project - Research and innovation

Transition paths to sUstainable legume-based systems in Europe (TRUE)
Transition Paths to Sustainable Legume-based Systems in Europe (TRUE)

Ongoing | 2017 - 2021 Other, United Kingdom
Ongoing | 2017 - 2021 Other, United Kingdom
Currently showing page content in native language where available

Objectives

TRUE is funded by the European Commission‘s Horizon 2020 Programme over four years to explore strategies to reduce the EU’s dependency on imported protein food (mainly soy) and synthetic nitrogen fertilizers. In this context, TRUE aims to identify the best routes, or “transition paths” to increase sustainable legume cultivation and consumption across Europe and includes the entire legume feed and food value chains.

Objectives

See objectives in English

Activities

Sophisticated status quo analysis and advanced modelling approaches combined with data generated from 24 Case Studies and transdisciplinary knowledge-exchange will lead to concrete innovations and to a final Decision Support Tool for primary producers, agronomists, processors, associated businesses and decision makers to help determine a range of options for successful transitions that include a variety of legume species and processing approaches to match the pedo-climatic zones and farm network types. Legume Innovation Networks are being formed in the three pedo-climatic regions Atlantic, Continental and Mediterranean to involve relevant stakeholders in a multi-actor-approach.

Additional information

Legume Innovation and Networking - Workshops will take place three times during the project in each of the regions Atlantic, Continental, Mediterranean. A final common European workshop to build a European Legume Innovation Network will be at the end of the project.

Stakeholders unable to attend to one of the workshops are invited to participate in an online survey on the TRUE website. to share their ideas and experiences about a.) changes needed for an increase of legume cultivation and consumption and b.) indicators to measure sustainability of legume-based value chains

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Location
Main geographical location
Angus and Dundee City

€ 4999927

Total budget

Total contributions including EU funding.

Currently showing page content in native language where available

40 Practice Abstracts

While profits and economic sustainability of farms cultivating legumes are necessary, they may not always be sufficient and farmers’ decision-making may be influenced by non-economic factors, e.g., perceptions of how what they create affect others (environment and human health). Similarly, consumers’ choices may be influenced by environmental and health concerns as opposed to purely economic reasons.



Producers intentions towards legume uptake and consumers willingness to increase legume share in diets were analysed, which showed that socio-economic characteristics (education, profit orientation, farm-succession) have significant effects on producers’ intentions to cultivate legumes. Other factors involved are perceived usefulness of information; uptake of technologies; market influences on business; intentions to increase diversification, agri-environment, technological investment; and previous changes to legumes cultivation.



Results of the analysis on consumers’ willingness to pay for pulse-based mince in ready meals, and the role that labels for desirable food attributes can play to foster consumption show that flexitarians, vegetarians and pescatarians are potential consumers of pulse-based mince. We also found that demand for pulse-based mince by regular meat-eaters can be fostered if the product is promoted as high in protein and fibre, organic, British, and low in saturated fat.



While slow changes in consumption patterns to include legumes are apparent, they need to be translated into “home-grown” production patterns, and a higher integration of policies incentivising consumers towards healthier diets, and producers towards sustainable production is required.

The agri-food chain serves as a channel for the transmission of demand information from users to producers and supplies consumers with the required products. Due to the increasing demand for balancing the technological and economic development of society with the protection of the environment, the link between producers and consumers must meet strict sustainability criteria, which is a very complex challenge.

To address this, the TRUE project developed a decision support system (DSS) Path Finder. It provides a sustainability assessment of the individual links in the chain according to the environmental, economic, and social pillars, and the chain as a whole. Since the DSS provides sustainability assessment at different levels, it is designed to be used by different end-users, e.g., farms and businesses, and various government agencies and ministries. The Path Finder helps end-users to modify their management plans and production infrastructure to achieve their sustainable goals.



For example, relevant agencies and ministries can use the DSS to draft or modify sustainability strategies in the agriculture and food sector. In addition, it can be used to develop financial incentives for sustainable development. The application of the DSS at the individual farm, enterprise, and consumer levels can improve the sustainability of production, processing, and consumption. The Path Finder allows for simultaneous sustainability assessment of all elements of the agri-food chain (e.g., from farm to fork) and the integration of results across different levels. It also promotes the numerous environmental and human nutritional benefits of legumes, as well as synergies with several Sustainable Development Goals.

Agroživilska veriga omogoča, da potrošniki ponudnikom sporočajo potrebe po pridelkih in prehranskih proizvodih, pridelovalcem pa omogoča, da s pridelki in proizvodi oskrbujejo potrošnike. Zaradi vse večjih zahtev po uravnoteženju gospodarskega razvoja z varstvom okolja, mora agroživilska veriga izpolnjevati stroga merila trajnostni. To je izredno zahteven izziv, zato smo v projektu TRUE razvili sistem za podporo odločanju (DSS) Path Finder, ki uporabnikom omogoča oceno trajnosti posameznih členov in verige kot celote. Pri tem smo se osredotočili na verige s stročnicami. Trajnost ocenimo z integracijo izpolnjevanja kriterijev okoljskega, ekonomskega in socialnega stebra trajnosti. Ker DSS zagotavlja oceno trajnosti na različnih ravneh (členi verige, stebri trajnosti in celotna veriga), ga lahko uporabljajo različne skupine končnih porabnikov. Ti so namreč poleg kmetov in podjetnikov lahko tudi različne vladne agencije in ministrstva. Poleg ocene izpolnjevanja kriterijev trajnosti, Path Finder omogoča uporabnikom poiskati spremembe načinov in pogojev pridelave in proizvodnje, ki jim bodo zagotovili uresničitev zastavljenih trajnostnih ciljev. Na primer, ustrezne agencije in ministrstva lahko DSS uporabljajo za pripravo ali spremembe strategij in finančnih vzpodbud trajnostnega razvoja v kmetijskem in živilskem sektorju. Uporaba DSS na ravni posamezne kmetije, podjetja in potrošnikov zagotavlja izboljšanje trajnosti proizvodnje, predelave in potrošnje. Path Finder omogoča celostni trajnostni razvoj agroživilskih verig (od kmetije do vilic) in vzpostavitev sinergij številnih okoljskih in prehranskih koristi stročnic s cilji trajnostnega razvoja.

The production and consumption of legume grains is very low in Hungary. However, domestic crop seed- or gene-banks maintain significant collection of indigenous grain-legume types, termed ‘land races’. Based on a 4-year cultivation experiment, assessing land-race varieties cultivated at small-scales organic gardens, the following key practical findings which are targeted to small-scale producers of all kinds: farmers, kitchen-garden owners, community gardeners – all who want to immerse in the rich culinary world of beans can be made.



1. Apart from the commonly grown Phaseolus vulgaris (common bean), 6 further neglected, or at least little-known species can be successfully grown at small scales. These are: Cicer arietinum (chickpea); P. coccineus (runner bean); P. lunatus (lima or butter bean); P. acutifolius (tepary bean); Vigna sinensis (cowpea sp.), V. unguiculata subsp. sesquipedalis (asparagus or yardlong bean).



2. In addition to the central gene-banks, decentralized, community-based collections can be excellent sources of good quality seeds. These sources are also more likely to provide tested, well-performing species, with information on best-cultivation practices.



3. Changing climate, and the increasing frequency of atmospheric droughts, may cause significant yield-loss but drought-tolerant species and cultivars may still be found and successfully grown.



4. While the grain legumes types are robust garden crops, the may still present growth challenges and suffer from pests. Yet, there are effective methods against these in organic farming.



5. These lesser-known legumes may also provide novel foodstuffs for the gastronomist: such as edible flowers, green chickpeas, green cowpea, and yardlong bean pods.

A hüvelyesek termesztése és fogyasztása Magyarországon európai összehasonlításban is alacsony, ugyanakkor a hazai génbankok nemzetközi szinten is jelentős hüvelyes fajgyűjteményt őriznek. Négyéves termesztési kísérletünkre alapozva a tájfajták kis léptékű, biokertekben történő tesztelésével a következő legfontosabb gyakorlati megállapítások tehetők - kifejezetten kistermelők, konyhakert-tulajdonosok, közösségi- és balkonkertészek részére.



1. A leggyakrabban termesztett veteménybabon kívül további hat elhanyagolt, illetve kevéssé ismert fajt termesztettünk sikeresen kisüzemi, ill. kiskerti körülmények között: csicseriborsó, tűzbab, holdbab, tepary bab, tehénborsó vagy homoki bab és méteres bab.



2. A központi génbankok mellett a decentralizált, közösségi alapú gyűjtemények is kiváló forrásai lehetnek a jó minőségű magoknak. Ez utóbbiak nagyobb valószínűséggel nyújtanak tesztelt, jól működő szaporítóanyagokat, illetve a növények növekedési módjával, termesztési gyakorlatával kapcsolatos információkat.



3. A változó éghajlat és az egyre növekvő gyakoriságú légköri aszályok jelentős termésveszteséget okozhatnak, de a szárazságtűrő fajok és fajták megtalálhatók és ilyen körülmények között is sikeresen termeszthetők.



4. A hüvelyesek nem tartoznak a legérzékenyebb kerti növények közé, mégis számos élettani problémával és – elsősorban polifág – kártevővel rendelkeznek. A biogazdálkodásban ezek ellen hatékony módszerek léteznek.



5. A kevésbé ismert hüvelyesek új alapanyagokat is szolgáltathatnak a gasztronómiához: például az ehető virágok, a zöld csicseriborsó, a tehénborsó és méteres bab zöld hüvelyei.

The population growth worldwide poses significant challenges in food production, further aggravated by the low area of arable land suitable for crop production. Therefore, it is necessary to rethink current food production and consumption patterns. This study aimed to characterise current pulses consumption in adults and to describe the potential drivers and barriers to the inclusion of this source of protein in the diet. Using a quantitative approach, a semi-structured questionnaire was distributed online, and 1174 valid responses were obtained. The most consumed pulses were beans and peas, consumed at least once a week by 48% and 44% of the participants, respectively. When participants were asked about the possibility of replacement, even partially, of animal products for pulses, 15% stated they would not substitute even in a food scarcity scenario. In the qualitative study, ten individuals involved at different steps of pulses’ supply and value chain were interviewed to study behaviours and experiences linked to knowledge and consumption of pulses. Their underrated nutritional value, the high cooking time and the effect of the anti-nutritional factors were commonly pointed out as barriers. Therefore, for the successful replacement, even if partially, of meat by plant-based protein alternatives, like pulses, it is essential to involve different stakeholders in the agri-food chain. Agricultural and nutritional policies should be developed or adjusted, aiming to optimise food availability and the population’s health and to promote environmental sustainability. These strategies should include encouraging farmers to produce pulses and to invest in polycultures and more sustainable farming methods.

O aumento da população mundial coloca desafios relevantes para a produção alimentar, agravado pela limitada área de terreno adequada à produção agrícola. É, portanto, necessário repensar os padrões atuais de produção e consumo de alimentos. Este estudo pretendeu caracterizar o consumo de leguminosas em adultos e descrever os potenciais motivadores e barreiras para a sua inclusão na alimentação. Primeiro, foi distribuído um questionário semiestruturado online, tendo-se obtido 1174 respostas válidas. As leguminosas mais consumidas eram o feijão e a ervilha, consumidos pelo menos uma vez por semana por 48,3% e 44,4% da amostra avaliada, respetivamente. Quando os participantes foram questionados sobre a possibilidade de substituição, ainda que parcial, de produtos de origem animal por leguminosas, 15,0% afirmaram que não o fariam mesmo num cenário de escassez alimentar. Por forma a avaliar comportamentos e conhecimentos relativos ao consumo de leguminosas, foram entrevistados dez indivíduos ligados a diferentes etapas da cadeia de valor das leguminosas. O desconhecimento do seu valor nutricional, o elevado tempo de confeção e o efeito dos fatores antinutricionais foram frequentemente apontados como barreiras. Portanto, para o sucesso da substituição, ainda que parcial, da carne por alternativas vegetais, como as leguminosas, é fundamental o envolvimento dos stakeholders da cadeia agroalimentar. Políticas agrícolas e nutricionais devem ser desenvolvidas ou ajustadas visando otimizar a disponibilidade de alimentos e a saúde da população, bem como promover a sustentabilidade ambiental. Estas estratégias devem incluir o incentivo para produzir leguminosas de forma sustentável, bem como métodos agrícolas mais sustentáveis.

