project - Research and innovation

SUWANU EUROPE- Network for effective knowledge transfer on safe and economic wastewater reuse in agriculture in Europe (2 of 2)
SUWANU EUROPE- Network for effective knowledge transfer on safe and economic wastewater reuse in agriculture in Europe (2 of 2)

Currently showing page content in native language where available

Context

Water scarcity is a global problem affecting a wide range of European regions, far beyond those traditionally considered as water scarce and arid areas. Competition for traditional water resources is posing new challenges to citizens, economies and ecosystems that rely on current water supplies. In particular, agriculture irrigation accounts for the highest water use in Europe, reaching an average of 44 % of the total water abstractions in Europe and up to 70 % in Southern European regions.



In this context, urban reclaimed water is increasingly been recognized as an additional resource with a large potential for alleviating water scarcity, particularly in coastal areas. Urban reclaimed water is considered a highly reliable water supply, largely independent from the irregular rain patterns of Southern Europe and able to satisfy peak water demands for irrigation, particularly during the summer season.

Objectives

The general objective of SuWaNu Europe is to promote the effective exchange of knowledge, experience and skills between practitioners and relevant actors of water reuse in agriculture, so that direct applicable technological and organizational solutions are widely and balanced disseminated all around Europe resulting in a more resilient agricultural sector to cope with water scarcity and climate change effects.

Objectives

See objectives in English

Activities

Characterization of 8 target regions to assess the potential of reclaimed water use in agriculture

Database of water reuse projects in Europe

Factsheets and practice abstracts with successful projects and case studies from water reuse pioneers

SWOT and AKIS analysis in each target region as the strategy basis

Participatory workshops with key actors to identify the different views and interests of stakeholders for the co-creation of strategies

Action Plans with specific objectives, recommendations and activities adapted to the regional context that facilitate the implementation of innovative solutions

Online courses and training sessions for different stakeholders

Activities

See project activities in English

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project - Thematic network
Location
Main geographical location
Málaga

EUR 1 999 926.00

Total budget

Total contributions including EU funding.

Currently showing page content in native language where available

52 Practice Abstracts

Biomass waste is treated in a three-step process. First a mixture of C-rich industrial wastes and grey wastewater are used to produce organic acid, e.g., citric acid and itaconic acid, via yeast-based biotechnological process. In the second step, after extracting citric acid from the mixture, residues are used for biogas production through codigestion with industrial C-rich substrate. As an output of this process, biogas is produced for power generation or heating. In the final step, the anaerobic sludge will be treated in a hydrothermal carbonization (HTC) process transforming waste biomass to valuable ready-to-use soil fertilizers. The combination of these processes enables material and energetic waste recycling, thus contributing to closing life cycles in the bio-economy.

Process results are excellent and indicate that the INCOVER yeast-based process is a very suitable option for organic acid and biogas production. Current activities are devoted to optimising the yeast bioprocess. This case study is being implemented in Germany.

Biomassa-afval wordt verwerkt in een proces van drie stappen. Eerst wordt een mengsel van C-rijk industrieel afval en grijs afvalwater gebruikt om organisch zuur te produceren, bijvoorbeeld citroenzuur en itaconzuur, via een op gist gebaseerd biotechnologisch proces. In de tweede stap worden, na extractie van citroenzuur uit het mengsel, de residuen gebruikt voor de productie van biogas door middel van covergisting met industrieel C-rijk substraat. Als output van dit proces wordt biogas geproduceerd voor energieopwekking of verwarming. In de laatste stap zal het anaërobe slib worden behandeld in een hydrothermisch carbonisatieproces (HTC) waarbij afvalbiomassa wordt omgezet in waardevolle kant-en-klare bodemmeststoffen. De combinatie van deze processen maakt recycling van materiaal en energetisch afval mogelijk en draagt zo bij aan het sluiten van levenscycli in de bio-economie.

De procesresultaten zijn uitstekend en geven aan dat het op gist gebaseerde INCOVER-proces een zeer geschikte optie is voor de productie van organisch zuur en biogas. De huidige activiteiten zijn gericht op het optimaliseren van het gistbioproces. Deze case study wordt uitgevoerd in Duitsland.

PHA is produced through a two stage anaerobic-photosynthetic HRAP system. Two HRAP (High Rate Algae Pond) systems (32 m²) are operated with an innovative strategy consisting of pulse feeding of municipal wastewater pretreated in an UASB reactor with molasses as COD source. After several weeks of operation, PHA accumulating purple bacteria are selected. Then biomass separation is done by two clarifiers. After PHA production, the remaining biomass is transformed into biogas using thermal pretreatment and an anaerobic co-digestion process. Agro wastes and sewage sludge are used as co-substrates. Biomethane is produced by an innovative biogas upgrading system through photosynthetic fixation of CO2 as algal biomass using digestates as a source of nutrients. An evaporative system by planted filter is used for digestate stabilization and nutrient recovery. A demo full-scale 3000 m² HRAP has been installed at El Toyo WWTP (Almería, Spain) to obtain irrigation quality water. This system is treating pre-treated wastewater. This is the first full-scale HRAP that treats wastewater directly without any anaerobic or primary clarifiers. Waste water is simply pretreated by grit and grease removal while a symbiotic culture of algae-bacteria is responsible for high removal of the organic matter (>95% as BOD5), N (>70%) and P (>85%). The HRAP is mixed by a paddle wheel or alternatively by a submersible mixer system patented by Aqualia: the LEAR® (Low Energy Algae Reactor) which is able to reduce mixing energy by 80%. After harvesting by flotation, the effluent is treated using planted filters with natural material for enhancing P and N recovery. Irrigation water is obtained and reused with solar anodic oxidation disinfection and a smart irrigation system.

PHA wordt geproduceerd via een tweedelig anaeroob-fotosynthetisch HRAP-systeem. Gemeentelijk afvalwater voorbehandeld in een UASB-reactor wordt toegevoerd aan 2 HRAP-systemen (High Rate Algae Pond) (32 m²). Na enkele weken werking worden PHA-accumulerende paarse bacteriën geselecteerd. Vervolgens wordt biomassa gescheiden door twee bezinkers. Na de productie van PHA wordt resterende biomassa omgezet naar biogas via thermische voorbehandeling en een anaerobe covergisting. Agro-afval en zuiveringsslib worden gebruikt als cosubstraten. Biomethaan wordt geproduceerd door een biogasopwaarderingssysteem via fotosynthetische fixatie van CO2 als algenbiomassa met digestaat als nutriëntenbron. Een verdampingssysteem wordt gebruikt voor de stabilisatie van het digestaat en het terugwinnen van voedingsstoffen. Een demo HRAP van 3000 m² is geïnstalleerd bij de El Toyo RWZI (Almería, Spanje) om water van irrigatiekwaliteit te verkrijgen. Dit systeem behandelt voorbehandeld afvalwater en is de eerste full-scale HRAP die afvalwater direct behandelt zonder anaerobe of primaire zuiveraars. Afvalwater wordt eenvoudig voorbehandeld door grit- en vetverwijdering terwijl een symbiotische kweek van algen-bacteriën verantwoordelijk is voor een hoge verwijdering van de organische stof (>95% BZV5), N (>70%) en P (>85%). De HRAP wordt gemengd door een schoepenrad of door een dompelmixersysteem die de mengenergie met 80% kan verminderen. Na oogst door flotatie wordt het effluent behandeld door filters met natuurlijk materiaal om de P- en N-terugwinning te verbeteren. Irrigatiewater wordt verkregen en hergebruikt met zonne-anodische oxidatie-desinfectie en een slim irrigatiesysteem. 

The photobioreactor plant is installed in the UPC Agrópolis campus, located at the municipality of Viladecans (Barcelona). The plant is composed of 3 horizontal photobioreactors (PBRs) of 11m³ each operating in parallel. During almost one year PBRs were daily fed with 6,9 m³ of urban wastewater and agricultural runoff and the plant produced around 2 kg per day of microalgae biomass dominated by cyanobacteria. Nowadays, the 3 PBRs are operated in series and fed with 2,3 m³ of agricultural runoff in order to select and increase the concentration of cyanobacteria (in the first PBR) and to force them to accumulate polyhydroxybutyrate (in the second and third PBRs). The biomass harvested from the third PBR is treated together with secondary sewage sludge in an anaerobic digester of 0,8 m³, that currently produces around 150 L of biogas per day. The sludge from the anaerobic digester (25 L/d) is subsequently treated in a sludge treatment wetland, while the water coming from the settler (2 m³/d) is treated in nutrients recovery columns based in sol-gel coating and then disinfected by a solar-driven system based on ultrafiltration. Resulting effluent is applied for irrigation in a 125 m² field planted with sunflowers.

De fotobioreactorfabriek is geïnstalleerd op de UPC Agrópolis-campus, gelegen in de gemeente Viladecans (Barcelona). De installatie bestaat uit 3 horizontale fotobioreactoren (PBR's) van 11 m³ die elk parallel werken. Gedurende bijna een jaar werden PBR's dagelijks gevoed met 6,9 m³ stedelijk afvalwater en landbouwafval en produceerde de plant ongeveer 2 kg per dag microalgen-biomassa die wordt gedomineerd door cyanobacteriën. Tegenwoordig worden de 3 PBR's in serie bedreven en gevoed met 2,3 m³ landbouwafval om de concentratie van cyanobacteriën (in de eerste PBR) te selecteren en te verhogen en ze te dwingen polyhydroxybutyraat te accumuleren (in de tweede en derde PBR). De biomassa die uit het derde PBR wordt geoogst, wordt samen met secundair zuiveringsslib behandeld in een anaerobe vergister van 0,8 m³, die momenteel ongeveer 150 L biogas per dag produceert. Het slib van de anaërobe vergister (25 L/d) wordt vervolgens behandeld in een slibbehandelingswetland, terwijl het water dat uit de bezinker komt (2 m³/d) wordt behandeld in nutriëntenterugwinningskolommen op basis van sol-gelcoating en vervolgens gedesinfecteerd door een zonne-aangedreven systeem op basis van ultrafiltratie. Het resulterende effluent wordt toegepast voor irrigatie in een veld van 125 m² beplant met zonnebloemen. 

The INCOVER concept has been designed to move wastewater treatment from being primarily a sanitation technology towards a bio-product recovery industry and a recycled water supplier. Three added-value plants treating wastewater (municipalities, farms and food and beverage industries) at three demonstration sites will be implemented, assessed and optimised concurrently. The plants will be implemented at demonstration scale in order to achieve Technology Readiness Level of 7-8 to ensure straightforward up scaling to 100,000 population equivalents. INCOVER added-value plants will generate benefits from wastewater through bio-production (bio-plastics and organic acids) via microalgae/bacteria and yeast biotechnology; near-zero-energy plant providing upgraded bio-methane via pre-treatment and anaerobic co-digestion systems; and chemical recovery (N, P) and reclaimed water via adsorption, biotechnology based on wetlands systems and hydrothermal carbonisation. To improve added-value production efficiency, the project will include monitoring and control via optical sensing and soft-sensors approach. It will reduce operation and maintenance cost of wastewater treatment and the energy demand. In addition, strategies to facilitate the market uptake of INCOVER innovations will be carried out in order to close the gap between demonstration and end-users. A wastewater specific Decision Support System methodology will be tailored to these technologies and will provide data and selection criteria for a holistic wastewater management. An estimated turnover of 188 million euros for the users is expected after the initial exploitation strategy of 5 years implementing 27 INCOVER solution projects.

