica del suolo è stato proposto per la prima volta da Parisi nel 2001 con l'obiettivo di valutare l'intera comunità di microartropodi edafici considerando la loro adattabilità alle condizioni di un suolo non disturbato. La presenza di questi organismi indicano pertanto la capacità del suolo di mantenere la sua funzionalità nel sostenere i servizi ecosistemici. Questo metodo non richiede una preparazione tassonomica robusta e specifica e può essere applicato sia su piccola che su grande scala, essendo poco costoso. Nel nostro studio abbiamo analizzato la QBS in oliveti biologici tradizionali trattati con e senza sansa di oliva. La sansa è il sottoprodotto solido dell'estrazione dell'olio di oliva, composto da frammenti di nocciolo, buccia e polpa residua. Il campionamento consiste in un cubo di terreno per ogni prelievo, che in poche ore viene trasferito in laboratorioper l'estrazione dei microorganismi. I microartropodi vengono raggruppati in base alle loro somiglianze morfologiche, seguendo la tabella EMI (Eco-Morphological Indexes). Le forme biologiche identificate ricevono un punteggio EMI, proporzionale al loro livello di adattamento. La nostra sperimentazione si concluderà nell'ottobre 2024, quando prenderemo in considerazione la qualità dei frutti delle olive nei due trattamenti (controllo vs sansa). I risultati preliminari sulla QBS ci fanno supporre che la sansa di oliva permetta di migliorare l'abbondanza e la qualità di microartropodi edafici che possono avere ruoli cruciali per il ciclo della sostanza organica. Considerando lo scenario del Monte Pisano, caratterizzato da un suolo a bassa fertilità, il riutilizzo di un sottoprodotto come la sansa può contribuire al ripristino del suolo.

BioBlitzes bring families, neighbours and visitors closer to local nature. A diverse landscape is an advantage, with as many habitats as possible so that a wide variety of creatures can be discovered. An unpaved path between extensively cultivated meadows, which then leads into a forest or a body of water, is ideal for this. Insect nets and magnifying glasses can be used to catch insects and make them easier to see and photograph. A suitable identification app is essential, such as the i-Naturalist and BirdNet. Both of which are free. The group is led on a leisurely walk-through nature and encouraged to take photos of different species (plants, birds, insects) and identify them using the identification app. To make the BioBlitz interesting for children, the walk-through can be designed as a scavenger hunt. In addition, flyers and further information on biodiversity topics can be used to attract people´s attention. Participants will be amazed at how many different species there are in nature. 

Der BioBlitz dient dazu Familien, Nachbarn und Besuchern die heimische Natur näher zu bringen. Vorteilig ist eine vielfältige Landschaft, mit möglichst vielen Habitaten, um verschiedenste Lebewesen zu entdecken. Sehr gut dazu eignet sich ein nicht befestigter Weg zwischen extensiv bewirtschafteten Wiesen, der anschließend in einen Wald oder an ein Gewässer führt. Unterstützend können Insektennetze und Lupengläser verwendet werden, um Insekten zu fixieren, besser ersichtlich und fotografierbar zu machen. Essentiell ist eine geeignete Bestimmungs-App, wie i-Naturalist. Die Gruppe wird bei einem gemütlichen Spaziergang durch die Natur geführt und dazu ermutigt Fotos von unterschiedlichen Arten (Pflanzen, Vögel, Insekten) zu machen und mittels i-Naturalist zu identifizieren. Zusätzlich kann die BirdNet App zur Identifizierung von Vogelstimmen verwendet werden. Beide Apps sind kostenlos. Um den BioBlitz auch für Kinder interessant zu gestalten, kann der Spaziergang durch die Natur, als Schnitzeljagd gestaltet werden. Zusätzlich können Flyer und weiterführende Informationen zu Themen der Biodiversität aufgelegt werden. Die Teilnehmer werden begeistert sein, wie viele unterschiedliche Arten sich in der Natur tummeln.

The best way to introduce secondary school pupils to biodiversity is to take them to a meadow. Access to different meadows in the surrounding area would be ideal to clearly illustrate the differences in natural conditions and management. Before heading out, take the time to train the pupils on the use of the i-Naturalist app and run a short test. They will feel involved and become “researchers” themselves identifying the plant or animal species using the app on their own. This exercise can even be packaged into an exciting scavenger hunt, with tasks like: “Find 5 different flower shapes” or “find the flower of the cocksfoot”. In the meadow, divide the pupils into small groups of 3 to 4 depending on class size. The fastest group wins the scavenger hunt. Then to identify all the plants and animals found, the class is divided into 2 groups that compete against each other. Each group forms a line. Print out profiles of the plants and place them on a table. In the challenge, the name of a plant or animal is called out and the students at the front of the line, run to the table and find the correct profile. The faster one gets a point. The group with the most points wins. The aim of these exercises is to bring the students closer to local nature and its biodiversity in a fun and interactive way.

Um  Schülerinnen und Schülern der Sekundarstufe die Biodiversität näher zu bringen, geht man am besten auf eine Wiese. Vorher muss man natürlich den Besitzer um Erlaubnis fragen. Von Vorteil kann es sein verschiedene Wiesen in der näheren Umgebung zu haben, um die Unterschiede der natürlichen Gegebenheiten und auch der Bewirtschaftung gut veranschaulichen zu können. Um mit der i-Naturalist App gut arbeiten zu können, sollte es vorher eine ausführliche Einschulung in die Nutzung geben und einen kleinen Testlauf mit den Schülern. Anschließend können sie selber zu "Forschenden" werden und die Pflanzen- oder Tierarten mit Hilfe der App bestimmen. Dies kann auch in eine spannende Schnitzeljagd gepackt werden, mit Aufgaben wie: "Finde 5 unterschiedliche Blütenformen", oder "finde die Blüte des Knaulgrases". Die Schüler werden dazu in kleine Gruppen mit 3 bis 4 Personen aufgeteilt, je nach Klassengröße. Die schnellste Gruppe gewinnt die Schnitzeljagd. Zum Abschluss, um alle gefundenen Pflanzen und Tiere zu wiederholen, wird die Klasse in 2 Gruppen geteilt, die gegeneinander antreten. Jede Gruppe bildet eine Reihe. Ausgedruckte Steckbriefe der durchbesprochenen Pflanzen werden auf einen Tisch gelegt. Bei der Challenge wird der Name einer Pflanze oder eines Tieres gerufen und die Schüler die vorne an der Reihe stehen, in einigem Abstand vom Tisch entfernt, laufen zum Tisch und finden den richtigen Steckbrief. Der Schnellere bekommt einen Punkt. Es gewinnt die Gruppe mit den meisten Punkten. Ziel dieser Übungen soll es sein, den Schülern die heimische Natur und deren Artenvielfalt näher zu bringen.