Nordic consumers’ awareness of diets and climate impact from food production creates a demand for products made with pulses in the market. Nordic consumers seek plant-based products to reduce or replace their meat consumption in an attempt to improve their personal health or reduce climate impact. They understand it is necessary to cut down on meat consumption to mitigate greenhouse gas emissions from animal production, and the health risks associated with high consumption of meat and animal fats. It is very important for Nordic consumers that these meat alternatives appeal to their taste and liking. A typical product in the Nordic food market is plant-based burgers made with pea protein or soya protein, vegetables and mushrooms, and spices. The core consumers of these products are the young generation (age group 20-30 years) and the seniors (age group 50-60 years). The former group is motivated by the reduced climate impact and “doing something good” whereas the latter is motivated by personal health and climate impact.



Plant-based meat alternatives are expensive in the Nordic food market. Producers of plant-based meat alternatives (burgers, nuggets, and similar products) actively inform consumers about their reduced environmental impact in their marketing. Information about the origin of the ingredients is also used for marketing purposes.

De nordiske forbrugeres bevidsthed om kost og klimapåvirkning fra fødevareproduktion stimulerer efterspørgslen efter produkter fremstillet af planteproteiner. Forbrugerne i Norden efterspørger disse produkter for at mindske eller erstatte indtag af kød. Forbrugerne køber plante-baserede kødalternativer ud fra motiver om sundhed eller klimapåvirkning. Forbrugerne ved, at det er nødvendigt at skære ned på kødforbruget for at reducere udledning af drivhusgasser fra husdyrproduktion og, forbrugerne er opmærksomme på sundhedsrisici forbundet med et højt indtag af animalsk protein og fedt. Det er vigtigt for forbrugerne i Norden at de produkter, der udbydes som erstatning for kød opfylder forventningerne til smag og spiseoplevelse. Et typisk produkt på det nordiske marked er burgere fremstillet af planteproteiner (f.eks. fra ærter eller sojabønner), grøntsager, svampe samt krydderier. Kernemålgrupperne for produkterne er aldersgrupperne 20-30 år og 50-60 år. Den første gruppe er især motiveret af en reduceret klimapåvirkning og det at ”gøre noget godt for verden”, og den sidstnævnte gruppe motiveres af personlig sundhed og påvirkning på klima og miljø.



Plantebaserede kødalternativer er dyre produkter i det nordiske marked. Producenterne af den type produkter (burgere, nuggets, og lignende) anvender oplysninger om reduceret klimapåvirkning som en væsentlig del af deres markedsføring til forbrugerne. Oplysning om oprindelse af ingredienserne kan også indgå i markedsføringen.

Consumers are becoming increasingly interested in the origin of their food, which creates demand for products that are certified with labels like the Protected Geographical Indication (PGI) or Protected Designation of Origin (PDO).

PGI/PDO labels are relevant for dried pulses, as they promote the origin of the product as a key quality parameter. The labelled products are sold at higher prices than comparable dried pulses. You can find PGI/PDO labelled pulses in supermarkets, specialty food stores, web sites or farm shops. Labelled products may also be relevant to restaurants, canteens or in public procurement settings. The appeal of PGI/PDO labelled products span across local markets to export markets.



A label for a PGI/PDO product (e.g. dried pulses in a consumer-ready packaging) requires an organizational set-up involving growers, facilities for cleaning and packing the crop, and a distribution network. A coordination unit, such as a visionary farmer, must be present to connect the supply chain and formalise the organization, which includes keeping control of the seed material for the specific crop and documenting traceability. The coordination unit is responsible for compliance with the rules of the PGI/PDO scheme. There should be a marketing strategy that emphasizes the local specialty features of the crop e.g. a special variety, special conditions for cultivation, culture and tradition, or other quality attributes.

Forbrugerne er interesserede i at kende oprindelsen på fødevarer og det skaber en efterspørgsel efter produkter med oprindelsesmærkning som f.eks. Beskyttet Geografisk Betegnelse (PGI) eller Beskyttet Oprindelses Betegnelse (PDO).



PGI/PDO certificeringer er relevante for tørrede bælgfrugter, da disse mærker fremhæver produktets oprindelse som en kvalitets-egenskab. De mærkede produkter sælges til en højere pris end tilsvarende ikke-mærkede bælgfrugter. Produkter med PGI/PDO mærkning sælges gennem supermarkeder, specialforretninger, hjemmesider eller gårdbutikker. Mærkede produkter kan være relevante for restauranter, kantiner eller i den offentlige forplejning. Der kan være interesse for et PGI/PDO mærket produkt i et lokalt område eller på et eksportmarked.

Det kræver en organisering af forsyningskæden at få et PGI/PDO mærket produkt på markedet, f.eks. tørrede bælgfrugter i en forbrugerpakning. Organiseringen omfatter avlerne, faciliteter der kan rense og pakke produktet, og et distributionssystem. Måske er en visionær landmand den, der koordinerer den formelle organisation, og det omfatter også kontrol med udsæd og opfyldelse af dokumentationskrav. Den koordinerende enhed har ansvaret for at produktet lever op til kravene for PGI/PDO mærkerne. Der bør være en markedsføringsstrategi som fremhæver de lokale kvaliteter af produktet, f.eks. i form af en særlig sort, særlige forhold med indflydelse på dyrkning, kultur og tradition, eller andre kvalitetsparametre.

In the production of any alcoholic beverage, you must understand the character of the starch present, how to convert this them to fermentable sugars, and separate the sugar-rich liquid from insoluble materials. Both steps occur during the mashing process of beer making and involves a temperature-holding step 63-64°C. This allows starch gelatinisation and enzyme action to occur. For pulses, this temperature is too low, and a cooking step is required to gelatinise and allow enzymatic degradation of its starch to occur prior to adding barley. While legume starch character varies across species, 80°C was found to allow hydration and disruption of most legume-starch granules tested. In addition, and unlike some cereals, legumes lack the necessary starch degrading enzymes. The use of pulses may also present high levels of undegraded cell wall components such as β‐glucans and arabinoxylans which thicken the wort leading to filtration and extract recovery problems, as well as final product quality issues such as haze formation. The extent of these issues is pulse-species specific, e.g., faba bean. To address these issues, it is necessary to add commercially available proteolytic and starch degrading enzymes.



Recommended milled faba bean kernel processing steps are as follows.



1) Pre-treatment of flour slurry at 40°C in the presence of protease.

2) Precook at a minimum of 80 °C for 1 hour in the presence of alpha-amylase.

3) Mash the malted barley etc as normal using the cooked legume slurry as a portion of the mashing in water.

4) Proceed using normal brewery procedures (mash, boil, cool, and ferment).

Common bean (Phaseolus vulgaris sp.) is the legume crop most cultivated globally for human food production due to the high nutritional and organoleptic value of its pods and seeds. However, the growth of common bean and the achievement of high yields is mainly dependent on nitrogen (N) supply through fertilisation due to its poor N-fixing capacity. As the excessive application of inorganic nitrogen fertilisers of highly productive conventional cropping systems results in groundwater contamination with nitrates, organic farming systems could use the benefits of common bean crop to reduce less environmental burden. Cultivating a cold season legume with high N fixing activity, such as faba bean, as green manure crop during the winter optimises the N availability in soil and therefore, the yield of the subsequent organic common bean crop. Green manure application can boost the yield of organic common bean at conventional standards, while producing pods and seeds with greater quality performance. In addition to this organic farming practice, inoculation of either faba bean or common bean with efficient rhizobia and maintaining an adequate phosphorus availability in soil enhances the N-fixing activity of the above legume crops, reducing dependency on inorganic N applications.

Το φασόλι είναι μία ευρύτατα διαδεδομένη καλλιέργεια ψυχανθούς παγκοσμίως λόγω της σημαντικότητας της υψηλής θρεπτικής αξίας των παραγόμενων λοβών και σπερμάτων στην διατροφή του ανθρώπου. Ωστόσο, η ανάπτυξη και η απόδοση της καλλιέργειας εξαρτάται κυρίως από τις εξωτερικές εισροές του αζώτου εξαιτίας της περιορισμένης ικανότητάς του φυτού να αζωτοδεσμεύσει. Καθώς η υπερβολική εφαρμογή ανόργανων λιπασμάτων αζώτου (N) στα συμβατικά συστήματα υψηλών αποδόσεων οδηγεί σε μόλυνση υπόγειων υδάτων με νιτρικά, η βιολογική καλλιέργεια φασολιού αποτελεί μία πιο φιλική προσέγγιση ως προς το περιβάλλον, αποκομίζοντας ταυτόχρονα τα διατροφικά οφέλη της καλλιέργειας. Η καλλιέργεια ενός ψυχανθούς, ως χλωρή λίπανση, με υψηλή αζωτοδεσμευτική ικανότητα κατά την χειμερινή καλλιεργητική περίοδο βελτιώνει την διαθεσιμότητα του αζώτου, επομένως και την παραγωγή, της ακόλουθης καλλιέργειας φασολιού κατά την εαρινή καλλιεργητική περίοδο. Ειδικότερα, η εφαρμογή χλωρής λίπανσης μπορεί να αυξήσει τις αποδόσεις της βιολογικής καλλιέργειας φασολιού στα επίπεδα αυτών της συμβατικής, παράγοντας ταυτόχρονα λοβούς και σπέρματα με βελτιωμένη θρεπτική και ποιοτική αξία. Εκτός από την παραπάνω βιολογική καλλιεργητική τεχνική, ο εμβολιασμός του φυτού είτε της κουκιάς είτε της φασολιάς με αποδοτικά αζωτοδμευτικά βακτήρια και η διατήρηση του φωσφόρου στο έδαφος σε υψηλά επίπεδα βελτιώνει την ικανότητα των ψυχανθών να αξιοποιήσουν το άζωτο που περιέχεται στην ατμόσφαιρα, εξαρτώντας λιγότερο από εξωτερικές εισροές αζώτου μέσω της λίπανσης.

Clover living mulches can be a tool contributing to multifunctional benefits when well-managed. For example, evidence suggests they can help reduce reliance on agrochemical inputs, such as nitrogen fertiliser. It is important to select a clover species and variety that will work with the crop they are partnered with, with consideration of machinery and management options, as well as crop structure.



White clover (Trifolium repens) and Alsike clover (T. hybridum) are low-growing perennial species with reasonably good longevity and frost tolerance, and modest nitrogen fixation. Their prostrate growth habit makes them useful when undersown to cereal crops, as machinery can be set so that the clover does not interfere. Red clover (T. pratense) is a perennial species with deep rooting and good nitrogen fixation. Its upright growth habit means that it is more suitable with taller crops, such as maize, to avoid interference with machinery. Crimson clover (T. incarnatum) is an annual species of moderate height, limited frost tolerance, and which can give rapid soil fertility boosts, but will die back after flowering. Persian clover (T. resupinatum) is a fast-growing annual producing much biomass, but with very limited frost tolerance. Berseem clover (T. alexandrinum) is the least frost tolerant clover, which can support incorporation into the soil before following crops, and reduced interference with machinery at harvest.



Each species has different benefits, and specific varieties might further supplement these. Advice should be sought from farm advisory services, agronomists, and seed companies to select the best-suited species and varieties for local conditions, and for the desired clover behaviours and outcomes.

As monocrops, legumes offer only non-commercially competitive quantities of biomass for feed, silage, or anaerobic digestion. However, as components of intercrops they significantly increase nutritional provisions, crop abiotic- and biotic-stress resilience, and productivity, as well as fertility-building for subsequent crops.