Het INCOVER-concept is ontworpen om afvalwaterzuivering te veranderen van voornamelijk een sanitaire technologie naar een industrie voor het terugwinnen van bioproducten en een leverancier van gerecycled water. Drie installaties met toegevoegde waarde voor de behandeling van afvalwater (gemeenten, boerderijen en voedsel- en drankenindustrie) op drie demonstratielocaties zullen gelijktijdig worden geïmplementeerd, beoordeeld en geoptimaliseerd. De installaties zullen op demonstratieschaal worden geïmplementeerd om een Technology Readiness Levelvan 7-8 te bereiken om een eenvoudige opschaling tot 100.000 inwonersequivalenten te garanderen. Deze installaties halen meerwaarde uit afvalwater door bioproductie (bioplastics en organische zuren) via microalgen/bacteriën en gistbiotechnologie, door een bijna-energieneutrale installatie die opgewaardeerde biomethaan levert via voorbehandeling en anaërobe co-vergistingssystemen, en door chemische terugwinning (N, P) en teruggewonnen water via adsorptie en biotechnologie op basis van wetlands-systemen en hydrothermische carbonisatie. Om de productie-efficiëntie te verbeteren wordt het project gemonitord via optische detectie en virtuele sensoren. Het zal de exploitatie- en onderhoudskosten van afvalwaterzuivering en de energievraag verminderen. Een afvalwaterspecifiek Decision Support System zal worden afgestemd op deze technologieën en zal gegevens opleveren voor een holistisch afvalwaterbeheer. Een geschatte omzet van 188 miljoen euro voor de gebruikers wordt verwacht na de initiële exploitatiestrategie van 5 jaar implementatie van 27 INCOVER projecten.

Growers are not always familiar with a well-considered irrigation in terms of which parcels have priority to irrigate and how much water is needed for this. Attention must also paid to the availability of high-quality irrigation water and the economic feasibility of using various alternative water sources for agricultural purposes. The concrete focus is on treated waste water from both the deep-frozen vegetable and potato processing sectors and the treated urban waste water from Aquafin. The current moisture status of the soil and the water requirement of the crop is taken into account. Spread across Flanders, various practical plots with spinach, potatoes and cauliflower will be closely monitored from 2018 onwards with soil moisture sensors, periodic soil and crop samples and satellite images. The collected data on current water availability and crop growth will be used as input for a crop growth model specifically developed for irrigation purposes. This allows prediction of the water needs of the crops, so that irrigation can be done more efficiently. This information is then included in a user-friendly online platform in which the irrigation needs at plot level will be visualized. To gain insight into the feasibility of using alternative water sources, an irrigation trial was started in which different types of treated wastewater are used for irrigating potatoes, spinach and cauliflower to investigate the effect of frequent repeated irrigation with alternative water sources on yield and quality during cultivation and at harvest. Attention must be paid to the long-term effects of irrigating with these water sources on the soil. The project focuses on purified waste water from both the deep-frozen vegetable and potato processing sectors and the purified water from Aquafin. The existing online platform watchITgrow will be expanded with functionalities so that irrigation needs and the supply of alternative water sources of the right quality can be coordinated. The individual farmer will be able to freely consult this Flemish-wide platform so that he/she can determine when and how much should be irrigated on a specific plot and which alternative water sources are available nearby in the event of a water shortage.

Telers zijn niet altijd bekend met welke percelen prioriteit hebben om te irrigeren, hoeveel water daarvoor nodig is, de beschikbaarheid van hoogwaardig water, en de economische haalbaarheid van het gebruik van alternatieve waterbronnen. Verspreid over Vlaanderen worden vanaf 2018 verschillende praktijkpercelen met spinazie, aardappelen en bloemkool gevolgd met bodemvochtsensoren, periodieke bodem- en gewasmonsters en satellietbeelden. De verzamelde gegevens over de huidige waterbeschikbaarheid en gewasgroei worden gebruikt als input voor een gewasgroeimodel dat specifiek is ontwikkeld voor irrigatiedoeleinden. Hierdoor kan de waterbehoefte van de gewassen worden voorspeld, zodat er efficiënter kan worden beregend. Deze informatie wordt vervolgens opgenomen in een gebruiksvriendelijk online platform waarin de irrigatiebehoefte op perceelniveau wordt gevisualiseerd. Om inzicht te krijgen in de haalbaarheid van het gebruik van alternatieve waterbronnen is een irrigatieproef gestart waarbij verschillende soorten gezuiverd afvalwater worden gebruikt voor de irrigatie van deze gewassen om het effect te onderzoeken van frequent herhaalde irrigatie met alternatieve waterbronnen op opbrengst en kwaliteit tijdens teelt en bij de oogst. Het bestaande online platform watchITgrow wordt uitgebreid met functionaliteiten zodat de irrigatiebehoefte en het aanbod van alternatieve waterbronnen van de juiste kwaliteit op elkaar kunnen worden afgestemd. De individuele landbouwer kan dit Vlaams brede platform vrij raadplegen zodat hij kan bepalen wanneer en hoeveel op een bepaald perceel moet worden beregend en welke alternatieve waterbronnen in de buurt beschikbaar zijn in geval van watertekort.

Soil Service of Belgium, Boerennatuur Vlaanderen, Aquafin and the hydrology research group of the Vrije Universiteit Brussel are investigating whether treated wastewater via underground infiltration can offer solace to drought. In Molenbeersel (Kinrooi), these partners are building a pilot site for sub-irrigation consisting of several agricultural plots next to the sewage treatment plant. In this project Aquafin will treat domestic waste water to the quality of surface water in streams. That water will be used in agriculture through a sub-irrigation system. Sub-irrigation is a technique in which water is introduced into the soil of a plot via an underground infiltrating pipe network through level-controlled drainage. The water is led into the drains and infiltrates into the soil through the openings in the drains. The soil becomes wetter and the groundwater level rises. This contributes to the crop's water requirements, which should benefit the harvest. Sub-irrigation in itself is a simple technique. The combination with the reuse of treated waste water makes this project special. The specific investigational topics are the impact on groundwater levels and water levels in waterways; the impact on water quality of the groundwater and waterways; the impact on the soil; how efficient the technique is in comparison with conventional above-ground irrigation; the impact on the harvest and the quality of the crops; how consumers feel about the reuse of treated waste water. The project will run until the end of February 2023 and is financed by the European Agricultural Fund for Rural Development and the province of Limburg. 263,000 euros of co-financing has been made available from Flanders, Europe and the province of Limburg.

Bodemdienst België, Boerennatuur Vlaanderen, Aquafin en de onderzoeksgroep hydrologie van de Vrije Universiteit Brussel onderzoeken of gezuiverd afvalwater via ondergrondse infiltratie soelaas kan bieden bij droogte. In Molenbeersel (Kinrooi) bouwen deze partners naast de rioolwaterzuiveringsinstallatie een proefterrein voor subirrigatie bestaande uit meerdere landbouwpercelen. In dit project zal Aquafin huishoudelijk afvalwater zuiveren tot de kwaliteit van beekwater. Dat water wordt via een subirrigatiesysteem in de landbouw gebruikt. Subirrigatie is een techniek waarbij water via een ondergronds infiltrerend leidingnetwerk via peilgestuurde drainage in de bodem van een perceel wordt gebracht. Het water wordt naar de drains geleid en infiltreert via de openingen in de drains in de grond. De bodem wordt natter en het grondwaterpeil stijgt. Zo krijgen de gewassen meer vocht, wat de oogst ten goede moet komen. Subirrigatie op zich is een eenvoudige techniek. De combinatie met het hergebruik van gezuiverd afvalwater maakt dit project bijzonder. De specifieke onderzoeksthema's zijn de effecten op grondwaterstanden en waterstanden in vaarwegen; de impact op de waterkwaliteit van het grondwater en de vaarwegen; de impact op de bodem; hoe efficiënt de techniek is in vergelijking met conventionele bovengrondse irrigatie; de impact op de oogst en de kwaliteit van de gewassen; hoe consumenten denken over het hergebruik van gezuiverd afvalwater. Het project loopt tot eind februari 2023 en wordt gefinancierd door het Europees Landbouwfonds voor Plattelandsontwikkeling en de provincie Limburg. Vanuit Vlaanderen, Europa en de provincie Limburg is 263.000 euro cofinanciering beschikbaar gesteld.

Treated effluent delivered by the urban WWTP of Aquafin located in Mechelen-Noord is used as irrigation water for cucumber cultivation on rock wool substrate via drip irrigation. The excess irrigation water is collected and reused as irrigation water. Weekly 2 - 4 m³ of freshly purified effluent is supplied in vessels. Due to the high sodium concentration, the TWW was desalted via selective sodium removal based on electrodialysis by EcoGreen (WaterFuture). The EcoGreen was used to prevent the accumulation of sodium and chlorine in the hydroponic system. The technology uses capacitive electrodialysis to remove monovalent elements from the effluent. In capacitive electrodialysis ions are forced through an ion-selective pore-free membrane using an electric current. Since only charged salt ions can pass through the membranes, all uncharged molecules are left behind in the drain water which is then reused for irrigation purposes. Within the trial the TWW was purified until the target value of 0.3 mS/cm was reached. The required treatment time varied greatly depending on the EC of the supplied effluent. In general, the proposed EC value of 0.3 mS/cm could be achieved. The application of the EcoGreen to the TWW proved to be able to significantly reduce the salt content, and consequently the sodium and chlorine concentrations. Application to the drain water appears to be efficient in avoiding accumulation of sodium in the recirculation water. Plants irrigated with the effluent treated by EcoGreen were found to have significantly better roots compared to the standard effluent.

Het gezuiverde afvalwater van de stedelijke RWZI van Aquafin in Mechelen-Noord wordt via druppelirrigatie gebruikt als gietwater voor de komkommerteelt op steenwolsubstraat. Het overtollige gietwater wordt opgevangen en hergebruikt als gietwater. Wekelijks wordt 2 - 4 m³ vers gezuiverd afvalwater aangevoerd in vaten. Door de hoge natriumconcentratie werd het Aquafin effluent ontzout via selectieve natriumverwijdering op basis van elektrodialyse door EcoGreen (WaterFuture). EcoGreen werd gebruikt om de ophoping van natrium en chloor in het hydrocultuursysteem te voorkomen. De technologie maakt gebruik van capacitieve elektrodialyse om monovalente elementen uit het afvalwater te verwijderen. Bij capacitieve elektrodialyse worden ionen met behulp van een elektrische stroom door een ionselectief poriënvrij membraan geperst. Omdat alleen geladen zoutionen de membranen kunnen passeren, blijven alle ongeladen moleculen achter in het drainwater dat vervolgens wordt hergebruikt voor irrigatiedoeleinden. Binnen de proef werd het Aquafin-effluent gezuiverd tot de streefwaarde van 0,3 mS/cm werd bereikt. De benodigde behandeltijd varieerde sterk afhankelijk van de EC van het aangevoerde effluent. In het algemeen zou de voorgestelde EC-waarde van 0,3 mS/cm kunnen worden gehaald. De toepassing van de EcoGreen op het effluent van Aquafin bleek het zoutgehalte, en bijgevolg de natrium- en chloorconcentraties, aanzienlijk te kunnen verlagen. Toepassing op het drainwater blijkt efficiënt te zijn om ophoping van natrium in het recirculatiewater te voorkomen. Planten die geïrrigeerd waren met het met EcoGreen behandelde effluent bleken significant betere wortels te hebben in vergelijking met het standaard effluent.

The use of treated water and products from green technologies for irrigation and fertilization in agriculture is promoted and demostrated by University of Ljubljana. Green technologies (GreenT) are one of the means for resource recovery from municipal wastewater. They can recover nutrients via biomass production and produce treated water for irrigation in agriculture. In the framework of national research project a demonstration site was built at the central wastewater treatment plant (WWTP) in Ajdovščina enabling research of performance and optimization of GreenT for treatment and reuse of water treatment products in agriculture. Tested GreenT are: high rate algae pond (HRAP) with the production of algae biomass for fertilization and treated water for irrigation; evapotranspirative willow system (EWS) with zero outflow for woodchip production that can be used as mulch or structure material for composting; and constructed wetland (CW) producing mainly treated water for irrigation. The treated waters from HRAP and CW and well as from the adjacent central wastewater treatment plant are used for irrigation of agricultural crops in 30 lysimeters. The authors acknowledge the project (Closing material flows by wastewater treatment with green technologies, nr. J2-8162) was finacially supported by the Slovenian Research Agency. The pilot HRAP, CW and lysimeters are operating since spring 2019 and the EWS since 2016. HRAP and CW enabled partially treated wastewater with low organic and moderate nutrient concentrations that was used for irrigation of pumpkins in lysimeters. Pumpkins were also irrigated with treated water from central WWTP and with drinking water in order to compare different water sources. The results were analysed in winter 2019/2020. Demonstration site enables research and demonstration of different treatment technologies and wastewater reuse on one location. Because demonstration site is supported by central WWTP also other water utility companies and local decision makers increased an interest in green technologies and wastewater reuse in agriculture. The demonstration site also offers unique research and training field regarding the technologies and risks (environmental & health) related to wastewater reuse. Excursions for students of agronomy, civil and sanitary engineering, environment protection etc. are carried out on regularly basis, local decision makers from domestic and other municipalities visit the site occasionally. The number of visits and recognition of the demonstration site is expected to increase significantly in the following years, when more results will be available and the site will be aesthetically approved and opened to the public.Good practice of water reuse basing on the research results will stimulate other WWTP towards wastewater reuse and water utility companies to apply specific technologies which enable most appropriate water for irrigation.