To build scops owl nesting boxes, around 0.25m² of a 3-layer board made of spruce wood and some sheet metal and wood screws are required. In total, you can expect material costs of around €15 per nesting box (as of December 2023). The wooden panels are cut to size according to the construction plan and screwed together. The entrance hole should have a diameter of 7 -7.5 cm. The same nesting box design is suitable for other bird species, only the size of the entry holes must be adjusted depending on the bird species. You will also need a Bunsen burner to burn the outer surfaces of the finished nesting box so that it appears less conspicuous in nature. To extend the durability of the box, the roof is fitted with a bent sheet metal plate which is also screwed into place. It is important to make the sheet metal slightly larger than the wooden roof so that it stands slightly over the wooden edge after installation. This allows the water to drip off and does not infiltrate between the wood and the sheet metal due to capillary action. The finished nest box should be hung in a place protected from strong weather (where the tree is densest) at a height of 4 - 6 m.  In autumn, the old nests are removed, and the nest box is cleaned with a spatula and a brush. Never use chemicals! If other animals, such as hazel mice, are encountered in autumn - do not disturb them, as they also need a place to hibernate. In spring, the nest box can be cleaned. With the nesting boxes, everyone can promote bird diversity in their garden. 

Für den Bau der Zwergohreulen Nistkästen werden etwa 0,25 m² einer 3-Schichtplatte aus Fichtenholz  benötigt. Hinzu kommen noch einige Blech- und Holzschrauben. Isgesamt kann man mit etwas 15 € pro Nistkasten (Stand Dez. 2023) an Materialkosten rechnen. Die Holzplatten werden nach Bauplan zugeschnitten und miteinander verschraubt. Das Einflugloch sollte einen Durchmesser von 7 bis 7,5 cm haben. Für andere Vogelarten eignet sich dieselbe Nistkasten Bauweise, lediglich die Größen der Einfluglöcher müssen je nach Vogelart angepasst werden. Zusätzlich benötigt man einen Bunsenbrenner, mit dem man die Außenflächen des fertigen Nistkasten abflämmt, damit dieser in der Natur weniger auffälig in Erscheinung tritt. Um die Haltbarkeit des Kasten zu verlängern, versieht man das Dach mit einer zurechtgebogenen Blechplatte welche ebenfalls festgeschraubt wird. Wichtig ist dabei das Blech etwas größer als das Holzdach zu dimensionieren, damit es nach der Montage etwas über die Holzkante steht. Somit kann das Wasser abtropfen  und tritt nicht durch Kapillarwirkung zwischen Holz und Blech ein. Der fertige Nistkasten sollte an einem vor starken Wettereinflüssen geschützen Ort (da wo der Baum am dichtesten ist) in 4 - 6 m Höhe aufgehängt werden. Im Herbst werden die alten Nester entfernt und der Nistkasten mit einer Spachtel und einem Pinsel gereinigt. Niemals Chemikalien verwenden! Sollten im Herbst andere Tiere, wie Haselmäuse angetroffen werden - diese nicht stören, da auch sie einen Platz zum Überwintern benötigen. Im Frühling kann der Nistkasten gereinigt werden. Mit den Nistkästen kann jeder die Vogeldiversität in seinem/ ihrem Garten fördern.

Orchards often lack plant diversity, which increases their dependence on phytosanitary intervention to manage regular pests. Weed cover can be selectively maintained to allow spontaneous flora to flourish and play an agro-ecological role. Flower strips with a selection of functional species can also be installed in or around the orchard for improved regulation of certain pests, in particular aphids that are more exposed to predation or parasitism. Recent studies (Howard et al, 2024, Journal of Applied Ecology) have shown a reduction of up to 50% in the presence of rosy apple aphids on apple trees, up to 50 m from the flower strip. As part of the Framework project, several strips have been installed around the edges of orchards, in collaboration with the Institut de l'Abeille (ITSAP), with a mixture of 3 melliferous species. GRAB's aim is to get growers to observe natural regulation in their plots, by allowing them to observe predation cards displayed for several days in the flower strips and in the orchard. Direct observation enables them to see the regulation at work in their plots and may encourage them to reduce their application of insecticides.

Les vergers sont souvent pauvres en diversité végétale, ce qui augmente leur dépendance aux interventions phytosanitaires pour gérer les ravageurs réguliers. L'enherbement peut être entretenu de façon sélective pour laisser une flore spontanée fleurir et remplir un rôle agroécologique. Des bandes fleuries avec une sélection d'espèces fonctionnelles peuvent aussi être installées dans ou autour du verger pour une régulation améliorée de certains ravageurs, notamment des pucerons plus exposés à la prédation ou au parasitisme. Des travaux récents (Howard et al, 2024, Journal of Applied Ecology) montrent une réduction jusqu'à 50% de la présence du puceron cendré sur pommier, et ce jusqu'à 50m de la bande fleurie. Dans le cadre du projet Framework, plusieurs bandes ont été installées en périphérie des vergers, en collaboration avec l'Institut de l'Abeille (ITSAP), avec un mélange de 3 espèces mellifères. L'objectif pour le Grab est d'amener les producteurs à observer la régulation naturelle dans leurs parcelles, en leur faisant observer des cartes de prédation exposées pendant plusieurs jours dans les bandes fleuries et dans le verger. L'observation directe leur permet de réaliser les régulations à l'oeuvre dans leurs parcelles et peut les inciter à réduire l’utilisation d’insecticides pour les encourager.

Bats in Europe are eating many insects and are therefore useful to farmers facing lepidopteran pests in orchards. Increasing their populations by setting up batboxes (around 10 per ha) can help Pipistrella species to establish and feed in orchards. These batboxes have been set up in 2022, and their occupation has been monitored by a professional in first year. From 2023, Grab proposed a simplified protocol to farmers, for observation of each batbox with endoscopic camera. Some farmers started observations during summer, others will do it after pear/apple harvests. A whatsapp group has been created in order to facilitate communication among farmers and partners. Bird nests will also be monitored during winter by farmers. By doing so, partners assume farmers will be more sensibilized to living biodiversity in their own plots, and maybe reduce their spraying programme.

Les chauve-souris sont insectivores en Europe, et peuvent consommer de nombreux insectes. Elles sont donc très utiles en vergers pour limiter les ravageurs lépidoptères qui posent problème aux arboriculteurs. Au sein du cluster français du projet Framework, des gîtes ont été installés début 2022 (environ 10/ha) pour augmenter les populations de pipistrelles. Un premier suivi suivi d'occupation a été réalisé par un professionnel la première année. A partir de 2023, le Grab a proposé un protocole simplifié aux producteurs pour observer eux-mêmes les gîtes à l'aide d'une caméra endoscopique. Les producteurs ont commencé à réaliser ces observations en été, et poursuivront à l'automne après les récoltes de pommes et poires. Des observations des nichoirs à mésanges seront aussi proposées aux producteurs pendant l'hiver, en même temps qu'un nettoyage des nichoirs nécessaire pour la saison suivante. Par l'observation directe, les partenaires estiment que les arboriculteurs seront plus sensibilités à la présence de biodiversité sur leurs vergers, et allègeront peut-être leur programme de traitement en conséquence.