A series of autumn-sown trials in Scotland were carried out assessing intercrops of winter-cereals (wheat, barley, oats, rye, triticale) with winter-legumes (peas, faba beans, vetch) at several locations, seasons, fertiliser rates, proportions, component numbers, and varieties. These were cut as ‘whole crop’, wilted, baled for fresh- and dry-weight, plus digestibility analysis.

Peas and vetch contributed positively to yield and quality if grown at low fertiliser rates and appropriate variety-proportion combinations. Faba bean water content tended to be too high. Oats and rye together or separately were the best cereal components for yield. Barley and wheat contributed to quality but performed poorly under low nitrogen. High proportion of peas, beans, and oats gave positive yield effects on subsequent cereal crops directly drilled into their stubble. Cereal density must be sufficiently high for weed control. The addition of ryegrass to mixtures allows post-harvest grass-biomass cut (precipitation permitting).

For highly productive winter biomass production, it is recommended to choose competitive legume varieties at appropriate densities and low nitrogen fertiliser rates in intercrop combination with oats, rye, and other cereals.

Legumes provide multiple benefits in arable systems, but are prone to weed, pest and disease infestation and suffer from inconsistent yields. Intercropping legumes with cereals can overcome some of these agronomic challenges.



Large plots (120 m x 3 m) of spring pea cv. ‘Daytona’ and spring barley cv ‘Laureate’ were sown as pea-barley mixtures (at 40% and 60% of the standard sowing densities, respectively) and crop monocultures in Scotland (near Dundee) in 2018 and 2019. Pest and disease damage was generally low in both years. Weed pressure (weed %cover or biomass) varied between years and was generally higher in monocultures compared with mixtures due to better crop cover and light interception in mixtures. Aphid abundance on pea was highest in monocultures and was reduced in mixtures; aphid abundance on barley was low. Aphid suppression in mixtures could be due to the lower density of pea plants (creating a physical barrier to aphid spread). Crop biomass and grain yields were highest in mixtures compared with monocultures.



Intercropping with cereals can reduce weed and pest infestation in legume crops and increase overall crop productivity. This is particularly relevant for low input and organic systems where crop protection products are not used. Cereal-supported intercropping of grain legumes could help to reduce production risks and input dependencies associated with growing grain legumes as monocultures.

Even though soybean poses low disease risk to subsequent soybean crops, unlike many other legumes, it should still be grown as part of a crop rotation with a cropping interval of at least three years. The rotation of crops can be very diverse in both organic and conventional farming.



Soybeans have a high value as a preceding crop, as they fix inert atmospheric nitrogen in biologically useful form. They also contribute to good soil structure due to their distinctive root system. In Southern Germany, cereals such as winter and spring wheat, winter barley, spelt and triticale have a very high share in the crop rotation with soybean. As a preceding and following crop, winter wheat is the most used. Due to its slow early development, soybean is poorly competitive against weeds. Therefore, a weed-suppressive and nitrogen-consuming crop (e.g. winter cereal or maize) is suitable as a preceding crop. The subsequent low nitrogen content in the soil stimulates soybean nodulation by rhizobia and supports improved nitrogen fixation. Soy diseases, like Sclerotinia stem rot and Diaporthe, or pests, like bean seed fly, currently have a minor impact in Germany. Nevertheless, cultivation breaks between Sclerotinia host plants (e.g. rapeseed or sunflower) should be at least four years.

Auch wenn Soja im Gegensatz zu vielen andere Leguminosen als selbstverträglich gilt, sollte sie langfristig innerhalb einer Fruchtfolge mit einer Anbaupause von mindestens drei Jahren angebaut werden. Die Abfolge der Kulturen kann sowohl im Ökolandbau als auch in konventioneller Bewirtschaftung sehr vielseitig gestaltet werden.



Die Sojabohne hat einen hohen Vorfruchtwert, da sie als Leguminose atmosphärischen Stickstoff fixiert und durch ihr ausgeprägtes Wurzelsystem eine gute Bodenstruktur hinterlässt. In Süddeutschland haben Getreidearten wie Winter- und Sommerweizen, Wintergerste, Dinkel und Triticale einen sehr hohen Anteil in Soja-Fruchtfolgen. Als Vor- und Folgefurcht wird am häufigsten Winterweizen genutzt. Durch ihre langsame Jugendentwicklung ist Soja nur wenig konkurrenzstark gegenüber Beikräutern. Als Vorfrucht bietet sich daher eine unterdrückende und gelichzeitig stickstoffzehrende Kultur an (z.B. Mais oder Wintergetreide,). Der geringe Stickstoffgehalt im Boden nach Getreide oder Mais regt die Knöllchenbildung durch die Rhizobien an und unterstütz dadurch die Stickstofffixierung. Krankheiten wie Sclerotinia und Diaporthe oder Schädlinge wie die Bohnensaatfliege spielen im Sojaanbau in Deutschland spielen derzeit noch eine untergeordnete Rolle. Trotzdem sollte zu anderen Wirtspflanzen von Sclerotinia (Raps oder Sonnenblumen) eine Anbaupause von mindestes vier Jahren eingehalten werden.

Legumes can play an important role in supporting ecosystem services and biodiversity in agriculture. There is also emerging evidence that the benefits of legume crops to pollinators spill over into the wider landscape. The principal pollinators of legumes are bees, on which legumes are partially dependent for seed set. The extent of that dependency varies between species. Alfalfa, for example, is reliant on bee visitation to release its pollen, whereas peas are largely self-pollinated. Legumes provide bees with carbohydrates in the form of nectar and protein in the form of pollen. Not all bees find it easy to access floral resources; the nectar is located deep within the flower, so that legumes tend to be visited by bees with longer tongues. Most legumes will be used by a variety of bees, even if they are not dependent on them for pollination, and both grain and forage legumes support a range of pollinators and beneficial insects.



Legumes vary in the size and colour of their flowers, in the scent the flowers release, and in the time of year they flower. These characteristics influence which bees will visit. Including a range of legume species on a farm will maximize the number of pollinator species that can benefit and will lengthen the period over which they can do so.



Legumes can be incorporated into cropping as: grain legumes, both as single stands and as intercrops; as green manures and living mulches (as a break crop or undersown in crop fields); as forage legumes, and as components in field margin flower mixes. In margins, non-crop legumes such as birds-foot trefoil and vetches are useful species for pollinators. Including a variety of legumes in different parts of the cropping system will provide diverse opportunities for pollinators across the farm.

Currently, lentil is cultivated on a relatively small acreage in European countries like France and Italy, while in Germany it is only a niche product. The main reason for this is the challenge of cultivation in temperate regions.



One of the biggest difficulties in lentil cultivation is the high risk of lodging. To overcome this problem, lentil is grown with a companion crop in temperate climates. This requires compromises in crop management, which can result in yield losses for one of the two crops. The indeterminate growth poses an additional problem. In Central European regions, the grain moisture content of lentils at harvest is often still above 20%, so immediate drying is required to prevent quality loss. Furthermore, the two crops must be separated from each other using special equipment, e.g. vibrating screens, and drum separators, which are often too costly for an individual farmer.



However, the integration of lentil into the crop rotation is profitable in many respects. Mixed cultivation ensures high biodiversity on the field. The cultivation risk is spread over several crops, so the system is considered more stable, in terms of yield, than monocropping. The possible companion crops as well as the preceding or succeeding crops in the crop rotation are very diverse and make it easy to integrate lentils into existing structures. In addition, lentil is a legume that fixes nitrogen and therefore reduces the need for additional nitrogen fertilisers. Lentil, as a traditional food crop, also has a very high retail value in certain regions and is considered a specialty food. Moreover, consumers appreciate the regional cultivation of this nutrient-rich crop, which further increases demand.

Bisher werden Linsen auf verhältnismäßig kleinen Flächen in verschiedenen europäischen Regionen vor allem in Frankreich und Italien angebaut. In Deutschland ist der regionale Anbau noch eine Nische. Der Grund dafür sind zum Teil die Herausforderungen im Anbau.

Eine der größten Probleme im Linsenanbau ist das hohe Lagerrisiko. Um diesem zu begegnen, wird die Linse in unserem Klima mit einer Stützfrucht angebaut. Dabei müssen Kompromisse beim Management eingegangen werden, die zu Ertragseinbußen bei einer der beiden Kulturen führen können.



Zu dem reifen Linsen im Gegensatz zu Getreide oder Sojabohnen nicht gleichmäßig ab. Daher liegt die Kornfeucht der Linsen bei der Ernte oftmals über 20 %, sodass zur Vermeidung von Qualitätseinbußen eine schnelle Trocknung erforderlich ist. Außerdem müssen durch den Gemengeanbau die beiden Kulturen voneinander getrennt werden, wofür eine spezielle und kostspielige Reinigungstechnik (Trieur, Tischausleser o.ä.) notwendig ist.Neben den genannten Herausforderungen ist der Anbau der Linse in vielerlei Hinsicht gewinnbringend. Der Anbau im Gemenge sorgt für hohe Biodiversität auf dem Feld. Das Anbaurisiko verteilt sich auf mehrere Kulturen, sodass das System als ertragsstabiler gilt als die Reinsaat. Die möglichen Anbaupartner der Linse sowie die Vor- oder Folgefrüchte in der Fruchtfolge umfassen ein breites Artenspektrum, was die Integration der Linsen in vorhandene Anbaustrukturen einfach macht. Da es sich bei Linsen um eine Leguminose handelt, wird der Einsatz von N-Düngung reduziert. Heimische Linsen erzielen außerdem in einigen Regionen Deutschlands sehr hohe Preise. Verbraucher*innen schätzen den regionalen Anbau dieser nährstoffreichen Pflanze, wodurch die Nachfrage wächst.

Intercropping is the growing of two or more crop species simultaneously in the same field during a growing season. This technique can be applied to a mix of non-legume and legume crops, helping to improve crop yield while reducing chemical input costs and supporting sustainable agricultural practices.

In this study, pea and barley were intercropped to test the potential role of pea in improving barley’s mineral nutrition. The field trial was repeated for two consecutive years and compared against a monocrop system and against the application of fertilisers. In the first year, the provision of several mineral nutrients of barley was positively impacted by intercropping, namely, the concentrations of nickel (Ni), manganese (Mn), calcium (Ca), iron (Fe), zinc (Zn), magnesium (Mg), phosphorus (P) and potassium (K) was increased 90%, 50%, 49%, 39%, 24%, 16%, 13% and 9%, respectively. In the second year, only Ni concentration was significantly different (increased). Hence, barley mineral-nutrition qualities are not compromised and may even be greater when intercropped. Intercropping barley (with pea) therefore presents a more resource use-efficient strategy (as no fertiliser was added) to provide mineral nutrient provisions which are greater than those provided by monocrops.

O crescimento em consociação é, por definição, o cultivo de duas ou mais espécies de cultivo simultaneamente, no mesmo campo, durante ciclo de cultivo. Esta técnica pode ser aplicada a uma mistura de culturas não leguminosas e leguminosas, ajuda a melhorar o rendimento da colheita enquanto reduz os custos de aditivos químicos, apoiando deste modo práticas agrícolas sustentáveis.

Neste estudo, culturas de ervilha e cevada foram cultivadas em consociação para testar os potenciais benefícios da ervilha na composição nutricional da cevada. O ensaio de campo foi repetido por dois anos consecutivos e comparado com um sistema de monocultura e com a aplicação de fertilizantes. Observou-se que, no primeiro ano, a provisão de diversos minerais na cevada foi impactada positivamente no sistema de consociação. Nomeadamente, a concentração de níquel (Ni), manganês (Mn), cálcio (Ca), ferro (Fe), zinco (Zn), magnésio (Mg), fósforo (P) e potássio (K) aumentou em cerca de 90%, 50%, 49%, 39%, 24%, 16%, 13% e 9%, respetivamente. No segundo ano, apenas a concentração de Ni foi significativamente aumentada. Portanto, pode-se concluir que a qualidade da nutrição mineral em cevada não foi comprometida e foi até superior em sistema de consociação. A consociação de cevada (com ervilha) é, deste modo, uma estratégia mais eficiente em termos de uso de recursos (uma vez que não foram aplicados fertilizantes) para a provisão de nutrientes, dado que os resultados foram iguais ou superiores aos obtidos em monocultura.