INCOVER was a collaborative project funded by the European Commission under the Horizon 2020 Research and Innovation programme. It aimed at developing innovative and sustainable technologies for a resource recovery-based treatment of wastewater. INCOVER solutions permitted to recover energy (biomethane) and bioproducts (bioplastics, organic acids, biofertiliser, biochar, irrigation water) from municipal, industrial and agricultural wastewater, while reducing the overall operation and maintenance costs of wastewater treatment.INCOVER concept has been designed to move wastewater treatment from being primarily a sanitation technology towards a bio-product recovery industry and a recycled water supplier. Three added-value plants treating wastewater (municipalities, farms and food and beverage industries) at three demonstration sites will be implemented, assessed and optimised concurrently. INCOVER plants will be implemented at demonstration scale in order to achieve Technology Readiness Level (TRL) of 7-8 to ensure straightforward up scaling to 100,000 population equivalents (PE). INCOVER added-value plants will generate benefits from wastewater through the following three solutions:



1) Bio-production (bio-plastics and organic acids) via microalgae/bacteria and yeast biotechnology;



2) Near-zero-energy plant providing upgraded bio-methane via pre-treatment and anaerobic co-digestion systems;



3) Chemical recovery (N, P) and reclaimed water via adsorption, biotechnology based on wetlands systems and hydrothermal carbonisation.



To improve added-value production efficiency, INCOVER solutions will include monitoring and control via optical sensing and soft-sensors approach. INCOVER solutions will reduce operation and maintenance cost of wastewater treatment and the energy demand. In addition, strategies to facilitate the market uptake of INCOVER innovations will be carried out in order to close the gap between demonstration and end-users. A wastewater specific Decision Support System methodology will be tailored to the INCOVER technologies and will provide data and selection criteria for a holistic wastewater management. An estimated turnover of 188 million€ for INCOVER users is expected after the initial exploitation strategy of 5 years implementing 27 INCOVER solutions.

FIT4REUSE aims to reach its objectives through three main pillars of the project and inclusion of research, governmental and industrial partners from different parts of the Mediterranean region. The first pillar (innovation of treatment technology) will offer sustainable solutions and optimise the wastewater, desalination and brine treatment technologies. The second pillar (application in simulated/relevant environment) will study direct and indirect water reuse schemes and effects that non-conventional water resources (NCWRs) have on soil, food safety and aquifer water quality and its ecological balance. The third pillar (assessment and regulation) will study the results obtained and analyse economic, social and environmental impacts of the solutions proposed, while also offering ways to overcome low public acceptance of NCWRs and problems connected to the actual policies and regulatory framework. The project started in July 2019, and therefore the results available are limited. However, the preliminary schemes of the technologies that will be used and tested are already prepared. In addition, the multi-stakeholder platforms for policy and market analysis and public acceptance has been structured and its implementation should start soon. Technologies and solutions proposed by the project will be tested in relevant environment and their further applicability, as the main success factor, will be assessed by recognised scientific methods. Moreover, it will be of outmost importance to involve different stakeholders that can ensure project impact also beyond its duration. Some of the main indicators of the project performance will be number of fully assessed and validated FIT4REUSE treatment prototypes, increase of use of non-conventional water resources for agricultural purposes in the Med area and Water Reuse (Risk Management) Safety Plan for regions of the Mediterranean basin. Methods developed by FIT4REUSE will be applicable in the whole Mediterranean region. However, they should also be relevant for other areas if taking into account their specific characteristics.

Water JPI 2017 Joint Call in support of UN SDG EU, "Process Control Technologies for Water Reuse". Control4Reuse is aimed at research and develop technologies for managing water resources. The optimization of water treatment and reclamation systems has been integrated as a sustainable solution to improve the reuse of this valuable water resource.The focus is on the reuse of wastewater (WW) in specific agricultural and industrial sectors. From a technological point of view, the scope of the project is based on a system monitoring and control framework, with specific activities of monitoring and integrating sensor information / data, mathematical modeling of processes and designing advanced control strategies.Control4Reuse brings together researchers and end-users from very diverse parts of the planet; the three main partners are from institutions in Brazil, France and Sweden and the team also includes external collaborators from public and private institutions in France, Brazil and Finland (cf. partners). It is the ambition of the Control4Reuse team to contribute to the definition of a wide spectrum of solutions for WW reuse applicable in diverse scenarios The simulation platform will allow to generate a number of indicators to measure the benefits/drawbacks of the studied scenarios. The results will be applied in practice on the site of Murviel Les Montpellier managed by our colleagues form IRSTEA (future INRAE) and the University of Montpellier. Data acquired will be used to calibrate the simulation platform that will be produced to evaulate a number of scenarios

The project, managed by the Dipartimento delle Culture Europee e del Mediterraneo: Architettura, Ambiente, Patrimoni Culturali – Università degli Studi della Basilicata–DICEM, University of Basilicata, aims encouraging reuse of urban wastewater for irrigation of orchards.The site is located in Southern Italy (Ferrandina Municipality, Matera Province, 40°29'51.74"N 16°27'27.25"E). Since 1999, the municipal wastewater is treated by means of a prototype operating with an innovative treatment process. The innovation allows the protection of certain compounds/nutrients (such as organic matter and nitrogen) during the wastewater depuration, so that they can be used as fertilizing substances. The innovated process allow also the reduction of the economic cost due to the disposal of biological sludge as end-product of standard treatment processes. The recycled wastewater is then conveyed through a dedicated pipeline to a close olive orchard and supplied by drip irrigation. The olive grove combines additional sustainable management practices (no-tillage, retention of crop pruning residuals) aimed to increase soil water holding capacity and tolerance to erosion. At field scale the main results obtained are the following: a) improvement of soil fertility (soil structure; water holding capacity; mineral element availability along soil profile) and reduction of mineral fertilization input; b) reduction of soil erosion processes; c) improvement of plant productivity and commercially valuable fruit parameters; d) improvement of farmer’s income and consequent social and environmental advantages (reduction of migration, control activity on the territory by the olive farmers, landscape conservation). Relevance of the theme; Uniqueness of such a long-term experience in Italy and (to our knowledge) in Europe); Dissemination actions performed since experiment start by means of seminars; open days; visits to the experimental orchard; Regional, National and International congress attendance; publications at National and International level; Direct involvement of the different actors involved (farmers, policy makers, researchers, technicians). Performance indicators: Indicators for the efficiency of the orchard management (wastewater use + sustainable soil management techniques): Soil – Water – Fruit chemical, physical and microbiological analyses; Yield measurement and fruit quality.

Indicators for the efficiency of project result disseminations: Number of participants to seminars, open days, visits to the experimental orchard; Number of publications at National and International level. The results of this project are very consolidated and have an high repeatability in many European country. The reuse of wastewater, tested at field scale (less than 1 hectare), could be applied at larger scale. Small villages (around 10,000 inhabitants) located in hilly marginal areas and served by a wastewater treatment infrastructure can be the opportune contexts to apply such model within sustainable economic margins. We hypothesized the model application to the territory of Ferrandina municipality (about 9500 inhabitants) making the existent depuration treatment scheme suitable for wastewater disinfection by low cost simplified schemes (not in accordance with the Italian Technical Guidelines for Wastewater Reuse) and its distribution for the safe irrigation of olives. Particularly, the plant is placed on the top of the hill allowing water distribution to the olive orchards on the hill slopes by gravity (no water pumping costs). Considering the seasonal irrigation need of an olive orchard, it could be possible to irrigate more than 200 ha. The Regional Government will financially support that large-scale adoption of technology used at the site through a dedicate Project.

The project, managed by Murcia Institute of Agri-food Research and Development IMIDA, had demonstrated a technically, economically and ecologically feasible method by which pesticide residues contained in the waste water produced by farms can be neutralised. The use of innovative equipment allow pesticide remnants in containers and treatment tanks and rinse water from tanks after cleaning of machines and equipment to be dealt with. The project developed a pilot waste-water decontamination facility to be tested on five farms. It will use a solar photocatalysis degradation process. The system uses solar energy (UV irradiation), sodium peroxodisulphate (Na2S2O8) and a catalyst (TiO2 and ZnO). The catalyst is recovered at the end of the process for its re-use. Treated waste water is no longer contaminated and can be used again for any purpose (e.g. irrigation).The main result of the project were the development of an on-site waste-water decontamination plant able to completely degrade pesticides without generating any other residue. The main expected long-term achievement of the project is the implementation of the Aquemfree system in medium-size and large farms, which would provide a solution for 80-90% of this environmental problem, at least in Mediterranean farms thanks to their solar irradiation conditions.The project included the evaluation of the prototypes from the technical, environmental and economic points of view.The final objective was to have a commercial system ready in the farms.Manufacturers and potential final users are involved in the project. Research institutions: IMIDA and University of Murcia

Potential final users: FECOAM (Murcia Federation of Agricultural Cooperatives) System manufacturer: Novedades Agrícolas S.L.

The INCOVER project aims to transform wastewater treatment, from pure treatment to treatment with simultaneous recovery of biological products. Due to the current global water scarcity and high operating and maintenance costs of wastewater treatment, solutions are to be created to obtain further benefits from wastewater treatment than pure treatment.

The overall objective of the project was to reduce the operating and maintenance costs of the wastewater treatment by at least 50%. These savings were to be achieved by using the wastewater as a source of value-added production and energy demand.

In the project, recovery-oriented wastewater treatment plants were set up at three different demonstration sites. Wastewater from municipalities, the agricultural and food industry and breweries was treated and the degree to which treatment is successful and where it can be optimised was examined.

The first site was in the municipality of Viladecans, Barcelona. Three photobioreactors were installed there, which were operated daily with municipal wastewater and wastewater from agriculture. The plant produced biomass consisting of microalgae, primarily cyanobacteria. The biomass was used to produce biogas, while the water was processed with nutrient recovery columns and then used to irrigate a field with rape.

The second site was at the Chiclana de la Frontera wastewater treatment plant in southern Spain. At this site, High Rate Algae Ponds were used. In these, municipal wastewater was purified by bacteria that are able to form polyhydroxyalkanoates (PHA). PHA are biopolymers that are used for the production of bioplastics. After separation of the PHA, the biomass was used for biogas production by using anaerobic digestion.

The third site was at the Almeria wastewater treatment plant in southern Spain. High rate algae ponds were also used at this site. The plant was designed to produce irrigation-quality water from pre-treated wastewater. The wastewater was only pre-treated by sand and grease removal. After biomass harvesting, by flotation, the wastewater was treated with natural plant material through planted filters to improve P and N recovery. The treated wastewater could be used for irrigation.

In the process of the project, three approaches could be found to achieve added value in the treatment process. One solution is the production of bio-plastics and organic acids from the microalgae/bacteria and yeast-based production, respectively, that are produced during the treatment of wastewater. In addition, the production of bio-methane through pre-treatment and anaerobic co-digestion was investigated. The recovery of nutrients such as nitrogen and phosphorus is also a solution approach. Recovery is made possible by means of adsorption, biotechnological processes in constructed wetlands and hydrothermal carbonisation.

In order to obtain efficient use from the alternative approaches of INCOVER technologies, compared to conventional wastewater treatment, a wastewater-specific decision support system (DSS) was additionally provided, so that it can be individually considered which INCOVER technologies are useful and provide holistic wastewater management.

With the help of INCOVER technologies, raw materials such as bio-plastics, bio-methane, organic acids, bio-coal, fertilisers and irrigation water can be produced from the different types of wastewater (municipal wastewater, wastewater from the agricultural and food industries). Through new technologies, the wastewater is not only treated to then be discharged into water bodies, but raw materials are additionally produced.