One of a farmer cluster Facilitator’s roles is to coordinate the environmental monitoring within the cluster. This can be either carrying out the monitoring themselves or getting specialists or local volunteers to carry out these surveys. Farmland birds can be used as an indicator species group to help quantify the biodiversity within a cluster and monitor changes over time in response to environmental and habitat changes. They can be easy group to survey in the breeding season (April-June) due to the territorial and vocal nature of most species whilst they are breeding. The main survey methods are point counts or set length transects that are walked an hour after dawn, with a count of each species and any breeding behaviour recorded. The same points or transects should be repeated between years so that the data is comparable. It is preferable for the surveyor to be able to identify all bird species seen and heard, but if they don’t have the knowledge to do so then they should aim to be able to identify at least some of the key farmland bird indicator species. By building up a dataset of farmland bird numbers over a time period, responses of populations to the implementation of new habitat features, changes to farming practices, the installation of nest boxes etc. can be observed. This will provide feedback on the effectiveness of these measures and allow further changes to be targeted to benefitting specific species of interest.

See summary in English.

Set length transects should be selected; the transects should be as linear as possible and in areas with good views of the surrounding landscape. A suggested length is 1km, but whatever length is selected, all transects should be the same length so as to be comparable. Transects should be split into smaller sections to make field recording easier, 100m is a suggested length of each section. Transects should be walked ideally twice each breeding season, once April to mid-May and once mid-May to end of June. Surveys should be started an hour after dawn, multiple surveys can be carried out in one morning but shouldn’t go beyond mid-morning. When walking the transect, any bird seen or heard should be noted, as well as any breeding behaviour such as singing, alarming, territorial behaviour, juveniles, nest building, chick feeding etc. Counts of each species seen should be recorded, and birds seen only flying over should be recorded separately. To make field recording easier, the BTO has devised a list of 2 letter codes for each species which can be used. If possible, each transect should be walked at the same slow steady pace with each section taking roughly the same amount of time. Each year, the same transects should be repeated to ensure the data is comparable between years to provide data on long term trends of populations. Surveys should only be carried out in favourable weather conditions. Avoid surveying in high winds, rain or poor visibility.

See summary in English. 

Plant diversity at the base of the food chain is the baseline for the presence of biodiversity. Rapid changes in vegetation often translate habitat management and land use change, which inevitably shape species diversity in the landscape. In the Framework project we developed a common vegetation survey protocol of agricultural landscapes in Europe to estimate biodiversity value of the farmer clusters across the years. Vegetation transects were co-located with the pollinators and birds monitoring transects to sample all the habitats present within the FC. Several straightforward vegetation parameters were measures in the field while walking along the transects to estimate the nature value of the habitat (presence of woody elements, flower density, diversity of colours, number of flowering species, list of indicators species, cover of legumes, level of fertilisation, ...) along with more usual parameters (Land cover classes, vegetation covers, vegetation height...). The vegetation parameters recorded are simple and easy to learn making the protocol accessible to facilitators and practitioners. The results of the vegetation monitoring will be used to assess the benefit of implementing biodiversity sensitive farming practices. Along with the pollinators and the birds monitoring data collected in the same locations, the vegetation monitoring will complement a comprehensive set of biodiversity indicators to be used at the farmer cluster level.

See the summary in English.


Pollinating insects such as wild bees, hoverflies, beetles, and countless other insects provide a wide range of services and benefits to society: they are a key component of terrestrial ecosystems and their importance for food security is widely acknowledged.To assess the impact of biodiversity-sensitive land management practices in FRAMEwork’s farmer clusters , pollinator monitoring is conducted using two widely used methods: pan-trapping and bumblebee-butterfly counts along transects. This monitoring has the following advantages: 1) it makes use of standardised, quantifiable collection methods, commonly used in several pollinator monitoring schemes in Europe, and in the recently proposed EU Pollinator Monitoring Scheme (EUPoMS), 2) it has a broad taxonomic coverage of pollinators (e.g., butterflies, wild bees, hoverflies, other insects), 3) it is easy to implement both by citizen scientists and experts (e.g. facilitators).By using the proposed standardised methods, farmer clusters will not only be able to assess the benefits of pollinator-sensitive management actions implemented in their specific context and in the long term, but they will also be able to compare the results of their pollinator-friendly management practices to a reference baseline in the larger countryside and beyond, to contribute to wider-scale monitoring programs that make use of similar methods, and to potentially further engage both farmers and citizen scientists.

Los insectos polinizadores, tales como abejas silvestres, sírfidos, escarabajos y muchos otros insectos, proporcionan una amplia gama de servicios y beneficios a la sociedad: son un componente clave de los ecosistemas terrestres y su importancia para la seguridad alimentaria está ampliamente reconocida.Para evaluar el impacto de las prácticas de manejo sensibles a la biodiversidad en los grupos de agricultores de FRAMEwork, el monitoreo de polinizadores se lleva a cabo utilizando dos métodos ampliamente utilizados: captura con trampas de agua (“pan-traps”) y conteos de abejorros y mariposas a lo largo de transectos. Este monitoreo tiene las siguientes ventajas: 1) hace uso de métodos de recolección estandarizados y cuantificables, comúnmente utilizados en varios programas de monitoreo de polinizadores en Europa, y en el recientemente propuesto Programa de Monitoreo de Polinizadores de la UE (EUPoMS), 2) cubre una amplia gama de polinizadores (p. ej., mariposas, abejas silvestres, sírfidos, otros insectos), 3) es fácil de implementar tanto por parte de científicos ciudadanos como de expertos (p. ej., los facilitadores).Al utilizar los métodos estandarizados propuestos, los grupos de agricultores no solo podrán evaluar los beneficios de las acciones de manejo sensibles a los polinizadores implementadas en su contexto y a largo plazo, sino que también podrán comparar los resultados de estas acciones con una base de referencia, contribuir a programas de monitoreo que hagan uso de métodos similares a mayor escala, y potencialmente involucrar tanto a agricultores como a científicos ciudadanos.

Biodiversity is the key to functioning ecosystems and stable field yields. From this point of view, it is important that farmers who spend a large part of their working time outdoors in nature have a good knowledge of the vegetation in their meadows. But it's not just the vegetation that is of great importance, but also all the creatures that live on and in the grassland. The i-Naturalist app offers very good assistance for identifying flora and fauna in grassland. A farmer cluster meeting was organized at one of the Cluser farms to register and use the app. Each of the farmers received the link to install the app. At the beginning there was a small theoretical introduction to i-Naturalist, such as how to use the app and how we can use it for our cluster. The participants were then asked outside to a flower-filled meadow to practice the application of i-Naturalist on the smartphone. It was demonstrated how to take clear photos of plants, insects, etc., upload them to the app and find the correct identification. For example, the same species was photographed by each participant to see if everyone achieved the same identification in the app. In order to collect the monitoring data for the framework project, a separate group “Species diversity in the Mostviertel grassland” was set up. Every farmer in the cluster was invited to the group. 480 observations have now been uploaded and 274 species have been identified. Additional ideas, such as an orchid atlas, are being pursued to encourage the Farmer Cluster to use i-Naturalist even more.