Legumes are characterised by their capacity for Biological Nitrogen (N) Fixation (BNF), which is the ability to fix atmospheric di-N gas (N2) into biologically useful forms. BNF is a function of a symbiotic relationship of the legume with a particular class of soil microbes, collectively referred to as rhizobia. Rhizobia that are compatible with the host infect its roots, and form outgrowths termed ‘root nodules’ within which they carry out BNF. Due to this unique ability legumes do not need synthetic N fertilisers to be productive, since BNF fulfils their N requirements.



The rhizobia normally reside as free-living soil microbes and present a wide variety of types which vary in ecologically important characteristics, such as their persistence in the soil, their ability to compete with other legume-compatible rhizobia to form root nodules, and their BNF capacity. In addition, legumes are often characterised as having unstable yields, and the sub-optimal nature of their rhizobia-legume symbiosis has been implicated as a factor in such instability.



Consequently, specific rhizobia strains have been isolated which allow more consistent and enhanced yields, and these are sold as commercial inoculants. The inoculants are applied to legume seeds just before sowing and comprise very high concentrations of rhizobia due to low on-seed survival.



To optimise the potential of commercial inoculants, TRUE partners have isolated ‘elite’ rhizobia from peas and beans which have both high BNF potential and high on-seed survival. This provision of elite rhizobia inoculants is allied to the availability of molecular tests for rhizobia population densities in soils, and identification of the genetic determinants underpinning their elite potential.

One of the most important drivers of low agricultural productivity in smallholder farms in sub-Saharan Africa is the low use or lack of access to chemical fertilisers. Inoculating leguminous crops with effective rhizobia inoculants can significantly enhance biological nitrogen fixation (BNF), thus complementing or reducing the dependency on nitrogen-based chemical fertilisers. Identification and selection of indigenous rhizobia associated with leguminous crops can lead to the development of effective and affordable rhizobia inoculants that enhance BNF. In Western Kenya, the intercropping of fast-growing nitrogen-fixing leguminous species Tephrosia (Tephrosia candida) and common bean (Phaseolus vulgaris) in combination with maize (Zea mays) crop as part of a rotational agroforestry system, also known as ‘improved fallow’, is widely practised. To optimise BNF, the isolation, identification, and selection of common bean and Tephrosia rhizobia with varying morphological and genetic characteristics have been carried out and used to develop inoculants. These newly developed inoculants significantly improve grain yield and biomass production of common bean and Tephrosia in Western Kenya conditions. Due to the differences in compatibility and effectiveness of common bean and Tephrosia rhizobia, it is crucially important that each species be inoculated with specifically developed inoculants during planting.

Rhizobia are beneficial soil microorganisms that promote the growth of legumes through biological nitrogen fixation (BNF), a process of converting atmospheric nitrogen (N) into plant assimilable nitrogen such as ammonia. Rhizobial inoculants (applied to seed at sowing) have been used for many years in agricultural systems to improve productivity of legume crops, enhance soil fertility and reduce the use of synthetic chemical fertilisers. The utilisation of rhizobial inoculants under field conditions often produces inconsistent results around the world. Research aiming at isolating and characterizing indigenous rhizobia is of great importance for selecting novel strains adapted to the local crop varieties and environmental conditions.



Common bean is an important legume crop that is cultivated as a grain or vegetable crop in many parts of the tropics, subtropics, and temperate regions. Common bean can establish symbiotic relationships with a great number of rhizobial species, but it displays reduced BNF ability compared to other legumes and it is therefore considered a poor nitrogen fixer pulse. Hence, best common bean varieties or landrace need combined with the best rhizobia. Use of the best rhizobia is considered a sustainable agricultural practice to maximise nodulation, BNF and achieving optimal biofertilisation - regardless of soil, climatic and management conditions. To this end, the study of indigenous rhizobia nodulating common bean in Greece ascertained for first time their diversity and identified novel strains, while others were found for first time in European soils.

Τα ριζόβια είναι ωφέλιμοι μικροοργανισμοί του εδάφους, που προωθούν την ανάπτυξη των ψυχανθών μέσω της Βιολογικής Αζωτοδέσμευσης, μια διαδικασία με την οποία το ατμοσφαιρικό άζωτο μετατρέπεται σε αμμωνία, αφομοιώσιμη μορφή αζώτου για τα φυτά. Τα ριζοβιακά εμβόλια έχουν χρησιμοποιηθεί για πολλά χρόνια στα γεωργικά συστήματα για τη βελτίωση της παραγωγικότητας των ψυχανθών, την ενίσχυση της γονιμότητας εδαφών και τη μείωση εφαρμογής συνθετικών χημικών λιπασμάτων. Τα αποτελέσματα από τη χρήση ριζοβιακών εμβολίων στο πεδίο ποικίλουν σε παγκόσμια κλίμακα για διάφορους λόγους. Οι έρευνες που στοχεύουν στην απομόνωση και στον χαρακτηρισμό γηγενών ριζοβίων έχουν μεγάλη σημασία για την επιλογή νέων στελεχών, προσαρμοσμένων στις τοπικές ποικιλίες και στις περιβαλλοντικές συνθήκες. Η φασολιά είναι ένα σημαντικό ψυχανθές που καλλιεργείται παγκοσμίως είτε ως όσπριο ή ως λαχανικό σε πολλά μέρη των τροπικών, υποτροπικών και εύκρατων περιοχών. Παρότι, η φασολιά μπορεί να αναπτύσσει συμβιωτικές σχέσεις με μεγάλο αριθμό ριζοβίων, επιδεικνύει μειωμένη αζωτοδεσμευτική ικανότητα σε σχέση με άλλα ψυχανθή. Η επιλογή κατάλληλων ποικιλιών φασολιάς με μεγάλη ικανότητα αφομοίωσης αζώτου σε συνδυασμό με αποτελεσματικά, ανταγωνιστικά και καλά προσαρμοσμένα στελέχη ριζοβίων σε διαφορετικές εδαφοκλιματικές ζώνες θεωρείται η πιο βιώσιμη γεωργική πρακτική για τη μεγιστοποίηση της ικανότητας σχηματισμού φυματίων και της αφομοίωσης αζώτου στη φασολιά, επιτυγχάνοντας τελικά τη βελτιστοποίηση της βιολίπανσης. Για το σκοπό αυτό, η μελέτη γηγενών ριζοβίων που σχηματίζουν φυμάτια σε φασολιά στην Ελλάδα προσδιόρισε για πρώτη φορά την ποικιλομορφία τους και αποκάλυψε νέα στελέχη, ενώ κάποια άλλα βρέθηκαν για πρώτη φορά σε ευρωπαϊκά εδάφη.

In Denmark, the main protein source for organically farmed pigs is imported organic soya cakes. To mitigate climate impact and better accommodate the principles of organic farming, it is important to identify home-grown alternatives to these imported protein feed. Such alternatives could be fava beans, peas, lupines, or mixed crops (e.g. pea/barley or lupine/spring wheat).

Organic farmers are keen to grow more legumes and mixed crops due to the nitrogen-fixating properties of leguminous plants and to improve self-sufficiency with feed protein. Fava beans are the most important protein crop in Danish organic pig farming, and the cultivation area of fava beans and other legumes has increased in parallel with an expanding organic sector.



The amino acid composition of legumes does not match that of soybeans and their protein content is also lower. However, nutritionally optimised diets can be formulated by using Danish crops only. Diets for organic pigs could be made from a combination of organic grains (wheat, oats, or barley), fava beans and other pulses, rapeseed cake, vitamins and minerals. Organic lactating sows can be fed a diet of 68 % organic grains, 13 % fava beans and 5 % lupines, resulting in a diet containing 15 % protein (130 g digestible protein per kg). Diets for fattening pigs could have 35 % organic grains, 29 % de-hulled oats, and 24 % fava beans, resulting in a diet containing 17.5 % protein (146 g digestible protein per kg).

Importerede økologiske sojakager udgør den væsentligste proteinkilde i økologisk svinefoder i Danmark. For at modvirke klimaeffekten ved import og bedre imødekomme de økologiske principper er det vigtigt at finde alternative danske proteinkilder. Det kunne være økologiske hestebønner, ærter, lupin eller blandsæd (f.eks. ærte/byg eller vårhvede/lupin). Økologiske landmænd vil gerne dyrke flere bælgplanter p.g.a. planternes evne til at fiksere kvælstof og for at øge selvforsyningen med proteinfoder. Hestebønner er den vigtigste proteinafgrøde i økologisk svineproduktion i Danmark, og arealet med bælgsæd er øget i takt med økologiens fremgang.



Aminosyresammensætningen i bælgplanter er ikke på højde med den i sojabønner, og proteinindholdet i bælgplanterne er også lavere end i sojabønner. Alligevel er det muligt at sammensætte ernæringsrigtige foderrationer af udelukkende danske afgrøder. Foderblandinger til økologiske grise kan sammensættes af økologisk korn (hvede, byg eller havre), hestebønner og andre bælgfrugter, rapskager samt vitaminer og mineraler. En foderblanding til diegivende søer kan bestå af 68 % økologisk korn, 13 % hestebønner og 5 % lupin. Det giver et foder med 15 % protein (130 g fordøjeligt protein pr kg). En foderplan til slagtegrise kan bestå af 35 % økologisk korn, 29 % afskallet havre og 24 % hestebønner. Det giver en ration med 17.5 % protein (146 g fordøjeligt protein pr kg).

Atlantic salmon (Salmo salar) is one of the most important farmed fish species in Europe with a production of 1.7 million tons and a value of 8.3 billion Euros in 2019. Fishmeal and fish oil still constitute traditional resources for feeds for fish and crustaceans kept in aquaculture. The fishmeal contains readily digested protein, a complete amino acid profile and provides all nutrients the animals, especially carnivores such as salmon, trout, seabass, seabream, shrimps, require. Demand for fishmeal has risen as the aquaculture sector has expanded, placing pressure on the marine food chain and increasing prices. Legumes are the main alternative to fishmeal, and soya has been main ingredients in fish diets for more than 20 years. The use of other locally produced legumes like lupin or faba bean, which are more suitable in terms of digestibility and sustainability, is now a focus of research.



At the Alfred Wegener Institute, researchers tested faba bean protein concentrate, lupin meal, and lupin concentrate from local sources at inclusion rates of 35% in feeds formulated for Atlantic salmon. Results showed that with an inclusion rate of 35% faba bean protein concentrate, it is possible to replace all soy concentrate. Additionally, the use of fish meal can be reduced to less than half of what is currently used in a conventional diet. The use of regional resources is highly recommended, as neither the growth nor the health of the salmon is affected. Moreover, faba beans are considerably less expensive than soy and fishmeal.

Der Atlantische Lachs (Salmo salar) ist eine der wichtigsten Zuchtfischarten in Europa mit einer Produktionsmenge von 1.7 Mio. t und einem Wert von 8.3 Mrd. € im Jahr 2019. Fischmehl und Fischöl sind nach wie vor die traditionellen Ressourcen für Futtermittel für Fische und Krustentiere, in Aquakulturen. Vor allem Fischmehl enthält leicht verdauliches Eiweiß und ein vollständiges Aminosäureprofil und liefert alle Nährstoffe, die die Tiere, insbesondere Fleischfresser wie Lachs, Forelle, Wolfsbarsch, Meerbrasse und Garnelen, benötigen. Die Nachfrage nach Fischmehl ist mit der Expansion des Aquakultursektors gestiegen und treibt auch die Preise für Fischmehl in die Höhe. Leguminosen sind die Hauptalternative für Fischmehl: Soja ist seit mehr als 20 Jahren neben Fischmehl einer der Hauptbestandteile im Fischfutter. Der Einsatz anderer heimischer Leguminosen wie Lupine oder Ackerbohne, die hinsichtlich der Verdaulichkeit und Nachhaltigkeit besser geeignet sind, steht nun im Fokus der Forschung.