Durch das INCOVER-Projekt soll die Abwasseraufbereitung transformiert werden, von einer reinen Aufbereitung zu einer Aufbereitung mit gleichzeitiger Rückgewinnung von biologischen Produkten. Aufgrund der aktuellen globalen Wasserknappheit und hoher Betriebs- und Wartungskosten der Abwasseraufbereitung sollen Lösungen geschaffen werden, weiteren Nutzen, als die reine Aufbereitung, aus der Abwasseraufbereitung zu erlangen.

Das übergeordnete Ziel des Projektes war es, die Betriebs- und Wartungskosten der Abwasseraufbereitung um mindestens 50 % zu senken. Diese Einsparungen sollten durch die Nutzung des Abwassers als Quelle für die wertschöpfende Produktion und den Energiebedarf erreicht werden.

Bei dem Projekt wurden an drei verschiedenen Demonstrationsstandorten rückgewinnungsorientierte Abwasseraufbereitungsanlagen aufgebaut. Dabei wurden Abwässer aus Kommunen, der Agrar- und Nahrungsmittelindustrie und aus Brauereibetrieben aufbereitet und überprüft, inwiefern die Aufbereitung gelingt und wo optimiert werden kann.

Der erste Standort befand sich in der Gemeinde Viladecans, Barcelona. Dort wurden drei Photobioreaktoren installiert, die täglich mit kommunalen Abwässern und Abwasser aus der Landwirtschaft betrieben wurden. In der Anlage wurde Biomasse produziert, die aus Mikroalgen, primär Cyanobakterien, bestand. Die Biomasse wurde zur Produktion von Biogas verwendet, während das Wasser mit Nährstoffrückgewinnungskolonnen bearbeitet wurde und anschließend zur Bewässerung eines Feldes mit Raps verwendet wurde.

Der zweite Standort befand sich in der Kläranlage von Chiclana de la Frontera, in Südspanien. An diesem Standort kamen High Rate Algen Teiche zum Einsatz. In diesen wurde das kommunale Abwasser durch Bakterien gereinigt, welche in der Lage sind Polyhydroxyalkanoate (PHA) zu bilden. PHA sind Biopolymere, die zur Herstellung von Bio-Kunststoffen verwendet werden. Nach der Abscheidung der PHA wurde die Biomasse mittels anaerober Faulung zur Biogasproduktion verwendet.

Der dritte Standort befand sich in der Kläranlage von Almeria in Südspanien. An diesem Standort kamen ebenfalls High Rate Algen Teiche zum Einsatz. Die Anlage sollte aus vorbehandeltem Abwasser Wasser in Bewässerungsqualität erzeugen. Das Abwasser wurde lediglich durch eine Sand- und Fettentfernung vorbehandelt. Nach der Ernte der Biomasse, durch Flotation, wurde das Abwasser über bepflanzte Filter mit natürlichem Pflanzenmaterial behandelt, um die P- und N-Rückgewinnung zu verbessern. Das behandelte Abwasser konnte für die Bewässerung verwendet werden.

Es konnten im Laufe des Projekts drei Lösungsansätze gefunden werden, um bei der Aufbereitung einen Mehrwert zu erzielen. Ein Lösungsansatz ist die Herstellung von Bio-Kunststoff und organischen Säuren aus den Mikroalgen/Bakterien bzw. Hefe-basierte Produktion, die bei der Aufbereitung des Abwassers anfallen. Zudem wurde die Herstellung von Bio-Methan durch eine Vorreinigung und anaerobe Ko-Vergärung untersucht. Auch die Rückgewinnung von Nährstoffen wie Stickstoff und Phosphor ist ein Lösungsansatz. Die Rückgewinnung wird mittels Adsorption, biotechnologischen Prozessen in Pflanzenkläranlagen und hydrothermale Karbonisierung ermöglicht.

Um aus den alternativen Ansätzen der INCOVER-Technologien eine effiziente Nutzung zu erhalten, gegenüber der konventionellen Abwasserbehandlung, wurde zusätzlich ein abwasserspezifisches Entscheidungsunterstützungssystem bereitgestellt, so dass individuell abgewogen werden kann, welche INCOVER-Technologien nützlich sind und ein ganzheitliches Abwassermanagement bereitstellen.

Mit Hilfe der INCOVER-Technologien können aus den verschiedenen Abwassersorten (kommunales Abwasser, Abwasser aus der Agrar- und Nahrungsmittelindustrie) Rohmaterialien wie Bio-Kunststoff, Bio-Methan, organische Säuren, Bio-Kohle, Dünger und Bewässerungswasser produziert werden. Durch neue Technologien wird das Abwasser nicht nur aufbereitet, um dann in Gewässer eingeleitet zu werden, sondern es werden zusätzlich Rohmaterialien hergestellt.

The NextGen project focuses on circular economy solutions and systems for resource use in the water sector. The aim is challenging ingrained thinking and practices and to bring financially sustainable innovations to life. The current methods of extracting water, consuming it and then disposing of it need to be transformed and solutions found to reuse the water after use in order to sustainably manage the important resource of water. To this purpose, through 10 demonstration projects across Europe and with three partners worldwide, the project is delivering new technological, business and management solutions related to water. Circular economy practices are to be promoted, transferred and implemented at larger scale, sharing collective experiences and lessons learned in terms of citizen and stakeholder engagement, business models and services.

There are three groups of closed-loop solutions, which are applied depending on the project. This is firstly the optimisation of water as a resource, for example through advanced treatment technologies, the optimisation of materials, for example nutrient recovery and reuse, and the optimisation of energy, for example by converting the wastewater treatment plant into positive energy generators. For each project, it is examined which of the three groups are applicable and in which form they could be implemented. Not every project offers the opportunity to involve all three groups, so only one or two of the groups are included in the solution. For a better understanding of the NextGen project, three of the ten demonstration projects are briefly presented.

The first project is in Athens, Greece. Here, recirculation solutions from all three groupings are used. The Athens Urban Tree Nursery, which is part of Goudi Park, is currently being renovated and renewed. In the course of this, it makes sense to implement new concepts and solutions for a better circular economy. Due to its size, the tree nursery has a high water demand that is difficult to meet from natural sources alone. Therefore, a module is installed that directly extracts wastewater from the sewage system and treats it on site with the help of a membrane bioreactor. The treated water can then be used for irrigation. The resulting treatment residues are directly converted into fertiliser with green waste from tree pruning. The thermal energy of the wastewater is recovered with the help of heat exchangers and used to heat surrounding buildings.

The next project is a former airfield in South Gloucestershire, north of Bristol, England. The airfield will be transformed into an area where people can live, learn, work and enjoy themselves. A surface system is to be established on the site so that reliable drainage is ensured and allows the use of collected rainwater directly on site and the reuse of water. The heat from the on-site wastewater system will be recovered so that it can be used directly for heating buildings. The wastewater and food waste can be processed into fertiliser and nutrients can be recovered directly. In this project, too, closed-loop solutions in all three groups are possible.

The third project is in Gotland, Sweden. The island experienced a severe water crisis, which had a negative impact on the inhabitants, but also on tourism and industry. Therefore, there are different approaches to overcome the water crisis. One is rainwater harvesting with automatic floodgates to recharge aquifers and additionally monitor groundwater levels. Another approach is decentralised treatment of raw sewage with membrane technology to reduce the treated volumes in the central treatment plant. To reduce the ecological footprint, the plants are powered by solar energy. Optimised membrane filtration to obtain drinking water from more challenging sources, such as surface water, is also a solution approach. Another solution is to store water in underground dams. For each of these solutions, studies have already been carried out on the extent to which implementation can take place. In this project, the circular approaches refer to water as a resource alone. Through the numerous approaches, the water crisis could be overcome.

These were only three of the ten projects. NextGen offers the appropriate circular solutions according to the project in order to make more efficient use of the available resources.

Das Projekt NextGen behandelt Lösungen und Systeme der Kreislaufwirtschaft, den Ressourcenverbrauch im Wassersektor betreffend. Das Ziel dabei ist es, eingefahrene Denkweisen und Praktiken zu hinterfragen und finanzielle, nachhaltige Innovationen ins Leben zu rufen. Die derzeit verwendeten Methoden, bei denen Wasser entnommen wird, verbraucht und danach entsorgt wird, müssen sich wandeln und Lösungen gefunden werden, das Wasser nach der Verwendung wiederzuverwenden, um die wichtige Ressource Wasser nachhaltig zu bewirtschaften. Hierfür liefert das Projekt anhand von 10 Demonstrationsprojekten in ganz Europa und mit drei Partnern weltweit neue technologische, geschäftliche und verwaltungstechnische Lösungen im Zusammenhang mit Wasser. Praktiken der Kreislaufwirtschaft sollen gefördert, transferiert und in größere Maßstäbe umgesetzt werden, wobei die kollektiven Erfahrungen und Erkenntnisse in Bezug auf Bürger- und Stakeholder-Engagement, Geschäftsmodelle und Dienstleistungen geteilt werden.

Dabei gibt es drei Gruppierungen der Kreislauflösungen, die je nach Projekt zur Anwendung kommen. Dies ist einmal die Optimierung der Ressource Wasser, beispielsweise durch fortschrittliche Behandlungstechnologien, die Optimierung der Materialien, beispielsweise die Nährstoffgewinnung und -wiederverwendung, und die Optimierung der Energie, beispielsweise durch die Umwandlung der Kläranlage in positive Energieerzeuger. Bei jedem Projekt wird geprüft, welche der drei Gruppen einsetzbar sind und in welcher Form diese umgesetzt werden könnten. Nicht bei jedem Projekt bietet es sich an, alle drei Gruppen mit einzubeziehen, so dass auch nur eine oder zwei der Gruppen in die Lösung mit einbezogen werden. Für ein besseres Verständnis des Projekts NextGen, werden drei der zehn Demonstrationsprojekte kurz vorgestellt.

Das erste Projekt befindet sich in Athen, Griechenland. Hier kommen Kreislauflösungen aller drei Gruppierungen zum Einsatz. Die Athener Stadtbaumschule, die Teil des Goudi-Parks ist, wird derzeit saniert und erneuert. Im Zuge dessen bietet es sich an, neue Konzepte und Lösungen für eine bessere Kreislaufwirtschaft zu implementieren. Die Baumschule hat aufgrund ihrer Größe einen hohen Wasserbedarf, der allein durch natürliche Quellen nur schwer zu decken ist. Daher wird ein Modul installiert, dass direkt Abwasser aus der Kanalisation entzieht und dieses vor Ort mit Hilfe eines Membranbioreaktors aufbereitet. Das aufbereitete Wasser kann dann zur Bewässerung verwendet werden. Die anfallenden Behandlungsrückstände werden direkt mit Grünabfällen aus Baumbeschnitt in Dünger umgewandelt. Die thermische Energie des Abwassers wird mit Hilfe von Wärmetauschern zurückgewonnen und für die Heizung von umliegenden Gebäuden verwendet.

Das nächste Projekt ist ein ehemaliger Flugplatz in South Gloucestershire, nördlich von Bristol, England. Der Flugplatz wird umgewandelt in einen Bereich, in dem Menschen leben, lernen, arbeiten und sich wohlfühlen können. Auf der Fläche soll ein Oberflächensystem eingerichtet werden, so dass eine zuverlässige Entwässerung gewährleistet ist und die Nutzung von aufgefangenem Regenwasser direkt vor Ort und die Wiedernutzung von Wasser ermöglicht. Die Wärme des Abwassersystems vor Ort soll rückgewonnen werden, so dass diese direkt dem Heizen von Gebäuden dient. Das Abwasser und Lebensmittelabfälle können zu Dünger verarbeitet werden und Nährstoffe direkt zurückgewonnen werden. Auch in diesem Projekt bieten sich Kreislauflösungen in allen drei Gruppen an.