Biodiversität ist der Schlüssel zufunktionierenden Ökosystemen und stabilen Felderträgen. Unter diesem Gesichtspunkt ist es wichtig, dass LandwirtInnen, die einen Großteil ihrer Arbeitszeit draussen mit der Natur verbringen, gut über die Vegetation auf ihren Wiesen Bescheid wissen. Aber nicht nur die Vegetation ist von großer Bedeutung, sondern auch alle Lebewesen, die vom und im Grünland leben. Die i-Naturalist App bietet für die Identifikation von Flora und Fauna im Grünland eine sehr gute Hilfestellung. Für die Anmeldung und Bedienung der App wurde ein Farmer Cluster Meeting auf einem der Cluser Bauernhöfe organisiert. Jeder der Landwirte erhielt den Link für die Installation der App. Zu Beginn gab eine eine kleine theoretische Einführung zu i-Naturalist, wie zum Beispiel, wie man die App bedient und wie wir sie für unser Cluster verwenden können. Anschließend wurden die TeilnehmerInnen nach draußen auf eine Blumenreiche Wiese gebeten um die praktische Anwendung von i-Naturalist am Smartphone zu üben. Es wurde vorgezeigt, wie man scharfe Fotos von Pflanzen, Insekten usw. macht, diese auf die App hochlädt und die richtige Identifikation findet. Beispielsweise wurde dieselbe Art von jedem Teilnehmer fotografiert um zu sehen, ob jeder dieselbe Identifikation in der App erreicht. Um die Monitoring Daten für das Framework Projekt zu sammeln wurde eine eigene Gruppe " Artenvielfalt im Mostviertler Grünland" eingerichtet. Die Landwirte des Clusters wurdes in die Gruppe eingeladen. Mittlerweile wurden 480 Beobachtungen hochgeladen und 274 Arten identifiziert. Es werden noch zusätzliche Ideen, wie etwa ein Orchideen Atlas angestrebt, um das Farmer Cluster noch mehr für i-Naturalist zu gewinnen.

Climate changes and many uses - grassland is exposed to a number of stress factors. Stepped grassland management offers an opportunity to counteract climate change and maintain economic viability. The concept is based on the fact that grassland areas are used at different levels of intensity; a distinction is made between multi-cut meadows with high fertilizer use and meadows with lower management intensity, i.e. fewer cuts. The intensive meadows are often those closest to the farm. The more extensively used meadows are those that are further away from the farm and are subject to natural usage limits, such as waterlogged, shallow or steep areas. The farmers in the Mostviertel Farmer Cluster have also already established graduated grassland management. They mow less often on the steep meadows, which contributes significantly to promoting biodiversity, which can be clearly seen in the colorful flowering plants during vegetation period. The flat areas close to the farm are mown more often and thus contribute to the farm's profitability. Each farm should decide individually on the correct implementation of graduated grassland management, as every farm has different natural conditions. To protect the insects, the farmers in the cluster partly use a double blade mower when mowing instead of a disc or drum mower.

Klimaveränderungen und viele Nutzungen - das Grünland ist einer Reihe von Stressfaktoren ausgesetzt. Die abgestufte Grünlandbewirtschaftung bietet eine Möglichkeit dem Klimawandel entgegenzuwirken und die Wirtschaftlichkeit zu erhalten. Das Konzept beruht darauf, dass Grünlandflächen unterschiedlich intensiv genutzt werden, es werden dabei vielschnittige Wiesen, mit hohem Düngereinsatz und Wiesen mit geringerer Bewirtschaftungsintensität, also weniger Schnitten, differenziert. Oft sind die Intensivwiesen jene, die dem Hof am nächsten sind. Die eher extensiv genutzten Wiesen sind jene die weiter vom Hof entfernt liegen und natürlichen Nutzungsgrenzen unterliegen, wie beispielsweise staunasse, seichtgründige oder steile Flächen. Auch die Landwirte im Mostviertel Farmer Cluster haben den abgestufte Grünlandbewirtschaftung bereits etabliert. Auf den oftmals steilen Wiesen mähen sie seltener, was maßgeblich zur Förderung der Biodiversität beiträgt, was man im Sommer gut an den farbenfrohen blühenden Pflanzen erkennen kann. Die ebenen, hofnahen Flächen werden hingengen öfter gemäht und tragen so zur Wirtschaftlichkeit des Bauernhofes bei. Die richtige Umsetzung der abgestuften Grünlandbewirtschaftung sollte jeder Betrieb für sich individuell entscheiden, da jeder Hof andere natürliche Gegebenheiten hat. Zum Schutz der Insekten verwenden die Landwirte aus dem Cluster beim Mähen ein Doppelmessermähwerk, anstatt eines Scheiben- oder Trommelmähwerkes.

Areas rich in wildflowers can provide valuable habitats for insects and those which feed on them such as birds. In addition, pollinators such as bees, butterflies, moths, hoverflies, and wasps use wildflowers as a food source and many flowering plants rely on them (and animals) to pollinate them, including food crops. Wildflowers around crops can also help reduce the numbers of pests as they can harbour natural enemies such as lacewings which eat aphids. They also provided seed food for farmland birds in autumn and winter. Flower rich margins were created in locations that were sunny, with low soil fertility (so they didn’t dominate fertile areas) next to hedges to provide a wider range of habitats for wildlife. The wildflower margins were 0.25 hectares and 4 metres wide in size, and a seed mix for flower rich margins was sown between March and May with a seed rate of 2 kg per hectare. The mix was an even mix of flower species with different flower shapes, scents sand colours with different flowering times. Margins were cut during mid-August to stop grasses dominating to a height of between 10-20 cm tall. 

The wild edible food walk, talk and quiz had several aims: firstly as a social event to allow farmers to get together and have a realaxing afternoon, secondly to get them to think about local weeds in another way and thirdly, to test their identification of common edible weeds. Whist weeds need to be controlled in fields because they compete with the crop for nutrients, light and space, agricultural plant protection products (PPP) may be used to control weeds along the edges fo walkways, paths and unused areas of the farm. If farmers can be shown that not only do natural (wild) plants (weeds) encourage and sustain biodiversity but that also many are edible and taste good, they may be less inclined to spray them off with PPP. They may be persuaded to leave some small areas that would promote semi-natural habitats, and encourage more flowering native plant species, potentially resulting in an increase in biodiversity, including more natural enemies, along with a more diverse landscape. The session demonstrated that although many plants are considered "weeds" within the landscape, not only are many edible but that they also harbour many associated insects that can be beneficial (pollinators, natural enemies) as well as being edible to humans. The edibility was resulted in a barbeque and salad that consisted of foraged plants and fungi and knowlege acquired during the event was demonstrated by a quiz.