Am Alfred-Wegener-Institut testeten Forscher Ackerbohnenproteinkonzentrat, Lupinenmehl und Lupinenkonzentrat aus lokalen Ressourcen mit einer Beimischungsrate von 35 % in Futtermitteln, die für Atlantischen Lachs formuliert wurden. Die Ergebnisse zeigten, dass bei einer Einschlussrate von 35 % Ackerbohnenkonzentrat das gesamte Sojakonzentrat ersetzt, und zusätzlich der Einsatz von Fischmehl auf weniger als die Hälfte dessen reduziert werden kann, was in einem konventionellen Futtermittel verwendet wird. Der Einsatz der regionalen Ressource ist absolut empfehlenswert, da weder das Wachstum noch die Gesundheit der Lachse beeinträchtigt wird. Zudem sind Ackerbohnen deutlich preiswerter als Soja und Fischmehl.

Common bean (Phaseolus vulgaris L.) is the most widely cultivated legume for human consumption as fresh pods or dried seeds. Its serves as an important nutritional source of proteins, vitamins, fibers and antioxidants. Grafting is a common technique used to protect plants against the adverse effects of biotic and abiotic stressors as well as to increase yield and fruit quality. A grafted plant is a combination of two different genotypes: the scion (upper) and the rootstock (lower). The factors for successful grafting are the compatibility of scion and rootstock, the alignment of upper and lower their vascular systems, appropriate growth stage, and the healing of the grafted plant afterwards. In common bean, grafting is conducted when the two primary leaves are partially expanded. The rootstock is excised below the primary leaves and a vertical slit is made on the stem. The scion (the apical part including the primary leaves) is taken from the donor plants by cutting the stem under the primary leaves. The lower part of the scion stem is cut in V-shape and is inserted in the vertical slit of the rootstock. A grafting clip secures the union, and a stick keeps the grafted plant stable. The plants are then placed in a healing chamber at 26 oC and relative humidity of 90%. These conditions minimise foliar water loss and promote the survival rate of the plants. After the cut ends are permanently united, the relative humidity in the healing chamber is gradually reduced to acclimate the plants.

Το κοινό φασόλι (Phaseolus vulgaris L.) είναι ένα ψυχανθές που καλλιεργείται ευρέως για τους φρέσκους λοβούς ή τους ξηρούς σπόρους του. Αποτελεί σημαντική πηγή πρωτεϊνών, βιταμινών, φυτικών ινών και αντιοξειδωτικών. Ο εμβολιασμός είναι μια καλλιεργητική τεχνική που χρησιμοποιείται για την προστασία των φυτών από βιοτικούς και αβιοτικούς παράγοντες καταπόνησης, καθώς και για να αύξηση της απόδοσης και την ποιότητα αυτής. Ένα εμβολιασμένο φυτό αποτελείται από δύο διαφορετικούς γονοτύπους: αυτόν του εμβολίου (ανώτερο) και αυτόν του υποκειμένου (κατώτερο). Οι παράγοντες που καθορίζουν την επιτυχία ενός εμβολιασμού είναι η συμβατότητα εμβολίου και υποκειμένου, η σύμπτωση των καμβίων τους, η εφαρμογή του εμβολιασμού στο κατάλληλο αναπτυξιακό στάδιο και η σκληραγώγηση του φυτού μετέπειτα. Στην περίπτωση του κοινού φασολιού, ο εμβολιασμός πραγματοποιείται στο στάδιο όπου τα πρώτα φύλλα έχουν μερικώς εκπτυχθεί. Στο φυτό που θα χρησιμοποιηθεί ως υποκείμενο αφαιρείται το ανώτερο μέρος στο σημείο κάτω από τα πρώτα φύλλα και γίνεται μια κάθετη τομή στον εναπομείναντα βλαστό. Το εμβόλιο (το ανώτερο μέρος συμπεριλαμβανομένων των πρώτων φύλλων) αποκόπτεται από το φυτό-δότη και στο βλαστό του δίνεται σχήμα V. Τοποθετείται στην τομή του υποκειμένου και σταθεροποιείται με ένα μανταλάκι εμβολιασμού. Στη συνέχεια, τα φυτά τοποθετούνται σε θάλαμο ανάνηψης με T=26 oC and RH= 90%. Υπό αυτές τις συνθήκες ελαχιστοποιείται η διαφυλλική απώλεια νερού και προάγεται η επιτυχία του εμβολιασμού. Όταν το σημείο τομής συγκολληθεί πλήρως, η σχετική υγρασία στο θάλαμο μειώνεται σταδιακά για να εγκλιματιστούν τα φυτά.

In Hungary, the harvested area of beans, peas and lentils were the largest in 1989 within the whole arable land area (3.5%). However, since the 1990s, this has been declining continuously, now accounting for only 0.5% with production most likely occurring in farms below 1 hectare. During the same period of time, the harvested area of soybeans has doubled, mainly cultivated in large scale farm holdings. These production trends reflect the relatively weak profitability of legumes, the volatility of yields, and the small demand at the national level.

Key stakeholders along the Hungarian legume value chain identified four significant opportunities to overcome the downward spiral of legume production-consumption:



- Research & Development: national funds for R&D activities could be increased through strategic partnerships (e.g. Danube Soy) and EU based research projects.

- Production: GMO-free production is guaranteed at the national level which can result in price premiums. Area-based compensation and greening measures could be applied at a larger scale. Including a wide array of different varieties in production could also benefit climate change adaptation and contribute to new product development.

- Processing: Increasing demand in the healthy, vegetarian and vegan food market segments allowing for innovative product development.

- Consumption: legumes could be given a more substantial role in public food catering as a cheap and sustainable alternative to meat consumption.

Magyarországon 1989 óta csökken a bab, borsó és lencse vetésterülete. 1989-ben a teljes vetésterület 3,5%-át tették ki e növények, napjainkban csupán 0,5%-át, melynek jelentős része 1 hektárnál kisebb gazdaságokban jelentkezik. A szója vetésterülete ugyanakkor folyamatos növekedést mutat – a ’70-es évektől kezdve megduplázódott – és elsősorban nagygazdaságokban jellemző. A termelési trendek a hüvelyes növények viszonylag alacsonyabb profitabilitását, a váltakozó termésátlagokat és a relatíve kicsi hazai keresletet tükrözik.

Kutatásunkban a hüvelyes növények értékláncának főbb magyarországi szereplőit kérdeztük arról, hogy milyen innovációs lehetőségeket látnak e negatív spirálból való kitörésre.



- Kutatás-fejlesztés: az innovációra fordítható források növelhetők a stratégiai partnerségeken (pl. Duna-Szója) és EU-s kutatási projekteken keresztül.

- Termelés: az ország teljes területén garantált a GMO mentes termelés, ami magas minőségű termelést és ár-prémiumot garantálhat. A területalapú és a zöldítést lehetővé tevő támogatások nagyobb mértékű kiaknázása javíthat a termelés profitabilitásán. Az országban fellelhető változatos fajták jó kiindulási alapként szolgálnak a klímaadaptációs termékinnovációkhoz.

- Feldolgozás: az egészséges, vegetáriánus és vegán termékek iránti növekvő kereslet piaci lehetőséget nyit innovatív termékek iránt.

- Fogyasztás: a közétkeztetés számára a hüvelyesek viszonylag olcsó és fenntartható helyettesítői lehetnek a húsalapú élelmiszereknek.

Agri-food system diversity decreased from the early 20th century as mechanisation of food production and processing standardised the commodities grown and processed. Nitrogen fertilizer dependent small-grains (i.e. cereals mainly) became favoured on a large-scale for common baked- (e.g. bread), fermented- (e.g. beer and neutral spirit) and animal-products (e.g. dairy and meat). Consequently, legume-based agri-food systems in Europe declined despite the capacity of legumes for biological nitrogen fixation, high-nutritional quality and -crop rotation values. So, while legume-supported agri-food systems are sustainable, and Europe is heavily legume-reliant, these legumes (mainly soybean) are imported to meet 80 % of demand - and so the potential societal benefits are forfeited. Even where legumes are grown, only a small number of species (e.g. peas and beans) are cultivated. To help develop diversity of agri-food systems in cooler regions of Europe, scientists in Scotland experimented with early maturing (000 genotypes) of soybean. Good grain and whole-crop forage (animal) feed yields were achieved (up to 1.2 and 12 t/ha, respectively). However, this success was only possible where seed for sowing was pre-inoculated with the highest quality (‘Rizoliq TOP’) rhizobia. Good rhizobial seed inoculum is essential to optimise soybean yields. Rhizobia is the common name for soil bacteria that form a symbiosis with legumes to enable natural biological nitrogen fixation.

Hungary is very rich in traditional, local legume-varieties, which are valuable due to their genetic diversity and adaptability. In addition, they bear great yet unexploited gastronomic and market potential thanks to their varied appearance, taste and nutritional content. Despite these recognised benefits, both the registered growing area and the degree of consumption are rather low.



A recent innovation idea aims to assess the possibility of (re)introducing and enhancing traditional/heritage legume varieties and land races into premium gastronomy and to determine the conditions of such re-introduction from producers’ and market's perspectives.



During the TRUE project, a number of selected traditional Hungarian pulse varieties will be tested in small-scale organic production, processed into different types of food products following traditional and new recipes, and tested by gastro-specialists and consumers at various scenes of urban gastronomy. The project will deliver practical knowledge for various players of the short value chain. For organic farmers, the practicalities of the organic cultivation of different legumes species will be collected. For chefs, cooks, food processors and other gastronomic professionals a set of fact sheets of all tested legume species will be provided, showing the nutrition profiles and kitchen usability. For the same stakeholder groups, recipes of meals and durable products will be collected/developed using the different species/land races. Meals and products will be pre-evaluated by professionals and consumers.

Magyarország rendkívül gazdag tradicionális, tájfajta hüvelyesekben, amelyek egyrészt genetikai sokféleségük és alkalmazkodóképességük folytán értékesek, másfelől küllemi és ízbeli változatosságuk, beltartalmi értékeik okán feltételezhetően komoly – ma még kihasználatlan – gasztronómiai potenciállal, és piaci lehetőségekkel is rendelkeznek. Ezen elismert előnyök ellenére mind a regisztrált termőterület, mind a fogyasztás mértéke meglehetősen alacsony.



A közelmúltbeli innovációs ötlet célja, hogy felmérje a hagyományos/tájfajta hüvelyesek prémium gasztronómiába történő bevezetésének és megerősítésének lehetőségét, termelői és fogyasztói perspektívából is meghatározza újbóli bevezetés feltételeit.



A TRUE projekt során hazai tájfajta hüvelyeseket tesztelünk kisüzemi ökológiai termesztésben, ezeket új receptúrák alapján különböző típusú élelmiszerekké dolgozzuk fel, és a gasztro-szakemberek és a fogyasztók bevonásával teszteljük valós gasztronómiai értéküket. A projekt gyakorlati ismereteket nyújt a rövid értéklánc különböző szereplői számára. Az ökológiai gazdálkodók számára a különböző hüvelyes tájfajták ökológiai termesztésének gyakorlati tudnivalóit gyűjtjük össze. A szakácsok, séfek, élelmiszer-feldolgozók és egyéb gasztronómiai szakemberek számára valamennyi vizsgált hüvelyes fajta adatlapja lesz elérhető, amely információt szolgáltat a beltartalmi értékekről, esetleges kockázatokról, és a konyhai felhasználás lehetőségeit. Ugyanezen érdekcsoportok esetében recepteket gyűjtünk és fejlesztünk az ételek és a tartós termékek elkészítésére vonatkozóan. Az ételeket és a termékeket a szakemberek és a fogyasztók előzetesen értékelik.