Das dritte Projekt ist in Gotland, Schweden. Die Insel erlebte eine schwere Wasserkrise, die sich auf die Bewohner, aber auch den Tourismus und die Industrie negativ auswirkte. Daher gibt es verschiedene Lösungsansätze, die Wasserkrise zu überwinden. Einer ist die Regenwassernutzung mit automatischen Schleusen zur Wiederauffüllung von Grundwasserleitern und zusätzlich die Überwachung des Grundwasserstands. Ein weiterer Ansatz ist die dezentrale Behandlung von Rohabwasser mit Membrantechnologie, um die behandelten Mengen in der zentralen Kläranlage zu reduzieren. Zur Reduzierung des ökologischen Fußabdrucks werden die Anlagen mit Solarenergie betrieben. Auch die optimierte Membranfiltration zur Gewinnung von Trinkwasser aus anspruchsvolleren Quellen, wie Oberflächenwasser, ist ein Lösungsansatz. Eine weitere Lösung ist die Speicherung von Wasser in unterirdischen Dämmen. Zu jedem dieser Lösungsansätze wurden bereits Untersuchungen durchgeführt, inwiefern die Umsetzung stattfinden kann. Bei diesem Projekt beziehen sich die Kreislaufansätze auf die Ressource Wasser allein. Durch die zahlreichen Ansätze könnte die Wasserkrise überwunden werden.

Dies waren nur drei der insgesamt zehn Projekte. NextGen bietet entsprechend des Projektes die jeweils passenden Kreislauflösungen, um die Nutzung der zur Verfügung stehenden Ressourcen effizienter zu gestalten.

Agricultural producers are facing many challenges, mainly due to the severe droughts presented in the last periods. These episodes generate uncertainties regarding the water availability. In addition, the rising fertilizers and energy costs make nutrients availability another challenge to be addressed. Consequently, Farmers must find the way not only to optimize crops yield but also to ensure an efficient resource management for sustainable production, especially in the European context where regulations in this field are getting stronger with the time.

The traditional existing irrigation systems are designed to distribute the water uniformly, generating water wastages and an inefficient use of the resources. Along with the Reform of Common Agricultural Policy (CAP), which promotes crop rotations and mixed cultivation on agricultural fields to achieve greater diversification, many factors make the implementation of these old systems even more unsuitable.

Investments in projects that help to tackle agricultural challenges and to improve agricultural production and productivity are vital to make significant progress in the sector. Technologies such as, advance irrigation and fertilization, have been introduced for optimizing farming practices and has been widely accepted by farmers and practitioners.

“Precision agriculture” technologies represent one of the most efficient technologies presented nowadays. Green DROP is one of the innovative projects developed in the frame of the programme Horizon 2020, funded by the European Union. Green DROP is leaded by the German company Hydro Air international, and it is based on previous research projects and vast experience in irrigation techniques and agricultural technologies. The system has been awarded several innovation prices, such as, Gold Medal AGRITECHNICA, innovation award Brandenburg, among others.

The Green DROP technology corresponds to a mechanized and automatized system for efficient fertigation (combined irrigation and fertilization) for applying efficiently water and nutrients. Besides, the technology makes possible to achieve closed nutrients cycle and supports sustainable production methods.

To achieve these objectives, the system operates based on the crops needs, using a mix of data including GIS, maps and sensors, which analyses different soil conditions, plant properties, weather conditions, among others. Green DROP system is able to adjust and control individual nozzles, in order to supply a specific optimal water-nutrient mix depending on each crop growing on the field and provide a tailor made irrigation pattern for each area of the field at all times.

The working principle of Green DROP mainly consist on the use of a number of georeferenced layers with different input information such as crop type, topography, weather distribution, field capacity, soil type, plant properties. With this information is possible to determine the precise and specific requirements of water and nutrients for each sub-area to be fertigated.

Soil management systems, dynamic multilayer and GPS devices are main pillars of the system. The dynamic multilayer and GPS devices are in charge of record the exact position of the data taken by the sensors, processing the data allows to estimate the exact amount of water and fertilizers to be applied and then distributed through individual nozzles.

Furthermore, the system is equipped with wireless node points along the swing boom and the control module can only steer a limited number of magnet valves. The nodes control several valves, which can select individual water nozzles and determine whether or not, and how much fertilizer, respectively, each nozzle applies to the field surface. Furthermore, the user can remotely have access to the information and can be able to control each nozzle and based on the sensory data, determine how much water and fertilizer should be applied to each sub area of the field. In this way, the resources are applied accurately according to sub-area specific plant and soil conditions, reducing the overuse of water and nutrients.

The technology was implemented and operated in different demonstration plants in two different countries. The first site is in Beerfelde, Germany. The area located approximated 40 km east of Berlin, is used for agricultural production and possess characteristics such as dry valleys, formed in different climatic conditions and low average annual precipitation.

The second demonstration site is in Koscian, Poland. Located 40km south of Poznan, the field has approximately 70 ha of irrigation area and is used for agricultural purposes. Initially the customer was irrigating with hose reels producing seed for different crops on particular small fields. In 2019, the customer was growing grass on the test site and established several test fields on the opposite field. The soil conditions of the area are characterized by an abrupt alternation between sand substrates and sand covered loam substrates.

The construction, tests and optimizations were successfully implemented, constructed and brought into operation and as a result, the technology reached a Technology Readiness Level (TRL) 9: actual system proven in operational environment. After the operation of the systems in the different sites, the main advantages of Green DROP could be demonstrated. An increase by 20% on crop yield, clear improvement in plant health, up to 40% less fertilizer use, up to 20% less water consumption, reuse of up to 60% of the liquid wastes, reduction of at least 15% of the labour and savings up to 30% in energy consumption.

Furthermore, the environmental valuation of the project was estimated through a detailed Environmental Assessment based on the data gathered in the demonstration sites. On one hand a Life Cycle Assessment were carried out and the results indicated that Green DROP have the potential to contribute to the climate protection and the GHG emission reduction. On the other hand, the eco efficiency analysis showed that the system is a highly favourable application for fertigation, in addition to the minimal use of consumables e.g. water and fertilizer and a relatively low environmental impact. Additionally, the system facilitate the management and exclusion of ecologically sensitive areas within a field.

After a complete evaluation and further adaption of the system, potential clients were identified. Poland, Spain and the local market seemed to be the countries with the biggest market for this technology. However, as a result of the dissemination activities carried out, many interested parties within Europe arose their interest regarding the implementation of this technology.

Hydro Air is committed with the constant support and monitoring of its clients, thus, after successfully introduce the technology to the market, different training, operation and maintenance workshops were carried out in an appropriate extent to ensure that the full potential of the new technology is used.

Finally, it can be stated that Green Drop constitutes an attractive opportunity for the agricultural sector which can entirely improve the way food crops and other raw materials are produced.

Landwirtschaftliche Erzeuger stehen vor vielen Herausforderungen, vor allem aufgrund der schweren Dürreperioden der letzten Zeit. Diese Episoden erzeugen Unsicherheiten bezüglich der Wasserverfügbarkeit. Zusätzlich machen die steigenden Düngemittel- und Energiekosten die Verfügbarkeit von Nährstoffen zu einer weiteren Herausforderung, die angegangen werden muss. Folglich müssen die Landwirte einen Weg finden, nicht nur die Ernteerträge zu optimieren, sondern auch ein effizientes Ressourcenmanagement für eine nachhaltige Produktion zu gewährleisten, insbesondere im europäischen Kontext, wo die Vorschriften in diesem Bereich immer strenger werden.

Die traditionellen bestehenden Bewässerungssysteme sind darauf ausgelegt, das Wasser gleichmäßig zu verteilen, was zu Wasserverschwendung und einer ineffizienten Nutzung der Ressourcen führt. Zusammen mit der Reform der Gemeinsamen Agrarpolitik (CAP), die Fruchtfolgen und Mischkulturen auf landwirtschaftlichen Feldern fördert, um eine größere Diversifizierung zu erreichen, machen viele Faktoren die Umsetzung dieser alten Systeme noch ungeeigneter.

Investitionen in Projekte, die helfen, die Herausforderungen in der Landwirtschaft zu meistern und die landwirtschaftliche Produktion und Produktivität zu verbessern, sind unerlässlich, um signifikante Fortschritte in diesem Sektor zu erzielen. Technologien, wie z.B. fortschrittliche Bewässerung und Düngung, wurden zur Optimierung der landwirtschaftlichen Praktiken eingeführt und werden von Landwirten und Praktikern weitgehend akzeptiert.

"Precision Agriculture"-Technologien stellen eine der effizientesten Technologien dar, die heutzutage vorgestellt werden. Green DROP ist eines der innovativen Projekte, die im Rahmen des von der Europäischen Union finanzierten Programms Horizon 2020 entwickelt wurden. Green DROP wird von der deutschen Firma Hydro Air international geleitet und basiert auf früheren Forschungsprojekten und umfangreichen Erfahrungen in der Bewässerungstechnik und landwirtschaftlichen Technologien. Das System wurde mit mehreren Innovationspreisen ausgezeichnet, u.a. mit der Goldmedaille der AGRITECHNICA und dem Innovationspreis Brandenburg.

Bei der Green DROP Technologie handelt es sich um ein mechanisiertes und automatisiertes System zur effizienten Fertigation (kombinierte Bewässerung und Düngung), um Wasser und Nährstoffe effizient auszubringen. Zudem ermöglicht die Technologie einen geschlossenen Nährstoffkreislauf und unterstützt nachhaltige Produktionsmethoden.

Um diese Ziele zu erreichen, arbeitet das System basierend auf den Bedürfnissen der Pflanzen und nutzt eine Mischung aus Daten, einschließlich GIS, Karten und Sensoren, die verschiedene Bodenbedingungen, Pflanzeneigenschaften, Wetterbedingungen und andere analysieren. Das Green DROP-System ist in der Lage, einzelne Düsen zu justieren und zu steuern, um eine spezifische, optimale Wasser-Nährstoff-Mischung in Abhängigkeit von jeder auf dem Feld wachsenden Kultur zu liefern und jederzeit ein maßgeschneidertes Bewässerungsmuster für jeden Bereich des Feldes bereitzustellen.

Das Arbeitsprinzip von Green DROP besteht hauptsächlich in der Verwendung einer Reihe von georeferenzierten Schichten mit verschiedenen Eingabeinformationen wie z. B. Kulturart, Topographie, Wetterverteilung, Feldkapazität, Bodentyp, Pflanzeneigenschaften. Mit diesen Informationen ist es möglich, den genauen und spezifischen Bedarf an Wasser und Nährstoffen für jede zu düngende Teilfläche zu ermitteln.

Bodenmanagementsysteme, dynamische Mehrschicht- und GPS-Geräte sind die Hauptpfeiler des Systems. Die dynamischen Mehrschicht- und GPS-Geräte sind für die Aufzeichnung der exakten Position der von den Sensoren erfassten Daten zuständig. Die Verarbeitung der Daten ermöglicht es, die genaue Menge des auszubringenden Wassers und der Düngemittel abzuschätzen und dann über die einzelnen Düsen zu verteilen.

Darüber hinaus ist das System mit drahtlosen Knotenpunkten entlang des Schwenkarms ausgestattet, wobei das Steuermodul nur eine begrenzte Anzahl von Magnetventilen steuern kann. Die Knotenpunkte steuern mehrere Ventile, die einzelne Wasserdüsen anwählen können und bestimmen, ob bzw. wie viel Dünger jede Düse auf die Feldfläche ausbringt. Darüber hinaus kann der Benutzer aus der Ferne auf die Informationen zugreifen und jede Düse steuern und auf der Grundlage der Sensordaten bestimmen, wie viel Wasser und Dünger auf jeden Teilbereich des Feldes aufgebracht werden soll. Auf diese Weise werden die Mittel genau nach den teilflächenspezifischen Pflanzen- und Bodenbedingungen ausgebracht, was den übermäßigen Einsatz von Wasser und Nährstoffen reduziert.

Die Technologie wurde in verschiedenen Demonstrationsanlagen in zwei verschiedenen Ländern implementiert und betrieben. Der erste Standort befindet sich in Beerfelde, Deutschland. Das Gebiet liegt ca. 40 km östlich von Berlin, wird für die landwirtschaftliche Produktion genutzt und besitzt Charakteristika wie Trockentäler, die in unterschiedlichen klimatischen Bedingungen entstanden sind und geringe durchschnittliche Jahresniederschläge aufweisen.