The old stands of traditional pome fruit trees in the Luxembourg farmer cluster accumulate dead wood over time, which limits the ventilation within the canopies and the exposure of the fruit to sunlight. Impeded ventilation in the canopy promotes fungal diseases and heavily shaded fruit ripen poorly. Furthermore, pome fruit trees in the Luxembourg farmer cluster are easily colonized by parasitic mistletoes, which can reduce the life expectancy of the trees. These problems have motivated the search for a suitable funding scheme that can cover a part of the costs of pruning fruit trees and removing the mistletoes. Program 073 (promotion of orchards scattered in meadows) was identified and serves as the basis for the preservation of the orchards. In addition to removing mistletoe and pruning fruit trees, the program allows for replacing dead trees. The latter point is important for the preservation of old fruit cultivars, which are an important element in the differentiation from competing suppliers on the cider market. Scions from old and often rare cutivars are grafted onto vigorous rootstocks that will become new high-stem trees (in some regions also referred to as standard trees) within a few years. 

Die alten Bestände von traditionellen Kernobsthochstämmen im Tal der Sauer akkumulieren im Laufe der Zeit abgetragenes Fruchholz, welches die Durchlüftung der Bäume und die Exposition der Früchte zur Sonne einschränkt. Behinderte Durchlüftung im Kronenbereich fördert Pilzkrankeiten und stark beschattete Früchte reifen schlechter aus. Weiterhin werden Kernobstbäume im Sauertal stark von parasistischen Misteln besiedelt, die die Lebenserwartung der Bäume reduzieren können. Diese Probleme haben die Suche nach einem geeigenten Förderschema motiviert, das einen Teil der Kosten für den Obstbaumschnitt und die Entfernung der Misteln decken kann. Das Programm 073 (Förderung von Streuobstwiesen) wurde identifiziert und dient als Basis für die Erhaltung der Streuobstwiesen. Neben der Entfernung der Misteln und dem Obstbaumschnitt erlaubt das Programm die Neupflanzung abgestorbener Bäume. Der letzte Punkt ist wichtig zur Erhaltung der alten Obstsorten, die eine Abgrenzung von Kokurrenzanbietern auf dem Apfelweinmarkt erlauben. Nachgepflanzt werden alte Sorten, die auf starkwüchsigen Unterlagen veredelt sind und damit zu neuen Hochstämmen heranwachsen. 

The disappearance of indicator species from agricultural landscapes is a clear indicator that the ecological state of the agricultural landscape is unfavorable. Traditional practices such as grazing and haymaking in semi-natural habitats have been replaced by intensive feed production, characterized by multiple mowings instead of the previous single mowing. Consequently, the change in management practices has prevented the maturation of seeds for numerous plant species that were once abundant in grasslands, leading to the rarity or complete disappearance of formerly common plant species in agricultural landscapes. One such species that has nearly vanished from agricultural ecosystems is the Globe-flower (Trollius europaeus). Globe-flower thrives in meadows subject to occasional mowing or grazing.Grazing positively impacts soil health by enriching it with nitrogen, phosphorus, and potassium, as well as preserving and sequestering carbon in the soil. Properly managed grazing helps distribute nutrients more evenly across the landscape, making them more accessible to plants and enhancing nutrient cycling efficiency. The use of grazing and minimized mowing reduces soil disturbance, preserves or enhances soil structure, moisture, and carbon content, and ensures the survival of deep-rooted plants that facilitate water absorption into the soil, thus reducing the risk of erosion. In agricultural landscapes and field margins, it is essential to practice minimized mowing to create suitable conditions for various flowering species. Flowering plants play a critical role in supporting the food sources for pollinators, parasitoids, and many predatory species. Their availability in the landscape significantly influences one of the fundamental pillars of integrated pest management: biodiversity conservation in agricultural landscapes.

Põllumajandusliku maastiku indikaatorliikide kadumine annab selge signaali, et põllumajandusliku maastiku ökoloogiline seisund ei ole hea. Traditsiooniline karjatamine ja heina tegemine poollooduslikel kooslustel on asendunud intensiivse sööda tootmisega kus ühe niite asemel kasutatakse 3-4 niidet. Majandamisviiside muutumise tagajärjel ei saa valmida paljude varasemalt rohumaadel arvukalt esindatud taimeliikide seemned ja varasemalt põllumajandusmaastikul tavalised taimeliigid on jäänud haruldaseks või täiesti kadunud. Üheks liigiks, mis on põllumajanduskooslustest praktiliselt kadunud on harilik kullerkupp (Trollius europaeus). Kullerkupu elupaigaks sobivad ühekordse niitmisega niidud või karjatatavad alad.Karjatamine mõjub positiivselt mulla tervisele, rikastades seda lämmastiku, fosfori ja kaaliumiga ning säilitades ja sidudes mulda süsinikku. Õigesti korraldatud karjatamine aitab toitaineid maastikul ka ühtlasemalt jaotada, muutes neid taimedele kättesaadavamaks ja ringlust efektiivsemaks. Karjatamise ja minimeeritud niitmise kasutamisel väheneb mulla häiring, säilib või paraneb mulla struktuur, niiskuse- ja süsinikusisaldus, taimikus säilivad sügava juurekavaga taimed, mis soodustavad vee imendumist pinnasesse ja vähendavad erosiooniohtu.Põllumajandusmaastikul ja põllu servaaladel on oluline praktiseerida minimeeritud niitmist, et luua sobivad tingimused ka erinevatele õitsevatele liikidele. Õitsevad taimed toetavad tolmeldajate, parasitoidide ja paljude röövtoiduliste liikide toidubaasi ja nende kättesaadavus maastikus mõjutab oluliselt ühe integreeritud taimekaitse alustala, elurikkuse, alalhoidu põllumajandusmaastikes.

Agricultural land must be managed in a sustainable way that maintains long-term ecological functioning and quality crop production with minimal environmental impact. At the CSC, long-term experimental platform, we aim to design, implement, and demonstrate a resilient arable cropping system that can meet all of these requirements. We do this by combining best practice options to achieve multiple benefits, using biodiversity (microbes, plants, and invertebrates) within, and surrounding arable fields to support ecosystem functions and increase the efficiency of crop production. Our low input system integrates management practices for improved soil biophysical quality (conservation tillage, organic matter amendments), sustainable crop nutrition (legume BNF, cover cropping, Soil Nutrient Supply) and enhanced biodiversity (targeted weed control, biofortification to minimise crop protection inputs, species rich field margins). The platform was established in 2009 with a 6-course rotation of beans, barley, wheat, oilseed rape and potatoes over 42 ha, using a split field design comparing low-input system with standard commercial practice. We have found a positive effect on a wide range of systems indicators including soil microbiome (rhizobia, mycorrhizae, antagonists), invertebrate communities (earthworms and carabids), insect pollinators (foraging activity and pollination rates), weed seedbank diversity and beneficial species with no significant impact on crop yields for the most crops. Increased resilience (reduced risk of yield loss) can be seen for varieties adapted to low input conditions. Long-term trends in biodiversity and system functions are being monitored to track changes with management and climate.