When developing new products invaluable insight can be gained by conducting consumer focus groups to gage consumers’ acceptance of new product prior to the introduction in the retail market. Following this approach, feedback on how consumers like the new products, how packaging is perceived and, ideas for how to develop the products or marketing efforts can easily be gained.

If a focus group is well planned and executed, it can provide essential information that would support the product and market development efforts of entrepreneurial companies and other businesses. To organise a successful focus group:

• collaborate with staffs with experience in running focus groups e.g. from networks or consumer research businesses;

• clearly outline the questions that the consumers must answer; and,

• serve the products as they would be under real-life conditions, i.e. the soup must be heated and the bread toasted.

It is important to remember that the costs of introducing products that fail in the market are much higher than the costs for running a focus group. Therefore, it is recommended to gather consumers’ feedbacks prior to market launch of a new product using consumer focus groups.

Iværksættere i fødevaresektoren udvikler f.eks. nye produkter, og i nogle anvendes ingredienser som f.eks. linser, ærter, bønner og kikærter. I mange tilfælde ville en iværksætter have fordel af at kende til forbrugernes reaktion på det nye produkt, før det er lanceret i markedet. Ved at introducere det nye produkt i fokusgrupper med forbrugere kan der indhentes meget viden om forbrugernes reaktion på produktets smag, emballering mv. Endvidere kan producenten få ideer til, hvordan produktet kan forbedres eller markedsføres. Ved fokusgrupper er det vigtigt at produktet præsenteres som det ville være i en virkelig situation, f.eks. skal suppen varmes og brødet ristes. Det er også nødvendigt, at der udarbejdes en liste med de spørgsmål, som producenten ønsker, at forbrugerne skal tage stilling til ved fokusgruppen. Når en fokusgruppe er vel planlagt og udført, kan arrangementet tilvejebringe meget brugbar information til en fødevareproducent eller iværksætter. Det anbefales iværksætteren at samarbejde med personer, som har erfaring med at organisere og gennemføre fokusgrupper som f.eks. innovationsnetværk eller virksomheder, der udfører forbrugerundersøgelser. Omkostninger til fokusgruppe er ofte langt mindre end det, som en uheldig produktlancering koster. Det kan derfor anbefales for en producent at samle så meget forbrugerinformation som muligt før et produkt lanceres, og her kan fokusgrupper være et relevant tiltag.

A food network is typically centred round a lead organisation, which coordinates the knowledge exchange and supports relationship building among the network participants. These initiatives can be extremely useful to local entrepreneurs willing to develop a new product. For example, a local food innovation network rooted in Denmark was involved in promoting and supporting product development with the specific aim of using more legumes. A local food entrepreneur (a baker) wanted to develop new recipes for a new gluten-free cake using legume-based flour but had no experience in sourcing suitable suppliers. The network proved its value by first identifying possible types of legume-based flours; and secondly by providing the baker with the contact details of potential suppliers. The baker could then start developing the new gluten-free cakes: brownies made with faba bean flour and dark chocolate. To test consumers' responses, the network invited the baker to showcase his products at a workshop on legume-based product development. This collaborative approach proved to be a win-win-win strategy for the food entrepreneur, the network and the consumers, who all enjoyed the outcome of a successful product development venture.



The key learning points for a network are to understand the practical needs of an entrepreneur and to make use of the network's stakeholder relationships. As for the entrepreneur the learnings are centred around being very specific in identifying in what way the network could be of use. This example demonstrates how collaboration with a food network can help a food entrepreneur. The learnings highlighted here are, however, applicable to other agri-food sectors and to networks in general.

Et fødevarenetværk er oftest opbygget omkring en central organisation med relationer til mange aktører og arbejder for at fremme videndeling mellem netværkets medlemmer. Her illustreres hvordan samarbejde med et fødevarenetværk kan blive en fordel for en iværksætter, der ønsker at udvikle et nyt produkt: glutenfrit bagværk ved brug af mel fra bælgfrugter.



Netværket hjalp iværksætteren med at finde forskellige typer mel baseret på bælgfrugter og kontakter til leverandører af specialmel. Bageren kunne koncentrere sig om at udvikle opskriften på bagværket: brownies med hestebønnemel og mørk chokolade. For at teste om kagerne faldt i forbrugernes smag tilbød netværket, at bageren kunne fortælle om udviklingsforløbet og teste kagerne ved et workshop om bælgfrugter. Kagerne blev en succes. Læren af dette forløb er, at det er vigtigt for et fødevarenetværk at forstå de praktiske udfordringer og behov som en iværksætter står overfor i et udviklingsforløb, samt nyttiggøre de forbindelser som netværket har opbygget. Det er også vigtigt at en iværksætter kan formulere klart, hvordan netværket bedst kan hjælpe i en given situation.

New products based on legumes have to appeal to potential customers in the supermarket. Extrusion is very well suited for the development and production of such foods. Starch or protein containing foods with a moisture content of 15 to 35 % are used for extrusion. High temperatures and pressure expose the mixture to mechanical shear forces in the extruder. Under these conditions, the raw materials are converted into "viscoelastic melts" in a heated cylinder, which are then forced to flow through the die at the end of the extruder. Due to the pressure drop above the die and the subsequent conversion of high-temperature water into steam, the mixture expands drastically at the outlet and results in the desired expanded product.



By means of twin screw extrusion, expanded products such as snacks or crispies (both with up to 75% protein) can be produced from all types of legumes. Crispies are an excellent basis for meat analogues. Pea flakes (60% protein) can be produced by planetary roller extrusion, which can be used like corn flakes in mueslis or eaten directly. During extrusion, all products can be mixed with flavour carriers such as spices, herbs or cocoa and sugar, or these products can also be coated. This combines the healthy properties with the good taste. With another type of extrusion, the pasta technology, pasta can be produced from the legumes. Spices/herbs for different flavours can also be added, e.g. a lentil noodle with curry.

Neue Produkte auf Basis von Leguminosen müssen den potentiellen Kunden im Supermarkt ansprechen. Zur Entwicklung und Herstellung solcher Lebensmittel ist die Extrusion sehr gut geeignet. Stärkehaltige oder proteinhaltige Lebensmittel mit einem Feuchtigkeitsgehalt von 15 bis 35 % werden bei der Extrusion eingesetzt. Durch hohe Temperaturen und Druck wird das Gemenge im Extruder mechanischen Scherkräften ausgesetzt. Unter diesen Bedingungen werden die Rohstoffe in einem beheizten Zylinder in "viskoelastische Schmelzen" umgewandelt, die weiter gezwungen werden, durch die sich am Ende des Extruders befindende Matrize zu fließen. Durch den Druckabfall über der Matrize und die anschließende Umwandlung von Hochtemperaturwasser in Dampf dehnt sich das Gemenge am Ausgang drastisch aus und ergibt das gewünschte expandierte Produkt.



Mittels der Doppelschneckenextrusion können aus allen Leguminosenarten expandierte Produkte wie Snacks oder Crispies (beides mit bis zu 75% Protein) hergestellt werden. Die Crispies sind eine hervorragende Basis für Fleischanaloga. Mittels der Planetenwalzen-Extrusion können Pea-Flakes (60% Protein) hergestellt werden, die wie Corn Flakes in Müslis eingesetzt oder direkt verzehrt werden können. Alle Produkte können bei der Extrusion mit Geschmacksträgern wie Gewürze, und Kräuter oder Kakao und Zucker versetzt werden, bzw. können diese Produkte auch überzogen werden. Das vereint die gesunden Eigenschaften mit dem guten Geschmack. Mit einer anderen Art der Extrusion, der Pasta- Technologie, können aus den Leguminosen Nudeln hergestellt werden. Auch dabei können Gewürze/Kräuter für verschiedene Geschmacksrichtungen beigefügt werden, z.B. eine Linsen-Nudel mit Curry.

Legumes are extremely useful for high protein products such as pasta, snacks and so-called meat analogues (products that are similar to meat, but suitable for vegetarian or vegan consumers). The main technology used and suitable for various applications in this field, is called extrusion. During extrusion, starchy or proteinaceous foods with moisture content ranging from 15 to 35% are subjected to high temperature, high pressure and intensive mechanical shear forces. Under these conditions, the biopolymer-based raw materials are converted in a heated barrel into ‘viscoelastic melts’, which are further forced to flow through a die. Due to the pressure drop across the die and the subsequent conversion of high-temperature water to steam, the molten stream at the exit expands dramatically to give the desired expanded/cooked product. The resulting extrudates can be used in protein-rich cereals or as additives for chocolate and bars. Some of them have been successfully tested as meat replacement ingredients for sports nutrition products and as the basis for vegan meatballs, burger patties, cooked meatballs or sauce Bolognese. Preliminary results obtained within TRUE on the characterisation of the processing properties of protein-rich legume flours for extrusion demonstrated how certain raw material parameters influence the process parameters of extrusion. These findings could be used to develop legume-based protein products for consumers who pursue a healthy, nutritionally aware, sustainable lifestyle.

Leguminosen eignen sich hervorragend als Ausgangsmaterial für proteinreiche Lebensmittel wie Pasta, Snacks und sogenannte Fleischanaloga (fleischähnliche, aber dennoch vegetarische oder vegane Produkte). Die Haupttechnologie, die für verschiedene Anwendungen in diesem Bereich geeignet ist, nennt sich Extrusion. Bei der Extrusion werden stärkehaltige oder proteinhaltige Rohstoffe mit einem Feuchtigkeitsgehalt von 15 bis 35 %, hohen Temperaturen, hohem Druck und intensiven mechanischen Scherkräften ausgesetzt. Durch den Druckabfall über der Matrize und die anschließende Umwandlung von hocherhitztem Wasser in dem Rohstoff in Dampf dehnt sich der Schmelzestrom am Ausgang drastisch aus und ergibt das gewünschte expandierte bzw. gekochte Produkt. Diese Extrudate können in proteinreichen Cerealien oder als Zusatzstoffe für Schokolade und Riegel verwendet werden. Einige werden auch erfolgreich als Fleischersatz für Sporternährungsprodukte und als Basis für vegane Fleischbällchen, Burgerpasteten, Kochklopse oder Sauce Bolognese eingesetzt. Vorläufige Ergebnisse aus dem TRUE Projekt zur Charakterisierung der Verarbeitungseigenschaften proteinreicher Leguminosenmehle für die Extrusion zeigen, wie bestimmte Rohstoffparameter die Prozessparameter beeinflussen. Diese Ergebnisse können nun genutzt werden für die Entwicklung weiterer Leguminosen-Proteinprodukte für Verbraucher, die einen gesunden, ernährungsbewussten und nachhaltigen Lebensstil verfolgen.

Distilled spirits are typically produced from cereals such as barley, wheat, rye or corn due to their relatively easiness of processing, and their large starch nutrient stores which, once broken down by the processes known as 'milling' and 'mashing', can be fermented with yeast to produce high yields of ethanol. Critical to this conversion process is understanding the characteristics of the starch present and the conditions required to break it down into smaller, simple sugars suitable for yeast conversion. In all cases the milled raw material must be heated, in the presence of water, to a material specific temperature. This allows the starch granules to become hydrated and ultimately, burst open exposing the starch and allowing it to be broken down in the presence of enzymes.



Legumes are no different, and studies are being completed to determine the conditions required to convert their native starch into simple sugars. A cooking temperature of 80°C has been identified, which allows the hydration and disruption of most legume starch granules, although variations between legume species exist. It has also been shown that, unlike some cereals, legumes do not have the natural and necessary enzymes, hence the need to add commercially available ones. A combination of high temperature tolerant alpha-amylase and glucoamylase has been shown to be effective in aiding this break down.



The successful conversion of legumes into distilled spirit, most likely to be a neutral base spirit for use in flavoured spirit production, for example gin, opens up a new, premium, high value market for legumes.