Der zweite Demonstrationsstandort befindet sich in Koscian, Polen. Das 40 km südlich von Poznan gelegene Feld hat eine Bewässerungsfläche von ca. 70 ha und wird für landwirtschaftliche Zwecke genutzt. Ursprünglich bewässerte der Kunde mit Schlauchtrommeln, um Saatgut für verschiedene Kulturen auf bestimmten kleinen Feldern zu produzieren. Im Jahr 2019 baute der Kunde auf der Testfläche Gras an und legte auf dem gegenüberliegenden Feld mehrere Testfelder an. Die Bodenverhältnisse des Geländes sind durch einen abrupten Wechsel zwischen sandigen Substraten und sandbedeckten Lehmsubstraten gekennzeichnet.

Die Konstruktion, die Tests und die Optimierungen wurden erfolgreich umgesetzt, aufgebaut und in Betrieb genommen, so dass die Technologie einen Technology Readiness Level (TRL) 9 erreicht hat: das tatsächliche System hat sich in der betrieblichen Umgebung bewährt. Nach dem Betrieb der Systeme an den verschiedenen Standorten konnten die Hauptvorteile von Green DROP nachgewiesen werden. Eine Steigerung des Ernteertrags um 20 %, eine deutliche Verbesserung der Pflanzengesundheit, bis zu 40 % weniger Düngereinsatz, bis zu 20 % weniger Wasserverbrauch, Wiederverwendung von bis zu 60 % der flüssigen Abfälle, Reduzierung des Arbeitsaufwands um mindestens 15 % und Einsparungen von bis zu 30 % beim Energieverbrauch konnten erzielt werden.

Darüber hinaus wurde die ökologische Bewertung des Projekts durch eine detaillierte Umweltverträglichkeitsprüfung auf der Grundlage der an den Demonstrationsstandorten gesammelten Daten geschätzt. Einerseits wurde eine Ökobilanz durchgeführt und die Ergebnisse zeigten, dass Green DROP das Potenzial hat, zum Klimaschutz und zur Reduzierung der Treibhausgasemissionen beizutragen. Andererseits zeigte die Ökoeffizienz-Analyse, dass das System eine sehr günstige Anwendung für die Düngung ist, zusätzlich zum minimalen Einsatz von Verbrauchsmaterialien wie Wasser und Dünger und einer relativ geringen Umweltbelastung. Zusätzlich erleichtert das System die Bewirtschaftung und den Ausschluss von ökologisch sensiblen Bereichen innerhalb eines Feldes.

Nach einer vollständigen Evaluierung und weiteren Anpassung des Systems wurden potenzielle Kunden identifiziert. Polen, Spanien und der lokale Markt schienen die Länder mit dem größten Markt für diese Technologie zu sein. Als Ergebnis der durchgeführten Verbreitungsaktivitäten haben jedoch viele Interessenten innerhalb Europas ihr Interesse an der Implementierung dieser Technologie bekundet.

Hydro Air hat sich der ständigen Unterstützung und Überwachung seiner Kunden verschrieben, daher wurden nach der erfolgreichen Markteinführung der Technologie verschiedene Schulungen, Betriebs- und Wartungsworkshops in angemessenem Umfang durchgeführt, um sicherzustellen, dass das volle Potenzial der neuen Technologie genutzt wird.

Abschließend kann festgestellt werden, dass Green Drop eine attraktive Möglichkeit für den Agrarsektor darstellt, die die Art und Weise der Produktion von Nahrungsmitteln und anderen Rohstoffen vollständig verbessern kann.

Agriculture accounts for one of the most important economic sectors in Europe, with a gross value of around 177 billion in 2020, this industry plays an important role in most of the European countries. From all the agricultural production, around 50% of it is determined by livestock farming of mainly, pigs, cattle, poultry and other animals. Countries like Germany, France and Spain are the leading producers of livestock.

Traditionally, farming was centred on small areas where the environmental impacts due to manure accumulation were not relevant since the animal residues were reused to fertilize the same agricultural fields, providing a convenient combination between livestock and agriculture.

However, the current intensive production in this sub sector of the industry generates millions of tons of manure per year that are not only difficult to handle, but also requires considerable investments, the costs derived from manure management in Europe has been estimated in 12,300 million euros per year. Furthermore, it generates serious environmental problems. For instance, groundwater nitrate contamination, eutrophication of surface waters, accumulation of metals and phosphorus in soils, spreading pathogens, high emissions of ammonia and greenhouse gases, among others.

One of the most important challenges to be tackled is to reduce the environmental and economic impacts of the manure management by supporting and developing new approaches to optimize these nutrient rich liquid residues and make profit out of them.

Manure has a huge potential to be treated and used in bio energy production and as organic fertilizer due to its rich content in Nitrogen, Phosphorus, Potassium, organic matter, among others. Nonetheless, the agricultural farmers and their operations are facing numerous problems, first because the application methods and the main possibilities for organic fertilization have been restricted and the legally narrow application window, which is in spring, results in an enrichment of the soil with nutrients during a period that is characterised by reduced metabolic processes.

During the year, the organic nutrient solutions are collected and stored, in order to be transported in spring, to fields free of vegetation. The problem is especially on sandy soils, where a large part of the nutrients cannot be bound to the soil and migrates to the groundwater causing an excessive nitrate concentration in groundwater.

Additionally, in regions with an increased number of biogas plants, the increasing disposal pressure and logistic costs to manage large quantities of organic liquid farm manure as well as land availability, constitute additional problems faced by the sector.

There is already a wide variety of manure treatments available in the European market but there is still lack of unified criteria for their implementation and there are not sufficient studies at real and large scale. Green cycle is one of the most relevant practice-relevant innovative projects developed in Germany regarding the use of all organic farm manures.

The aim of the Green Cycle project is to develop a practical solution including the development, construction and testing of demand oriented and field related liquid fertilizer technology for intra seasonal digestate fertigation (fertilization and fertigation) in agricultural crops, while keeping the variable costs of the separation process as low as possible and offering an attractive cost beneficial alternative.

The stages of the project initiate with the planning, development and construction of the corresponding modules to achieve a cost effective separation. This initial stage includes the separation of solid and liquid phases by processes as separation, filtration, conditioning, field oriented application as well as monitoring the nutrient composition of the organic liquid fertilizers through the integration of different novel sensors and methods.

This process mainly takes off in the storage tank, where the digestate is stocked, from this tank the digestate goes to a micro separation tank in which the fugate effluent is transferred to the fugate storage unit and the thick digestate sludge is recirculated to the storage tank. The fugate effluent goes to a mixing unit where it is mixed with well water, obtaining conditioned irrigation water that afterwards is transferred to the center pivot irrigation machine.

The following stages include the development of the fixed and mobile modules compatible with the existing irrigation technologies, and programming of the software.

Subsequently, the installation and long-term tests are run at the agricultural partners sites, in which the correspondent analyses of nutrients movement within the soil layers and in the ground water as well as emissions and yield monitoring take place. The output of the assessments make it possible to prepare the nutrient balance of the solid and liquid phases and on the other side, develop the economic cost/benefit analysis.

Finally, as part of the main objectives of the Green cycle project the dissemination and promotion of the results are supported within the target markets through demonstration plots opened to receive visit from the interested parties, presentation of the project at trade fairs, academic publications and diffusion via internet. Besides, the projects results are integrated in academic research and programs.

The Green cycle project evidences that is possible to tackle the drawbacks derived from the livestock farming not only in Europe but also worldwide, taking advantage of the rich nutrient content of the digestate residues, is possible to recycle the local nutrients and manage it in a sustainable way. Additionally, achieving seasonal application of fertilizers derived from liquid manure while fulfilling all legal fertilization aspects is possible and due to the long application times, better conditions for the contractors and better utilization of the technical infrastructure and logistics can be accomplished.

Regarding the economic advantages of the project, significant reduction in the application costs, savings due to the replacement of mineral fertilizers and relatively low variable costs related to the separation processes are some of the main remarkable assets of the project.

Furthermore, the implementation of the project not only bolster the profitability of the agricultural sector, significant increase its competitiveness and innovative strength but also contribute to the future development of an innovative juncture between science, economy and agriculture that will boost the development of more novel and accurate ideas that would help to achieve sustainable agricultural cycles.

Die Landwirtschaft ist einer der wichtigsten Wirtschaftszweige in Europa, mit einem Bruttowert von ca. 177 Mrd. im Jahr 2020 spielt diese Branche in den meisten europäischen Ländern eine wichtige Rolle. Von der gesamten landwirtschaftlichen Produktion werden etwa 50 % durch die Viehhaltung von hauptsächlich Schweinen, Rindern, Geflügel und anderen Tieren bestimmt. Länder wie Deutschland, Frankreich und Spanien sind die führenden Produzenten von Nutztieren.

Traditionell konzentrierte sich die Landwirtschaft auf kleine Flächen, auf denen die Umweltauswirkungen durch die Anhäufung von Gülle nicht relevant waren, da die tierischen Rückstände zur Düngung der gleichen landwirtschaftlichen Felder wiederverwendet wurden, was eine bequeme Kombination zwischen Viehzucht und Landwirtschaft darstellte.

Die derzeitige intensive Produktion in diesem Teilsektor der Industrie erzeugt jedoch Millionen von Tonnen Gülle pro Jahr, die nicht nur schwierig zu handhaben sind, sondern auch erhebliche Investitionen erfordern; die Kosten, die sich aus dem Güllemanagement in Europa ergeben, wurden auf 12.300 Millionen Euro pro Jahr geschätzt. Darüber hinaus verursacht sie ernsthafte Umweltprobleme. So zum Beispiel die Nitratverunreinigung des Grundwassers, die Eutrophierung von Oberflächengewässern, die Anreicherung von Metallen und Phosphor in den Böden, die Verbreitung von Krankheitserregern, hohe Emissionen von Ammoniak und Treibhausgasen und vieles mehr.

Eine der wichtigsten Herausforderungen, die es zu bewältigen gilt, ist die Verringerung der ökologischen und ökonomischen Auswirkungen des Güllemanagements durch die Unterstützung und Entwicklung neuer Ansätze, um diese nährstoffreichen flüssigen Rückstände zu optimieren und Gewinn daraus zu ziehen.

Gülle hat ein enormes Potenzial für die Aufbereitung und Verwendung in der Bioenergieproduktion und als organischer Dünger aufgrund ihres hohen Gehalts an Stickstoff, Phosphor, Kalium, organischer Substanz und anderen. Dennoch sehen sich die Landwirte und ihre Betriebe mit zahlreichen Problemen konfrontiert, zum einen, weil die Ausbringungsmethoden und die wesentlichen Möglichkeiten der organischen Düngung eingeschränkt sind und das gesetzlich enge Ausbringungsfenster, das im Frühjahr liegt, zu einer Anreicherung des Bodens mit Nährstoffen in einer Zeit führt, die durch reduzierte Stoffwechselprozesse gekennzeichnet ist.

Während des Jahres werden die organischen Nährstofflösungen gesammelt und gelagert, um sie im Frühjahr auf vegetationsfreie Felder zu bringen. Problematisch ist dies vor allem auf sandigen Böden, wo ein großer Teil der Nährstoffe nicht im Boden gebunden werden kann und ins Grundwasser wandert, was zu einer überhöhten Nitratkonzentration im Grundwasser führt.

In Regionen mit einer zunehmenden Anzahl von Biogasanlagen stellen zudem der steigende Entsorgungsdruck und die logistischen Kosten für die Bewirtschaftung großer Mengen organischer Wirtschaftsdünger sowie die Flächenverfügbarkeit ein zusätzliches Problem dar.

Auf dem europäischen Markt gibt es bereits eine Vielzahl von Güllebehandlungen, aber es fehlen immer noch einheitliche Kriterien für deren Anwendung und es gibt nicht genügend Studien im realen und großen Maßstab. Green Cycle ist eines der relevantesten praxisrelevanten innovativen Projekte, die in Deutschland in Bezug auf den Einsatz aller ökologischen Wirtschaftsdünger entwickelt wurden.

Ziel des Projektes Green Cycle ist es, eine praxisnahe Lösung mit der Entwicklung, Konstruktion und Erprobung einer bedarfsgerechten und feldbezogenen Flüssigdüngertechnologie für die intra-saisonale Gärrestdüngung (Düngung und Fertigation) in landwirtschaftlichen Kulturen zu erarbeiten und dabei die variablen Kosten des Separationsprozesses so gering wie möglich zu halten und eine attraktive kostengünstige Alternative anzubieten.