See the summary in English.

The common kestrel (Falco tinnunculus) is a key species controlling the abundance of field voles (Microtus arvalis) in agricultural landscapes. nstallation of bird boxes for nesting can be effective in locations where voles are abundant. 
To build the bird boxes, use waterproof plywood (1-1.5cm thick). The internal size of the cavity (25x30x35cm) must ensure sufficient overlap of the canopy over the open front wall, with a 13cm high bar at the bottom to hold substrate and prevents chicks from falling out. Drill several 3-5mm holes in the bottom for drainage. Brown or dark grey colour paint is recommended. Line the nesting site with a thick layer of hay or straw. For hanging on a tree or post, stretch a 3mm wire through two holes drilled in the upper fifth of the back wall. 
Install the bird boxes to a height of at least 10m. Kestrels prefer to nest in solitary trees in the middle of fields and meadows and are less willing to settle on the edges of copses. If the poles are located where there is no risk of disturbing nesting pairs, they can be placed at a height of 1.5-2m. Ideal poles are built out of strong metal T-pipes and sunk deeply to prevent rotation by strong winds. When selecting a site for installation of low-lying posts, care should be taken to ensure that they are in gaps between shrubs, in completely open space or in suitable borders without mature trees. The orientation of the inlet is not important but the outlet must be down the slope and not into the trees.
3-4 boxes per 1 km2 should be installed to reduce vole abundance during peaks. Costs of manufacture, installation and maintenance are low, but it takes usually about 10 years for predator exposure to be high enough to push vole densities down to acceptable level.

Puštík obecný (Falco tinnunculus) je klíčovým druhem regulujícím početnost hraboše polního (Microtus arvalis) v zemědělské krajině. Instalace ptačích budek pro hnízdění může být účinným opatřením na místech, kde se hraboši hojně vyskytují. 

Ke stavbě ptačích budek použijte vodovzdornou překližku (tloušťka 1-1,5 cm). Vnitřní rozměry dutiny (25x30x35 cm) musí zajistit dostatečný přesah stříšky nad otevřenou čelní stěnou, přičemž na dně musí být 13 cm vysoká lišta, která udrží substrát a zabrání vypadnutí mláďat. Do dna vyvrtejte několik 3-5mm otvorů pro odvodnění. Doporučuje se hnědá nebo tmavě šedá barva nátěru. Hnízdiště vyložte silnou vrstvou sena nebo slámy. Pro zavěšení na strom nebo sloupek protáhněte 3mm drát dvěma otvory vyvrtanými v horní pětině zadní stěny. 

Ptačí budky instalujte do výšky nejméně 10 m. Poštolky nejraději hnízdí na solitérních stromech uprostřed polí a luk a méně ochotně se usazují na okrajích lesů. Pokud jsou instalovány na sloupech, kde nehrozí rušení hnízdících párů, mohou být umístěny ve výšce 1,5-2 m. Ideálně jsou ukotveny na silné kovové trubce ve tvaru T a hluboko zapuštěny, aby se zabránilo jejich otáčení silným větrem. Při výběru místa pro instalaci nízko umístěných sloupků je třeba dbát na to, aby byly v mezerách mezi keři, na zcela volném prostranství nebo na vhodných mezích bez vzrostlých stromů. Orientace vletu není důležitá, ale vlet musí být směrem ze svahu dolů a ne do stromů.

Na 1 km2 by měly být instalovány 3-4 budky, aby se snížila početnost hrabošů v době špiček. Náklady na výrobu, instalaci a údržbu jsou nízké, ale obvykle trvá asi 10 let, než je vystavení predátorům dostatečně vysoké, aby se hustota hrabošů snížila na přijatelnou úroveň.

Birds (such as tits) and bats are very useful in the orchard to control certain pests such as codling moths or aphids. However, natural refuges are becoming increasingly difficult to find for these animals, as old buildings are disappearing, as well as old hedges that are more suitable for sheltering them. It is therefore important and useful to be able to help them by installing nesting boxes for birds and lodges for bats (about 10/ha, see models on nichoirs.net) in the plots, in order to settle the populations durably, and to have an early control in spring. These practices will allow to limit the populations of some pests, and to reduce the use of pesticides. See also:
https://www.youtube.com/watch?v=nDQblFaljvk
https://www.youtube.com/watch?v=evEfK9tdWoI
http://archives.phytoma-ldv.com/archivephytoma/article/les-mesanges-se-…

Oiseaux (tels les mésanges) et chauve-souris sont des animaux très utiles au verger pour contrôler certains ravageurs comme les tordeuses (carpocapse par exemple) ou les pucerons. La consommation quotidienne, notamment au printemps, est conséquente, et peut avoir un réel impact sur les populations de ravageurs. Les refuges naturels sont néanmoins de plus en plus difficiles à trouver pour ces animaux, car les vieux bâtiments disparaissent, ainsi que les vieilles haies plus propices à les abriter. Il est donc important et utile de pouvoir les aider en installant des nichoirs pour les oiseaux et des gîtes pour les chauve-souris (environ 10/ha, voir modèles sur nichoirs.net) dans les parcelles, afin d'installer durablement les populations, et d'avoir un contrôle le plus précoce possible au printemps. Ces pratiques vont permettre de limiter les populations de certains ravageurs, et d'alléger le recours aux pesticides. Voir aussi:
https://www.youtube.com/watch?v=nDQblFaljvk
https://www.youtube.com/watch?v=evEfK9tdWoI
http://archives.phytoma-ldv.com/archivephytoma/article/les-mesanges-se-…

In order to be successful with a biodiversity sensitive farming system, a market niche needs to be identified where the quality and the quantity of the produce that can be obtained do not exclude the crop from market access. 
In case of the Luxembourgish farmer cluster, cider was identified as a product that does not require large and visually perfect fruit that are extremely difficult to obtain without intense agricultural management practices. In contrast, small and bitter fruit from existing old cultivars can be particularly valuable for the flavour of cider. Next, the basis for the production of the fruit, namely the old high stem trees, needed to be secured. For that purpose, an agri-environmental scheme was identified that covers parts of the costs of (1) pruning and (2) the removal of the parasitic mistletoes from the trees. Then, the product needs features that allow a distinction from competitors. Fruits from old cultivars are processed separately, resulting in ciders with specific colour, odour, and taste. Ramborn pays the farmers of the cluster a higher price, if they deliver fruit from cultivars separately. The resulting single cultivar ciders can either be marketed as they are, or, be used for blending. Both methods result into products that stand out when being compared with competing products as evidenced by various awards that the ciders received. The outstanding quality of the products and the biodiversity sensitive system of production allow targeting the upper price segment that in turn allows re-investments into the farming system.