In the production of any alcoholic beverage, the starch present and how to degrade it (via gelatinisation, liquefaction and saccharification through enzyme action) to simple sugars that are usable by yeast must be understood. This breaking down of starch occurs during the mashing step of beer making and typically involves a hold at 63-64°C. This temperature allows both starch gelatinisation and enzyme action to occur. For legumes, however, this temperature is too low. A cooking step is therefore required to pre-gelatinise their starch prior to adding in the barley and allowing enzymatic degradation to occur. A cooking temperature of 80°C has been identified, which allows the hydration and disruption of most legume starch granules, although variations between legume species exist. It has also been shown that, unlike some cereals, legumes do not have the necessary enzymes present naturally, hence the need to add commercially available enzymes.



Processing steps:

1) Precook milled legume at a minimum of 80°C for 1 hour in the presence of an alpha-amylase enzyme to avoid viscosity issues.

2) Mash the malted barley etc. as per normal procedures using the cooked legume slurry as a portion of the mashing in water. The temperature of the mashing in water should be adjusted to produce a final mash temperature of 63-64°C, as required for malt enzyme action.

3) Proceed per normal brewery procedures - mash, boil, cool & ferment.

The inclusion of leguminous green manures (also known as fertility building crops or cover crops) can bring many benefits, such as:

• adding nitrogen to the system (as a result of fixation by symbiotic Rhizobia bacteria);

• minimising losses of nitrogen by leaching;

• adding soil organic matter (thus improving structure and water holding capacity);

• reducing the risk of erosion; and,

• suppressing weeds and acting as a break crop to reduce the risk of pests and diseases.



They are therefore of value in both conventional and organic systems but remain underutilised. To get the best results the correct species need to be selected and integrated in the rotation with the cash crops. Protected cropping presents a particular problem due to the high value of the glasshouse or polytunnel infrastructure making it difficult to justify allocating space in the cropping schedule for fertility building crops. Fast growing species that can accumulate biomass rapidly are required, such as true clovers (e.g. crimson, Persian and berseem/Egyptian) or other legumes (e.g. fenugreek, vetch, forage peas and lupins). These could be grown either over the winter period (up to six months) or as much shorter break crops in the spring/summer (possibly between salad crops). Lower growing species (e.g. trefoil) may be suitable for intercropping, which could help with weed control. In colder climates, frost hardiness is an issue – under the protected conditions of a polytunnel the peas and lupins may produce ‘softer’ foliage, than those grown outside, which may be more susceptible to cold nights as the winter progresses. However, frost kill can minimise the need for cultivations to incorporate green manures into the soil, if it occurs after significant biomass has accumulated.

Living mulches, a permanent green crop understory, have potential as a sustainable means of arable production, particularly legumes such as clover. Demonstrated benefits include: improved pest, weed and erosion control, reduced surface water pollution, improved soil structure, fertility, biota and organic matter content, and fixing of atmospheric nitrogen. Living mulches can also promote on-farm pollinators where appropriate flowering understories (such as clover) are used, and support carbon storage and nitrogen provision to the crop, potentially having a significant impact on pollinator conservation and climate change if widely adopted on large arable land areas. Living mulches therefore represent a potentially ‘multifunctional’ solution for production and the environment, with focus on the latter likely to be key to driving market competitiveness and achieving sustainable intensification in the future.



Establishment of crop into living mulches can, however, be problematic. Though direct-drilling can be used, main crop yield often suffers due to competition with the living mulch. Using modern machinery provides an opportunity to overcome this issue; for example, state of the art strip-tillage machinery allows crops to be established in cultivated bands through mulches. A high-powered Baertschi Oekosem ROTOR Strip Till has been shown to effectively perform this task across a range of soil types in the UK, even allowing clover and crop to be co-established in a single pass when a suitable drill is fitted. To date this approach has allowed spring barley yields to be maintained in white clover living mulch polycultures, with further work underway in oilseed rape, winter wheat, maize and a range of other broad-acre crops.

Conventional agriculture has played a significant role in increasing plant productivity to meet the food demands of a growing human population. However, this intensive farming has also led to an increasing dependence on chemical fertilizers, pesticides, herbicides, fungicides, and insecticides, which are expensive and harmful to human health and the environment. Considering the adverse effects of agrichemicals and the problems raised in the agriculture sector by climate change, modern agriculture needs to adopt eco-friendly approaches for food safety and sustainable crop production.

One approach in organic farming is the use of microbial inoculants or biofertilizers. Biofertilizers are formulations containing living microorganisms which, when applied to seed, plant surfaces, or soil, colonize the interior of the plant and promote growth by increasing the availability of nutrients to the host plant or improving water uptake or acting as biocontrol agents. For field application, biofertilizers are applied either directly to the seeds (mixing seeds with carriers or stickers) or indirectly to the soil (as liquid or granular formulations). They are easy-to-use, environmentally friendly, renewable source of plant nutrients, cost-effective relative to chemical fertilizers and can increase crop yields by 20–30%.

Overall, the biofertilizers’ benefits for farmers, the environment and bio-economy have led to the development of a new global market focused on the optimization of biofertilizers’ effectiveness and the development of “tailor-made” inoculants addressing farmers’ needs. This initiative is supported by many countries in Europe as evidenced by the increase number of existing government policies.

Η συμβατική γεωργία έχει διαδραματίσει σημαντικό ρόλο στην αύξηση της γεωργικής παραγωγής προκειμένου να ικανοποιήσει τις απαιτήσεις ενός ολοένα αυξανόμενου πληθυσμού. Όμως, η εντατική καλλιέργεια έχει επίσης οδηγήσει σε μια αυξανόμενη εξάρτηση από χημικά λιπάσματα, παρασιτοκτόνα, ζιζανιοκτόνα, μυκητοκτόνα και εντομοκτόνα, τα οποία είναι δαπανηρά και επιβλαβή στην ανθρώπινη υγεία και το περιβάλλον. Λαμβάνοντας υπόψιν τις αρνητικές επιπτώσεις των αγροχημικών και των προβλημάτων που ανακύπτουν στον γεωργικό τομέα από την κλιματική αλλαγή, η σύγχρονη γεωργία απαιτεί να υιοθετηθούν οικολογικά φιλικές προσεγγίσεις για την ασφάλεια των τροφίμων και τη βιώσιμη γεωργική παραγωγή. Μια προσέγγιση βιολογικής γεωργίας είναι η χρήση μικροβιακών σκευασμάτων ή βιολιπασμάτων. Τα βιολιπάσματα είναι τυποποιημένα σκευάσματα που περιέχουν ζωντανούς μικροοργανισμούς που προωθούν την ανάπτυξη των φυτών. Τα βιολιπάσματα εφαρμόζονται είτε άμεσα στους σπόρους (ανάμιξη σπόρων με κατάλληλα προσκολλητικά μέσα) είτε έμμεσα στο έδαφος (ως υγρά ή κοκκώδη σκευάσματα). Είναι εύκολα στη χρήση, περιβαλλοντικά φιλικά, ανανεώσιμη πηγή φυτο-θρεπτικών στοιχείων, λιγότερο δαπανηρά συγκριτικά με τα χημικά λιπάσματα και μπορούν να αυξήσουν την φυτική παραγωγή κατά 20-30%. Γενικά, τα οφέλη των βιολιπασμάτων για τους αγρότες, το περιβάλλον, και τη βιο-οικονομία έχουν οδηγήσει στην ανάπτυξη μιας νέας παγκόσμιας αγοράς που εστιάζεται στην βελτιστοποίηση της αποτελεσματικότητας των βιολιπασμάτων και στην ανάπτυξη “κατά παραγγελία” σκευασμάτων που να ικανοποιούν τις απαιτήσεις των αγροτών. Η πρωτοβουλία αυτή υποστηρίζεται και προωθείται από πολλές χώρες στην Ευρώπη όπως διαπιστώνεται από τον αυξανόμενο αριθμό πολιτικών δράσεων.

A major concern in organic farming is the availability of nitrogen in the soil. Legumes can provide nitrogen to the soil due to their symbiosis property with nitrogen fixing bacteria, which are spread in the soil. Therefore, legumes can be used in crop rotation schemes in organic agriculture, where they are cultivated for green manure to improve nitrogen availability and soil fertility for the subsequent crop. Legumes cultivated for green manure should be characterized by high nitrogen fixing ability, such as faba bean. Before sowing, a low-input basal dressing is added to the field. The typical plant density is 4.4*105 seeds*ha-1. Then, during the flowering stage when 50% of the flowers are closed, i.e. the maximum nitrogen fixing activity is observed, the crop is incorporated into the soil. In addition, to maximize nitrogen fixing ability, seeds are inoculated with specific nitrogen fixing bacteria. During inoculation, the seeds are soaked in the solution of these bacteria and then sown in a high humidity soil. The inoculation process should be avoided during rainy days due to the high risk of bacterial leaching resulting in inoculation being unsuccessful.

Η μεγαλύτερη πρόκληση στη βιολογική γεωργία είναι η διαθεσιμότητα το αζώτου στο έδαφος. Τα ψυχανθή έχουν την ικανότητα να δεσμεύουν ατμοσφαιρικό άζωτο. Η ικανότητα αυτή είναι αποτέλεσμα της συμβίωσης των ψυχανθών με αζωτοδεσμευτικά βακτήρια που είναι διαδεδομένα στο έδαφος. Επομένως, μπορούν να χρησιμοποιηθούν σε προγράμματα εναλλαγής καλλιεργειών στη βιολογική γεωργία, όπου τα ψυχανθή καλλιεργούνται για χλωρή λίπανση με σκοπό την αύξηση παροχής αζώτου αλλά και γενικότερα την αύξηση της γονιμότητας του εδάφους για την επόμενη καλλιέργεια. Τα ψυχανθή που επιλέγονται να καλλιεργηθούν για χλωρή λίπανση πρέπει να χαρακτηρίζονται από υψηλή αζωτοδεσμευτική ικανότητα, όπως το κουκί. Πριν από την εγκατάσταση της καλλιέργειας προστίθεται στον αγρό βασική λίπανση χαμηλών εισροών. Στην συνέχεια, όταν τα φυτά φθάσουν στην ανθοφορία και το 50% των ανθέων είναι κλειστά, όπου και παρατηρείται η μέγιστη αζωτοδεσμευτική ικανότητα, η καλλιέργεια ενσωματώνεται στο έδαφος. Επιπλέον για να μεγιστοποιήσουμε την αζωτοδεσμευτική ικανότητα μπορούμε να εμβολιάσουμε τα σπέρματα με ειδικά αζωτοδεσμευτικά βακτήρια. Κατά τον εμβολιασμό, τα σπέρματα των ψυχανθών εμβαπτίζονται σε υγρή καλλιέργεια βακτηρίων και στην συνέχεια ακολουθεί η σπορά τους σε έδαφος με υψηλή υγρασία. Μετά την σπορά ακολουθεί παύση άρδευσης για τρεις μέρες ώστε να αποφευχθεί η έκπλυση του βακτηρίου.

Legume cropping is low across Europe, occupying 1-4 % of the arable farmed area. In Scotland, grain legume cultivation accounts for less than 1 % of the arable area. In contrast, barley occupies two thirds of the area and while half is used as animal feed, half serves whisky and beer production. Since these fermentation-based businesses account for £10 billion of UK tax revenue, any loss of barley production area needs careful consideration: especially since domestic barley production falls 20% short of demand. Therefore, a major challenge is: how may legumes be integrated into a barley dominated system? Intercropping barley with peas is an option and intercropped-barley yield can match that of monocropped-barley. However, pea-plant density needs to be controlled to 20% or less of barley plant numbers. Also, more-upright pea varieties should be sought (e.g. maple pea). To safeguard the nitrogen content of the barley to meet malting qualities, no more than 20 kg/ha ammonium sulphate may be added at seed-drilling, and direct-drilling of seed is preferred to help reduce pathogen incidence. Herbicide and pesticide applications can probably be avoided. Seed may be separated after harvest for different markets or used as a mixture for feed on farm. This approach can deliver 20% more yield per unit area and higher gross margins than conventional agronomy.