Die Projektphasen beginnen mit der Planung, Entwicklung und Konstruktion der entsprechenden Module, um eine kostengünstige Separation zu erreichen. Diese erste Stufe umfasst die Trennung von festen und flüssigen Phasen durch Prozesse wie Separation, Filtration, Konditionierung, feldorientierte Anwendung sowie die Überwachung der Nährstoffzusammensetzung der organischen Flüssigdünger durch die Integration verschiedener neuartiger Sensoren und Methoden.

Dieser Prozess findet hauptsächlich im Lagerbehälter statt, in dem der Gärrest gelagert wird. Von diesem Behälter aus gelangt der Gärrest in einen Mikroseparationsbehälter, in dem der Fugatabfluss in die Fugatspeichereinheit überführt und der dicke Gärrestschlamm in den Lagerbehälter zurückgeführt wird. Der Fugatabfluss wird in eine Mischeinheit geleitet, wo er mit Brunnenwasser gemischt wird, um aufbereitetes Bewässerungswasser zu erhalten, das anschließend in die zentrale Bewässerungsmaschine geleitet wird.

Die folgenden Phasen umfassen die Entwicklung der festen und mobilen Module, die mit den bestehenden Bewässerungstechnologien kompatibel sind, sowie die Programmierung der Software.

Anschließend erfolgen die Installation und Langzeittests bei den landwirtschaftlichen Partnern, bei denen die entsprechenden Analysen der Nährstoffbewegungen in den Bodenschichten und im Grundwasser sowie die Emissions- und Ertragskontrolle stattfinden. Die Ergebnisse der Auswertungen ermöglichen einerseits die Erstellung der Nährstoffbilanz der festen und flüssigen Phase und andererseits die Erstellung der wirtschaftlichen Kosten-Nutzen-Analyse.

Schließlich wird als Teil der Hauptziele des Green Cycle-Projekts die Verbreitung und Förderung der Ergebnisse innerhalb der Zielmärkte durch Demonstrationsflächen, die für den Besuch von Interessenten geöffnet werden, Präsentation des Projekts auf Messen, akademische Veröffentlichungen und Verbreitung über das Internet unterstützt. Außerdem werden die Projektergebnisse in die akademische Forschung und Programme integriert.

Das Projekt Green Cycle beweist, dass es möglich ist, die Nachteile der Tierhaltung nicht nur in Europa, sondern weltweit zu bekämpfen, indem der reiche Nährstoffgehalt der Gärreste ausgenutzt wird und es möglich ist, die lokalen Nährstoffe zu recyceln und nachhaltig zu verwalten. Darüber hinaus ist eine saisonale Ausbringung von Düngemitteln aus Gülle unter Erfüllung aller düngerechtlichen Aspekte möglich und durch die langen Ausbringungszeiten können bessere Konditionen für die Lohnunternehmer und eine bessere Auslastung der technischen Infrastruktur und Logistik erreicht werden.

Hinsichtlich der wirtschaftlichen Vorteile des Projektes sind die deutliche Reduzierung der Ausbringungskosten, die Einsparungen durch den Ersatz von Mineraldüngern und die relativ geringen variablen Kosten im Zusammenhang mit den Separationsprozessen einige der wichtigsten bemerkenswerten Vorteile des Projektes.

Darüber hinaus stärkt die Umsetzung des Projekts nicht nur die Rentabilität des landwirtschaftlichen Sektors und erhöht seine Wettbewerbsfähigkeit und Innovationskraft, sondern trägt auch zur zukünftigen Entwicklung eines innovativen Knotenpunkts zwischen Wissenschaft, Wirtschaft und Landwirtschaft bei, der die Entwicklung neuartiger und präziser Ideen fördert, die zur Erreichung nachhaltiger landwirtschaftlicher Kreisläufe beitragen würden.

The alarming climate change forecasting and the already experienced consequences of it in the agricultural sector, clearly demonstrate that the actual water management strategies must be re-evaluated and promoting the development of alternatives that supply the current water demand must be the focus.

Water reuse represents a relatively new approach that started to significantly grow in the 20th century. Although, it is not fully developed yet, many important advancements have been made, proving its huge potential. The development of technologies that boost the water reuse for different purposes, within the framework of the circular economy concept, contributes significantly to move steps further to achieve the sustainability.

Over the years, members of the European Union have been joining efforts to promote and subsidize initiatives that enhance the development of this promising approach. As a result, the first European wide regulation on water reuse is already established and foreseen for implementation in 2023. The regulation (EU 2020/741) sets out the minimum quality criteria for the safe reuse of treated urban wastewaters for agricultural irrigation.

However, only substances that are commonly found in the environment at remarkable concentrations and those ones that pose threats to the environment and on human health are regulated. Among the compounds that are not regulated are the micro pollutants, which are regularly discharged to the wastewater and represent a warning signal as their effects still lack of knowledge.

In Germany, one of the most promising projects that target to evaluate this problematic, among others, is the “FlexTreat” project. Funded by the Federal Ministry of Education and research of Germany, started on February 2021 and has a duration of 3 years. The project involved 12 partners representing research institutions, large companies, small and medium enterprises and water associations with the coordination of the Institute of environmental Engineering of the RWTH Aachen University.

Practice and scientific knowledge demonstrate that wastewater treatment and its subsequent reuse is a powerful method to successfully ease the high actual water demand, however, even when the actual treatment technologies are able to achieve high removal efficiencies in certain parameters, there are others that are not fully managed. For instance, micro pollutants compounds, such as pharmaceuticals or personal care products, are only partially removed in the wastewater processes. When the effluents are discharged either in water bodies or for further use in agriculture, the substances are present as mixtures that can interact and transform products of certain substances that may pose a greater threat to the environment and organisms living on it. The knowledge regarding the long-term effects of exposure to a mixture of pollutants present in the environment at low concentration levels is still limited.

FlexTreat aims to promote the safe water reuse in agriculture by developing and demonstrating flexible technical and nature based treatment systems adapted to agricultural needs. Identifying the weaknesses and actual needs of the sector is key for the right development of the scientific and technical principles that will allow to ensure the safe use of treated wastewater, as well as surface waters. Therefore, FlexTreat intend to investigate and optimize the purification performance of innovative advanced wastewater treatment processes with respect to a wide range of physical, chemical and microbiological water quality parameters, including antibiotic resistance, transformation products of trace substances, emerging pathogens, among others.

Emphasis will be placed on potential synergies with trace substance removal as well as innovative processes through the use of digital applications for monitoring in order to ensure the quality targets such as unrestricted irrigation can be met at all times

The strategy proposed consisted on testing and further developing different innovative process combinations at four sites on a pilot or large scale with a wide range of water quality parameters. The process aimed to be developed and tested include Ozonation, Rapid filtration, UV disinfection, Modified retention soil filters, Activated carbon adsorption, Ultrafiltration and Nature based treatment using constructed wetlands and Electro chlorination.

In this context, a pilot plant will be set up and operated at the Braunschweig water treatment facility. FlexTreat will add and combine different processes to the already existing wastewater treatment plant to determine the optimum performance. The technologies to be installed in this pilot plant are Ozonation, Biofiltration and UV disinfection.

The Braunschweig model, developed by the Abwasserverband Braunschweig is one of the best examples for water reuse for agricultural purposes in Germany. The model brings together the wastewater of 290,000 inhabitants of the city of Braunschweig and its boroughs. With a capacity of 60,000 m3 per day, the treatment plant provides mechanical and biological treatment in a multistage process for the collected wastewater. After the treatment, the purified water is used for irrigation of agricultural areas belonging to the community, supplying the necessary water and nutrient demand for the adequate plant growth and ensuring the production of food and energy plants. FlexTreat pilot plant will treat part of the wastewater treatment plant effluent so that the concentration of pathogenic germs and micro pollutants, such as residues from pharmaceuticals and personal care products, is reduced as far as possible to a minimum and unrestricted usable irrigation water is produced. Furthermore, studies on contaminant degradation during soil passage and contaminant uptake by crops will be conducted.

The expected outcomes of the project include scientific and technical principles for the safe use of treated wastewater, optimum performance of the innovative advanced wastewater treatment processes implemented, an integrated assessment approach that combines water quality, health risks, system resilience, and economic and environmental dimensions. In addition, inputs for implementation guidelines, including guidance on risk management methods in accordance with the European minimum requirements for agricultural irrigation.

The implementation of the project and the outputs derived will be of high importance to promote the potential for reuse not only in Germany but also in Europe and will serve to increase the public and practitioner’s acceptability of this approach by providing technical evidence and transferable solutions for different contexts.

FlexTreat will contribute with important findings that help to move steps forward to identify common compounds synergies, asses the risks based on scientific principles and provide improved knowledge and a basis for further scientific and engineering approaches.

Finally, the project will bring opportunities to the interested parties to get to know and have access to the most innovative and sustainable solutions and the technical support to allow and encourage the implementation on a bigger scale.

Die alarmierenden Prognosen zum Klimawandel und die bereits erlebten Folgen im landwirtschaftlichen Sektor zeigen deutlich, dass die aktuellen Wassermanagementstrategien neu bewertet werden müssen und die Förderung der Entwicklung von Alternativen, die den aktuellen Wasserbedarf decken, im Mittelpunkt stehen muss.

Die Wiederverwendung von Wasser stellt einen relativ neuen Ansatz dar, der im 20. Jahrhundert deutlich an Bedeutung gewonnen hat. Obwohl diese noch nicht vollständig entwickelt ist, wurden viele wichtige Fortschritte gemacht, die ihr großes Potenzial beweisen. Die Entwicklung von Technologien, die die Wiederverwendung von Wasser für verschiedene Zwecke im Rahmen des Konzepts der Kreislaufwirtschaft fördern, trägt wesentlich dazu bei, weitere Schritte zur Erreichung der Nachhaltigkeit zu unternehmen.

Im Laufe der Jahre haben sich die Mitglieder der Europäischen Union zusammengeschlossen, um Initiativen zu fördern und zu unterstützen, die die Entwicklung dieses vielversprechenden Ansatzes vorantreiben. Als Ergebnis wurde bereits die erste europaweite Verordnung zur Wasserwiederverwendung erstellt, deren Umsetzung für das Jahr 2023 vorgesehen ist. Die Verordnung (EU 2020/741) legt die Mindestqualitätskriterien für die sichere Wiederverwendung von behandeltem kommunalen Abwasser für die landwirtschaftliche Bewässerung fest.

Geregelt werden jedoch nur Stoffe, die in der Umwelt häufig in beachtlichen Konzentrationen vorkommen und solche, die eine Bedrohung für die Umwelt und die menschliche Gesundheit darstellen. Zu den nicht regulierten Stoffen gehören die Mikroschadstoffe, die regelmäßig in das Abwasser gelangen und ein Warnsignal darstellen, da ihre Auswirkungen noch nicht bekannt sind.

In Deutschland ist eines der vielversprechendsten Projekte, das sich unter anderem zum Ziel gesetzt hat, diese Problematik zu evaluieren, das Projekt "FlexTreat". Gefördert durch das Bundesministerium für Bildung und Forschung startete es im Februar 2021 und hat eine Laufzeit von 3 Jahren. An dem Projekt sind 12 Partner aus Forschungseinrichtungen, Großunternehmen, kleinen und mittleren Betrieben sowie Wasserverbänden unter der Koordination des Instituts für Umwelttechnik der RWTH Aachen beteiligt.

Die Praxis und die wissenschaftlichen Erkenntnisse zeigen, dass die Abwasserreinigung und die anschließende Wiederverwendung leistungsfähige Methoden sind, um den hohen aktuellen Wasserbedarf erfolgreich zu mindern. Doch selbst wenn die aktuellen Reinigungstechnologien in der Lage sind, hohe Entfernungseffizienzen bei bestimmten Parametern zu erreichen, gibt es andere, die nicht vollständig beherrscht werden. So werden z.B. Mikroschadstoffverbindungen, wie z.B. Pharmazeutika oder Körperpflegeprodukte, in den Abwasserprozessen nur teilweise entfernt. Wenn die Abwässer entweder in Gewässer eingeleitet werden oder zur weiteren Verwendung in der Landwirtschaft eingesetzt werden, liegen die Stoffe als Gemische vor, die sich gegenseitig beeinflussen und Produkte bestimmter Stoffe umwandeln können, die eine größere Gefahr für die Umwelt und die darin lebenden Organismen darstellen können. Das Wissen über die langfristigen Auswirkungen der Exposition gegenüber einer Mischung von Schadstoffen, die in der Umwelt in niedrigen Konzentrationen vorhanden sind, ist immer noch begrenzt.