Um mit einem biodiversitätssensitiven Anbausystem erfolgreich zu sein, muss eine Marktnische identifiziert werden, in der die erzielbare Qualität und die Quantität der Produkte nicht vom Marktzugang ausschließen. 
Im Fall des luxemburgischen Bauernclusters wurde Apfelwein als ein Produkt identifiziert, das keine großen und optisch perfekten Früchte erfordert, die ohne intensive Bewirtschaftungspraktiken nur äußerst schwierig herzustellen sind. Kleine und bittere Früchte alter Sorten, die nicht als Tafelobst vermarktbar sind, können besonders wertvoll für den Geschmack von Apfelwein sein. Als nächstes musste die Grundlage für die Obstproduktion, nämlich die alten Hochstammbäume, gesichert werden. Zu diesem Zweck wurde eine Agrarumweltmassnahme identifiziert, die einen Teil der Kosten für (1) das Beschneiden und (2) das Entfernen der parasitären Misteln von den Bäumen abdeckt. Dann braucht das Produkt Eigenschaften, die eine Unterscheidung von Wettbewerbern ermöglicht. Früchte alter Sorten werden separat verarbeitet, was zu Apfelweinen mit spezifischer Farbe, Geruch und Geschmack führt. Ramborn zahlt den Landwirten des Clusters einen höheren Preis, wenn sie Obst sortenrein anliefern. Die resultierenden sortenreinen Cider können entweder so wie sie sind vermarktet oder zum Mischen verwendet werden. Beide Methoden führen zu Produkten, die sich im Vergleich zu Konkurrenzprodukten abheben, wie verschiedene Auszeichnungen belegen, die die Apfelweine erhalten haben. Die hervorragende Qualität der Produkte und das biodiversitätssensitive Anbausystem erlauben es, das obere Preissegment zu addressieren, was wiederum Reinvestitionen in das Anabausystem ermöglicht.

In recent years, a loss of biodiversity in Austrian grassland has been recorded. This was caused by the intensification of use, but also by the abandonment of the grassland, which resulted in successive reforestation. This issue can be overcome by sowing species-rich grassland mixtures. The creation of new grassland becomes necessary if the old stock is to be completely cleared out, for example due to high weed infestation or the conversion of the area for another use.
The reverse rotor harrow can be used for reseeding without a plough. Their S-shaped blades work against the direction of travel and the soil is thrown against a grid, depositing weed seeds and small stones in the bottom of the tiller pit. Only the top layer of soil (8 -10 cm) is processed. Before planting, a razor cut must be done to incorporate as little fresh matter as possible, and the soil should be dry to a depth of 10 cm. Then the soil is worked and sown in one operation, the tractor should have 90 to 120 hp for this. 20 kg/ha of the Renatura tall oat meadow seeding mixture are used for sowing (price for 10 kg is €250). Subsequent rolling with a profile roller is important for good ground contact. This prevents the embryonic root from drying out. Sowing is possible during the entire vegetation period, but late frosts must be avoided. After sowing, one or two care cuts should be made. This meadow is suitable for use twice a year.

In den letzten Jahren konnte ein Verlust der Biodiversität im Österreichischen Grünland verzeichnet werden. Diese Entwicklung wurde einerseits durch die Nutzungsintensivierung, aber andererseits auch durch die Aufgabe der Nutzung und in Folge die sukzessive Wiederbewaldung, hervorgerufen. Dem kann durch die Einsaat von Artenreichen Grünlandmischungen entgegengewirkt werden. Die Neuanlage von Grünland wird notwendig, wenn der Altbestand vollständig beseitigt werden soll, beispielsweise durch hohe Verunkrautung oder die Umwandlung der Fläche für eine andere Nutzung.

Für die Neuansaat ohne Pflug kann die Umkehrrotoregge genutzt werden. Ihre S-förmigen Messer arbeiten gegen die Fahrtrichtung und die Erde wird gegen ein Gitter geworfen, somit werden Unkrautsamen und kleinere Steinchen im unteren Bereich der Fräsgrube abgelegt. Es wird nur die oberste Bodenschicht (8 -10 cm) bearbeitet. Vor der Neuanlange muss ein Rasierschnitt erfolgen, um möglichst wenig Frischmasse einzuarbeiten und der Boden sollte bis zu einer Tiefe von 10 cm abgetrocknet sein. Dann wird in einem Arbeitsgang der Boden bearbeitet und eingesät, der Traktor sollte dafür 90 bis 120 PS haben. Bei der Einsaat werden 20 kg / ha der Artenreichen Renatura Glatthaferwiesenmischung verwendet (Preis für 10 kg liegt bei 250 €). Für einen guten Bodenschluss ist das anschließende Walzen, mittels Profilwalze, wichtig. Das verhindert ein Austrocknen der Keimwurzel. Die Ansaat ist während der gesamten Vegetationsperiode möglich, Spätfröste müssen allerdings vermieden werden. Nach der Ansaat sollten ein bis zwei Pflegeschnitte gemacht werden. Diese Wiese eignet sich für eine zweimalige Nutzung pro Jahr.

In the agricultural landscape different elements, including grassy strips, are important feeding, living, shelter and overwintering habitats for invertebrates, birds, and small mammals. The establishment of grassy strips are also a quick and cost-effective measure compared to other methods of landscaping. Although, flowering edges produce rapid effect, they require continuous management and provide rather feeding than living habitats. When establishing grassy strips to diversify large fields, the best results for both feeding and living habitats are obtained by maintaining species-rich permanent grassy strips. In Estonia, where the most species-rich communities are meadows, it is advisable to sow local meadow species to ensure rapidly diverse, permanent, and self-regenerating vegetation cover. The natural recovery of diverse vegetation is a long process, and in areas where natural meadows are scarce or distant, such a recovery may take too long.
When creating grassland strips, attention must also be paid to proper soil preparation and sowing time. In the future, on the other hand, there is less maintenance – you only need to cut once a year, remove the cuttings and it is recommended to vary the cutting time between years, so that the seeds of different species can ripen. Attention must be paid to the fact that chaffing is not suitable for meadows - excessive nitrogen in the soil favours vegetative growth of some species which quickly eats out others.
Grassy strips provide habitat and a food source for both pollinators and predatory arthropods, reduce erosion and agrochemical drift.