Intercropping legumes and non-legumes is a widely used strategy that benefits low-resourced small-scale farmers to mitigate food insecurity by improving soil fertility, and hence crop yield. In sub-Saharan Africa, intercropping cereals, commonly maize, with legumes maximizes utilization of land and labour, and attains higher crop yields. Through the application of tacit knowledge to combat the impacts of climate change, farmers choose to grow a combination of non-legume crops such as maize, sorghum, millet, cassava with pulse legumes, namely common bean, cowpea, pigeon pea and/or N2-fixing trees and shrubs such as calliandra (Calliandra calothyrsus), sesbania (Sesbania sesban), tephrosia (Tephrosia candida) and desmodium (Desmodium uncinatum) as a sustainable source of protein, and organic nitrogen through biomass transfer. In on-going trials carried out in Kenya, preliminary results have demonstrated that as well as being a source of biologically fixed nitrogen, legumes also deter or suppress germination of Striga hermonthica, a hemiparasitic plant that retards the productivity of cereal crops, especially in infertile soils. The trials also show that inoculation of the legumes enhances the growth and productivity of the legumes, especially the pulses. Embracing on the use of rhizobia-inoculated tephrosia as a fallow species can help eradicate Striga hermonthica and improves soil fertility.

Agriculture in Ireland is a major source of greenhouse gas (GHG) emissions and removal of the milk quota has stimulated a rapid increase in milk output. This has made it more difficult to meet GHG reduction targets, although several avenues for lowering GHG emissions from dairy farms while maintaining profitability exist. Available 'off the shelf' technologies include:

(1) significantly reducing fertiliser Nitrogen (N) input and rely on white clover nitrogen fixation in the paddocks to make up for the reduced N input;

(2) using protected (N-(n-butyl) triphosphoric triamide-treated) urea as a fertiliser instead of calcium ammonium nitrate and urea;

(3) using a trailing shoe instead of the commonly used downward-facing splash plate for slurry application; and,

(4) selecting high breeding index cows, resulting in an increased milk and milk solids output.



The current Irish national average emission is 1.23 kg CO2-equivalents per litre milk. To reduce this number, while maintaining current levels of milk output per ha and profitability, at the Solohead Research Farm, a control group having standard farm practices is being compared with a Low Carbon (LC) group where the above-mentioned strategies were implemented simultaneously. Results to date show a 17% emissions reduction in the LC system, as well as higher milk and milk solids output with lower inputs. The decreased inputs and increased outputs also help to maintain or even improve farm profitability.

Fishmeal and fish oil still are traditional resources for feeds for fish and crustaceans grown in aquaculture. The fishmeal in particular contains readily digested protein and a complete amino acid profile. This provides all nutrients the animals, especially carnivores like salmon, trout, seabass, seabream, shrimps, need. The demand for fishmeal has risen as the aquaculture sector has expanded, which has driven up prices for fishmeal. Legumes are the main alternative to fishmeal: soya has been one of the main ingredients in fish diets besides fishmeal for more than 20 years. The use of other locally produced legumes such as lupin or faba bean, which are more suitable in terms of the digestibility and sustainability, is now a focus of research.

At the Alfred Wegener Institute, researchers tested dehulled lupin meal at high diet inclusion rates (10, 20 and 30%) in feeds formulated for white leg shrimp, which is the most produced shrimp species worldwide. Results showed that an inclusion rate of 10% lupin meal is more than recommendable as this boosted immune response, showed excellent growth and lowered diet cost by 7 %.

Fischmehl und Fischöl sind nach wie vor traditionelle Ressourcen in Futtermitteln für Fische und Krebstiere in Aquakulturen. Fischmehl enthält insbesondere leicht verdauliches Protein, ein vollständiges Aminosäureprofil und liefert alle Nährstoffe, die die Tiere, insbesondere Fleischfresser wie Lachs, Forelle, Seebarsch, Goldbrasse, Garnelen, benötigen. Die Nachfrage nach Fischmehl ist durch das enorme Wachstum des Aquakultursektors stark angestiegen, und auch die Preise für Fischmehl steigen. Hülsenfrüchte sind die Hauptalternative für Fischmehl: Neben Fischmehl ist Soja seit über 20 Jahren einer der Hauptbestandteile der Fischdiät. Die Verwendung anderer lokal hergestellter Hülsenfrüchte wie Lupinen oder Ackerbohnen, die hinsichtlich Verdaulichkeit und Nachhaltigkeit besser geeignet sind, ist nun ein Forschungsschwerpunkt. Am Alfred-Wegener-Institut wurde geschältes Lupinenmehl mit hohen Anteilen (10, 20 und 30%) in Futtermitteln für den „White Leg Shrimp“, die weltweit am meisten produzierte Garnelensorte, getestet. Die Ergebnisse zeigen, dass ein Anteil von 10% Lupinenmehl im Futtermittel mehr als empfehlenswert ist, da so das Immunsystem angeregt, die Diätkosten um 7% gesenkt und ein hervorragendes Wachstum erzielt wird.

Lentil cultivation is not easy in temperate climates, such as in Germany. Lentil plants have an indeterminate growth and small, weak tendrils. Under summer drought, as in the Mediterranean region, lentil growth stops due to water shortage, and plants do not lodge. Under humid conditions, the lentils continue to grow, and plants lodge easily due to stem instability. Hence, lentils need a companion crop to stabilize the plants in these climates. Since crop water content at harvest is often ≥20% in Germany, immediate drying is crucial. Lentils and the companion crop must then be separated using adequate technical facilities.

Farmers should consider the following issues when selecting companion crops for lentils:

• Is the growing season similar?

• Is the sowing depth similar?

• Is the leaf architecture of the companion crop suitable to reduce lodging?

• How does the companion crop compete with lentils versus weeds?

• Are facilities available to dry the harvested crop?

• Are facilities available to clean and separate lentil seeds from companion crop seeds?

• Is there a market and a satisfactory price for the harvested companion crop?

Similarity of growing seasons, suitable phenotype of the companion crop, and availability of facilities for drying, cleaning and separating are basic requirements. For sowing depth, a compromise can be achieved, or seeding carried out in two passes or with special seeders. Competition of companion crops with lentils and weeds can be adapted by the mixing ratio and number of plants m-2. A mixed cropping system for lentils contributes to species diversity and thus to overall ecological requirements.

Im feucht-gemäßigten Klima ist der Linsenanbau nicht ganz einfach. Da die Pflanzen stetig weiter in die Länge wachsen und nur schwach ausgebildete Ranken haben, neigen sie zum Lagern. Das geschieht nicht in Regionen mit Sommertrockenheit, da hier die Pflanzen mit zunehmender Wasserknappheit das Wachstum einstellen und klein und standfest bleiben. Im feuchten Klima aber ist eine Stützfrucht erforderlich, um den Linsenpflanzen einen Halt zu bieten. Auch ist hier eine Trocknung des Ernteguts meistens zwingend erforderlich, da der Wassergehalt der Linsen oft mehr als 20 % beträgt. Eine weitere Herausforderung ist die Trennung der Samen von Linse und Stützfrucht.

Bevor Landwirte in den Linsenanbau einsteigen, sind für die Wahl der Stützfrucht folgende Kriterien zu berücksichtigen:

• Decken sich die Wachstumsperioden von Linsen und Stützfrucht?

• Ist die Saattiefe gleich?

• Ist die Stützwirkung ausreichend?

• Wie stark ist die Konkurrenz der Stützfrucht gegenüber Linsen und Unkraut?

• Sind Trocknungs- und Reinigungsanlagen verfügbar?

• Gibt es einen Markt und einen hinreichenden Preis für das Erntegut der Stützfrucht?

Grundvoraussetzungen für den Gemengeanbau von Linsen mit Stützfrucht sind gleiche Wachstumszeiten, hinreichende Stützwirkung und die Verfügbarkeit von Reinigungs- und Trocknungsanlagen. Bei der Saattiefe muss entweder ein Kompromiss eingegangen werden, oder die Gemengepartner werden in getrennten Arbeitsgängen bzw. mit einer speziellen Sämaschine zusammen gesät. Die Konkurrenz der Stützfrucht kann über die Saatstärke angepasst werden.

Insgesamt trägt der Mischanbau von Linsen im Gemenge zur Artenvielfalt bei und zur ökologischen Wertigkeit von Ackerflächen bei.

Hydroponic cultivation of grain legumes such as common beans aims achieve a more sustainable and less costly production by reducing inorganic nitrogen (N) input and without compromising yield. This is possible in practice based on the unique capability of legumes to form symbiotic relationships with bacteria commonly called ‘rhizobia’. Rhizobia reside within root nodules where they fix inert atmospheric di-nitrogen gas into forms that can be used by the plants. Hence, while in nature legumes plants can meet their entire N requirements from N fixation, we found that in hydroponic cultivation systems, provision of inorganic N helped the productivity. During growth inorganic N should be supplied at levels of up to 60% of requirement. However, from the flowering stage onwards, when nitrogen fixation begins to diminish, inorganic N-supply can be limited to approximately 25-30 % of the full requirement. This research has shown that such a reduction resulted in fewer larger nodules, that yield was not compromised (compared to plants supplied with 100% inorganic N (i.e. without rhizobia inoculation)). Thus, applying up to 60% of the grain legumes full requirements in inorganic N until the flowering stage, and 25-30% thereafter can be an effective strategy for the efficient hydroponic cultivation of common beans, and could reduce inorganic N fertiliser requirement.

Στην υδροπονική καλλιέργεια ψυχανθών, όπως το φασόλι, η κύρια στρατηγική για βιωσιμότερη και οικονομικότερη καλλιέργεια είναι η μείωση του ανόργανου αζώτου στο θρεπτικό διάλυμα, χωρίς να μειωθεί η απόδοση της καλλιέργειας. Αυτό είναι πρακτικά εφικτό εξαιτίας της μοναδικής ικανότητας των ψυχανθών να σχηματίζουν συμβιωτικές σχέσεις με βακτήρια που ονομάζονται «ριζόβια». Τα ριζόβια βρίσκονται στη ρίζα σε σχηματισμούς που ονομάζονται φυμάτια, όπου μετατρέπουν το ατμοσφαιρικό άζωτο σε βιοαπορροφήσιμη μορφή. Ως εκ τούτου, ενώ στη φύση τα ψυχανθή καλύπτουν τις ανάγκες τους σε άζωτο δεσμεύοντάς το, διαπιστώθηκε ότι στα υδροπονικά σύστηματα καλλιέργειας η παροχή ανόργανου αζώτου αύξησε την παραγωγή. Κατά το στάδιο ανάπτυξης, τα φυτά θα πρέπει να τροφοδοτούνται με άζωτο που να καλύπτει το 50-60% των συνολικών αναγκών του φυτού. Ωστόσο, από το στάδιο της άνθησης και μετά, που η εγκατάσταση των ριζοβίων έχει σχεδόν ολοκληρωθεί και μέχρι το τέλος της καλλιέργειας, το άζωτο μπορεί να μειωθεί τόσο που να καλύπτει το 25-30% των συνολικών αναγκών. Η παρούσα έρευνα έδειξε, ότι η μείωση του αζώτου είχε ως αποτέλεσμα το σχηματισμό λιγότερων αλλά μεγαλύτερων φυματίων χωρίς μείωση της ανάπτυξης και της απόδοσης (σε σύγκριση με φυτά στα οποία καλύφθηκε το 100% των αναγκών τους σε άζωτο (π.χ. χωρίς να εμβολιαστούν με ριζόβια)). Έτσι, η εφαρμογή ανόργανου αζώτου σε ποσοστό που να καλύπτει το 60% των συνολικών αναγκών των φυτών μέχρι το στάδιο της άνθησης και σε ποσοστό 25-30% για το υπόλοιπο διάστημα, μπορεί να αποτελέσει μια στρατηγική καλλιέργεια ψυχανθών που μειώνει την παροχή αζωτούχων λιπασμάτων.

Currently showing page content in native language where available

Contacts

Project coordinator

  • Project coordinator

Project partners