Põllumajandusmaastikul pakuvad maastikuelemendid elu-, varje- ja toitumispaiku paljudele lindudele, pisi-imetajatele ja lülijalgsetele, sh tolmeldajatele ja kahjurite looduslikele vaenlastele, vähendavad erosiooni ning toimivad puhvrina agrokemikaalide triivile. 
Rohtsete põlluservade rajamine on teiste maastiku liigendamise võtetega võrreldes suhteliselt kiire ja kuluefektiivne meede. Lühiajaliste õitsevate lilleribade rajamine annab küll kiire efekti, kuid nõuab järjepidevat hooldust ning on eelkõige toidubaasiks tolmeldajatele pakkumata seejuures elupaiku. Suurte põllumassiivide liigendamine püsivate liigirikaste rohuribadega on eelistatud andes parimaid pikaajalisi tulemusi nii elupaikade kui ka toiduressursside pakkumises. Eestis, kus kõige liigirikkamateks kooslusteks on niidud, on soovitav külvata kohalike niidutaimede liike, mis tagavad loodavatel rohuribadel looduslikesse oludesse sobiva mitmekesise, püsiva ja iseuueneva taimkatte. Mitmekesise taimestiku looduslik arenemine võtab aega ja piirkondades, kus niidutaime kasvukohti on vähe või sidusus uue loodava rohumaaribaga kehv, võib selline taastumine võtta liiga kaua aega.
Rohumaaribade loomisel tuleb tähelepanu pöörata mulla omadustele, õigele pinnase ettevalmistamisele ja külviajale. Edaspidi seevastu hooldust juba vähem – tuleb vaid niita üks kord aastas, kindlasti niide eemaldada ning soovitatavalt niitmisaega aastate vahel varieerida, et valmida saaksid erinevate liikide seemned. Tähelepanu tuleb pöörata sellele, et niidualadele hekseldamine ei sobi – liigne mulda viidav lämmastik soosib vegetatiivset kasvu ja lämmastikulembesemaid liike, mis kiirelt teised liigid välja tõrjuvad.

Establishing wildflower areas near crops will provide habitat for beneficial invertebrates to increase crop yields. Pollinators may also be encouraged to visit crop flowers. Increased numbers of natural enemies can reduce crop pests. 
• The wildflower seed mix should contain at least 10 native perennial wildflower species with a diverse range of floral structures, colours, and flowering times to support a diverse range of insects over a long time.
• Prepare the soil in a sunny, dry, and low fertility area. Clear and remove the vegetation during a dry period in July to keep the soil fertility low. Allow remaining seeds to germinate then mechanically weed them to create a stale seedbed.
• Broadcast sow the seed at 1 g/m² on loose soil during a dry period prior to rain in late Aug-Oct then roll the area to fix the seed.
• To ensure a diverse wildflower area cut it to 8-10 cm during dry periods and remove the cuttings to lower soil fertility. Remove harmful weeds such as broad-leaved docks and thistles.
• Year 1: cut in late April to control grasses. Cut up to twice more if annual flowers, grasses, and weeds are stopping perennials from having space to germinate and grow.
• Year 2 and onwards: cut in late April and cut again in Aug/Sept; with each cut leave 15-30% standing to provide insects’ shelter. Consider cutting half the area in June to encourage flowering.

See the summary in English.

Agricultural intensification has had a negative effect on pollinators and caused rapid decline throughout European landscape. Farmers need to be encouraged and provided with practical techniques to restore pollinator-friendly habitats. Organic farming can be introduced as a management system which can increase pollinator biodiversity. Further, following strategies can be recommended as practical management measures to promote flowering plants and thus pollinators: a high proportion of semi-natural habitats; species-rich flowering strips with autochthonous seed mixtures and proper management, i.e., mowing or replanting only in sections, versatile crop rotations with flowering annual plants (e.g., sunflowers, canola) and perennial forage crops (e.g., clovers, lucerne), species-rich cover crop mixtures, high diversity of habitats, small habitat size or long length of habitat boundaries, intercropping and long-lived flowering strips are preferable. To maintain pollinator biodiversity in the long term, it is recommended to re-establish a proportion of young rotation strips every 4-5 years by turning them over (e.g., ploughing and harrowing) in autumn. To encourage pollinators, nesting locations are important. Because most solitary bees nest in the ground, agricultural practices that inhibit or destroy nests, such as extensive tillage, should be avoided. Therefore, no-tillage and reduced tillage can be recommended. Additionally, a maximum distance of 200 m between habitats with flowering plants should be kept.

Die Intensivierung der Landwirtschaft hat sich negativ auf die Bestäuber ausgewirkt und zu einem raschen Rückgang in der gesamten europäischen Landschaft geführt. Die Landwirte müssen ermutigt und mit praktischen Techniken ausgestattet werden, um bestäuberfreundliche Lebensräume wiederherzustellen. Der ökologische Landbau kann als Bewirtschaftungssystem eingeführt werden, das die Artenvielfalt von Bestäubern erhöhen kann. Als praktische Bewirtschaftungsmaßnahmen zur Förderung von Blütenpflanzen und damit von Bestäubern können folgende Strategien empfohlen werden: ein hoher Anteil an naturnahen Lebensräumen; artenreiche Blühstreifen mit autochthonen Saatgutmischungen und eine sachgerechte Bewirtschaftung, d.h., abschnittsweise Mahd oder Nachsaat, vielseitige Fruchtfolgen mit blühenden einjährigen Pflanzen (z.B. Sonnenblumen, Raps) und mehrjährigen Futterpflanzen (z.B. Klee, Luzerne), artenreiche Zwischenfruchtmischungen, hohe Vielfalt an Lebensräumen, geringe Habitatgröße oder lange Habitatgrenzen, Gemengeanbau und langlebige Blühstreifen sind empfehlenswert. Um die biologische Vielfalt der Bestäuber langfristig zu erhalten, wird empfohlen, alle 4-5 Jahre einen Teil der jungen Rotationsstreifen durch Umbruch (z. B. Pflügen und Eggen) im Herbst neu anzulegen. Um Bestäuber zu fördern, sind Nistplätze wichtig. Da die meisten Solitärbienen im Boden nisten, sollten landwirtschaftliche Praktiken, die Nester behindern oder zerstören, wie z. B. eine intensive Bodenbearbeitung, vermieden werden. Daher können Direktsaat und reduzierte Bodenbearbeitung empfohlen werden. Außerdem sollte ein maximaler Abstand von 200 m zwischen Lebensräumen mit blühenden Pflanzen eingehalten werden.

Currently showing page content in native language where available

Contacts

Project coordinator

  • The James Hutton Institute

    Project coordinator

Project partners

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner

  • INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE

    Project partner

  • INTERNATIONALES INSTITUT FUER ANGEWANDTE SYSTEMANALYSE

    Project partner

  • UNIVERSITEIT VAN AMSTERDAM

    Project partner

  • LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

    Project partner

  • UNIVERSITAET OSNABRUECK

    Project partner

  • .

    Project partner

  • .

    Project partner

  • .

    Project partner