FlexTreat zielt darauf ab, die sichere Wiederverwendung von Wasser in der Landwirtschaft zu fördern, indem flexible technische und naturbasierte Aufbereitungssysteme entwickelt und demonstriert werden, die an die Bedürfnisse der Landwirtschaft angepasst sind. Die Identifizierung der Schwachstellen und der tatsächlichen Bedürfnisse des Sektors ist der Schlüssel für die richtige Entwicklung der wissenschaftlichen und technischen Prinzipien, die es erlauben, die sichere Nutzung von behandeltem Abwasser sowie von Oberflächenwasser zu gewährleisten. Daher beabsichtigt FlexTreat, die Reinigungsleistung innovativer, fortschrittlicher Abwasserbehandlungsprozesse im Hinblick auf eine breite Palette physikalischer, chemischer und mikrobiologischer Wasserqualitätsparameter zu untersuchen und zu optimieren, einschließlich Antibiotikaresistenzen, Transformationsprodukte von Spurenstoffen, neu auftretende Krankheitserreger und andere.

Der Schwerpunkt liegt dabei auf möglichen Synergien mit der Spurenstoffentfernung sowie innovativen Verfahren durch den Einsatz digitaler Anwendungen zur Überwachung, um die Qualitätsziele wie z. B. die uneingeschränkte Bewässerung jederzeit zu gewährleisten.

Die vorgeschlagene Strategie bestand in der Erprobung und Weiterentwicklung verschiedener innovativer Verfahrenskombinationen an vier Standorten im Pilot- bzw. Großmaßstab mit einer breiten Palette von Wasserqualitätsparametern. Zu den zu entwickelnden und zu testenden Verfahren gehören Ozonierung, Schnellfiltration, UV-Desinfektion, modifizierte Retentionsbodenfilter, Aktivkohleadsorption, Ultrafiltration und naturnahe Aufbereitung durch Pflanzenkläranlagen und Elektrochlorierung.

In diesem Zusammenhang wird eine Pilotanlage in der Wasseraufbereitungsanlage Braunschweig aufgebaut und betrieben. FlexTreat wird der bereits bestehenden Kläranlage verschiedene Verfahren hinzufügen und kombinieren, um die optimale Leistung zu ermitteln. Die Technologien, die in dieser Pilotanlage installiert werden sollen, sind Ozonierung, Biofiltration und UV-Desinfektion.

Das Braunschweiger Modell, entwickelt vom Abwasserverband Braunschweig, ist eines der besten Beispiele für Wasserwiederverwendung für landwirtschaftliche Zwecke in Deutschland. Das Modell führt die Abwässer von 290.000 Einwohnern der Stadt Braunschweig und ihrer Stadtteile zusammen. Die Kläranlage mit einer Kapazität von 60.000 m3 pro Tag reinigt das gesammelte Abwasser mechanisch und biologisch in einem mehrstufigen Verfahren. Nach der Aufbereitung wird das gereinigte Wasser zur Bewässerung der landwirtschaftlichen Flächen der Gemeinde genutzt, um den notwendigen Wasser- und Nährstoffbedarf für ein angemessenes Pflanzenwachstum zu decken und die Produktion von Nahrungsmitteln und Energiepflanzen zu gewährleisten. In der FlexTreat-Pilotanlage wird ein Teil des Kläranlagenablaufs so aufbereitet, dass die Konzentration von pathogenen Keimen und Mikroverunreinigungen, wie z.B. Rückstände aus Pharmazeutika und Körperpflegeprodukten, weitestgehend auf ein Minimum reduziert wird und uneingeschränkt nutzbares Bewässerungswasser entsteht. Darüber hinaus werden Untersuchungen zum Schadstoffabbau während der Bodenpassage und zur Schadstoffaufnahme durch Nutzpflanzen durchgeführt.

Zu den erwarteten Ergebnissen des Projekts gehören wissenschaftliche und technische Grundlagen für die sichere Nutzung des gereinigten Abwassers, die optimale Leistung der implementierten innovativen, fortschrittlichen Abwasserbehandlungsprozesse, ein integrierter Bewertungsansatz, der Wasserqualität, Gesundheitsrisiken, Systembelastbarkeit sowie ökonomische und ökologische Dimensionen kombiniert. Darüber hinaus Beiträge für Implementierungsrichtlinien, einschließlich einer Anleitung zu Risikomanagementmethoden in Übereinstimmung mit den europäischen Mindestanforderungen für die landwirtschaftliche Bewässerung.

Die Durchführung des Projekts und die daraus abgeleiteten Ergebnisse werden von großer Bedeutung sein, um das Potenzial der Wiederverwendung nicht nur in Deutschland, sondern auch in Europa zu fördern. Sie werden dazu dienen, die Akzeptanz dieses Ansatzes in der Öffentlichkeit und in der Praxis zu erhöhen, indem sie technische Nachweise und übertragbare Lösungen für verschiedene Kontexte liefern.

FlexTreat wird mit wichtigen Erkenntnissen dazu beitragen, Schritte zur Identifizierung von Synergien bei gemeinsamen Verbindungen voranzutreiben, die Risiken auf der Grundlage wissenschaftlicher Prinzipien zu bewerten und verbesserte Kenntnisse und eine Grundlage für weitere wissenschaftliche und technische Ansätze zu liefern.

Schließlich wird das Projekt den interessierten Parteien die Möglichkeit bieten, die innovativsten und nachhaltigsten Lösungen kennenzulernen und Zugang zu ihnen zu erhalten, sowie die technische Unterstützung, um die Umsetzung in größerem Maßstab zu ermöglichen und zu fördern.

The main objectives of the project include the design and installation of pilot wastewater treatment plants at the hospitals of Heraklion, Greece and Larnaca, Cyprus for the removal of antibiotic resistant bacteria and antibiotic resistance genes. The units will consist of anaerobic MBR, phytoremediation through Lemna minor, photocatalysis and microfiltration. The project includes also the economic and environmental evaluation of the operation of the pilot units and the development of guidelines and design models, for full implementation of the total outflow of hospital units, both in the participating hospitals (scale up) and in other hospitals of other areas (transferability and replicability).

Οι κύριοι στόχοι του έργου περιλαμβάνουν το σχεδιασμό και εγκατάσταση πιλοτικών μονάδων επεξεργασίας λυμάτων στα νοσοκομεία Ηράκλειου (Ελλάδα) και Λάρνακως (Κύπρος) για την απομάκρυνση των ανθεκτικών στα αντιβιοτικά βακτηρίων και γονιδίων. Οι μονάδες θα αποτελούνται από αναερόβια διεργασία MBR, φυτοθεραπεία μέσω Lemna minor, φωτοκατάλυση και μικροδιήθηση. Το έργο εμπεριέχει επίσης, την οικονομική και περιβαλλοντική αξιολόγηση της λειτουργίας των πιλοτικών αυτών μονάδων και την ανάπτυξη κατευθυντήριων γραμμών και μοντέλων σχεδιασμού, για πλήρη υλοποίηση της συνολικής εκροής νοσοκομειακών μονάδων, τόσο στα συμμετέχοντα νοσοκομεία όσο και σε άλλα νοσοκομεία διαφορετικών περιοχών (δυνατότητα μεταφοράς και αντιγραφής).

Enhancing groundwater recharge by storing surplus water in the subsurface in times of high availability followed by recovery in times of high demand represents a low cost technology that increases the resilience of water supply infrastructures to extreme hydro-climatic events. This technique, referred to as managed aquifer recharge (MAR), represents a viable adaptation solution for sustainable water resources management while it reduces the impact of water scarcity by increasing seasonal water availability. MAR can improve food security and reduce harvest failure risks as the resilience against extreme weather events such as droughts is increased. The main objective is to reduce the risks in the application of sustainable groundwater management through the development and implementation of an innovative web-based, real-time monitoring and control system in combination with risk assessment and management tools. The approach will be tested at six MAR sites (pilot and full-scale) which ensures that the SMART-Control framework can be applied to various environmental and operational conditions to improve integrated water resources management techniques.assessment and management tools.

Η ενίσχυση του επανεμπλουτισμού των υπόγειων υδάτων μέσω της αποθήκευσης πλεονάζοντος νερού στην υπόγεια επιφάνεια σε περιόδους υψηλής διαθεσιμότητας, ακολουθούμενη από ανάκαμψη σε περιόδους υψηλής ζήτησης, αντιπροσωπεύει μια τεχνολογία χαμηλού κόστους που αυξάνει την ανθεκτικότητα των υποδομών ύδρευσης και άρδευσης σε ακραία υδροκλιματικά γεγονότα. Αυτή η τεχνική, που αναφέρεται ως διαχειριζόμενος εμπλουτισμός υδροφορέων (MAR), αντιπροσωπεύει μια βιώσιμη λύση προσαρμογής για τη βιώσιμη διαχείριση των υδάτινων πόρων, ενώ μειώνει τον αντίκτυπο της λειψυδρίας αυξάνοντας την εποχιακή διαθεσιμότητα νερού. Το MAR μπορεί να βελτιώσει την επισιτιστική ασφάλεια και να μειώσει τους κινδύνους αποτυχίας της συγκομιδής καθώς αυξάνεται η ανθεκτικότητα έναντι ακραίων καιρικών φαινομένων όπως η ξηρασία. Ο κύριος στόχος είναι η μείωση των κινδύνων στην εφαρμογή της βιώσιμης διαχείρισης των υπόγειων υδάτων μέσω της ανάπτυξης και της εφαρμογής ενός καινοτόμου διαδικτυακού συστήματος παρακολούθησης και ελέγχου σε πραγματικό χρόνο σε συνδυασμό με εργαλεία αξιολόγησης και διαχείρισης κινδύνων. Η προσέγγιση έχει δοκιμαστεί σε έξι τοποθεσίες MAR (πιλοτική και πλήρης κλίμακα), η οποία εξασφαλίζει ότι το πλαίσιο έξυπνου ελέγχου μπορεί να εφαρμοστεί σε διάφορες περιβαλλοντικές και λειτουργικές συνθήκες για τη βελτίωση των ολοκληρωμένων τεχνικών διαχείρισης των υδάτινων πόρων.εργαλεία αξιολόγησης και διαχείρισης.

The overall aim of the REWATERGY Innovative Training Network, aligned to the current initiatives of the European Commission in the water-energy nexus, is to guarantee the competivity of the water industrial sector by the development of a tailored integrated Industrial European Doctorate programme for the provision of a generation of highly skilled scientists and engineers co-trained by industry and World-leading research institutions, capable of developing fundamental understanding and technologies in the field and its implementation in the European market. Three research objectives set the foundation of this ambitious programme: (i) enhance the energy recovery from wastewater streams inspired by the circular economy concept, (ii) improve the energy efficiency of water disinfection and removal of contaminants of emerging concern, and (iii)increase the resilience of distributed household safe drinking water systems addressing potential health and safety challenges. The programme is particularly designed to cultivate an entrepreneurial spirit by the collaborative design, development and manufacturing of new prototypes aligned with the three research objectives. This training concept will have a long term impact by providing a stream of highly trained innovative scientists and engineers able to communicate ideas and to develop creative solutions for the adoption of novel technologies in the market.

Ο γενικός στόχος του Καινοτόμου Δίκτυου Κατάρτισης REWATERGY , που συμβαδίζει με τις τρέχουσες πρωτοβουλίες της Ευρωπαϊκής Επιτροπής για το NEXUS νερού-ενέργειας, είναι η εγγύηση της ανταγωνιστικότητας του νερού στο βιομηχανικό τομέα με την ανάπτυξη προσαρμοσμένου και ολοκληρωμένου Βιομηχανικού Ευρωπαϊκού Διδακτορικού πρόγραμματος για την παροχή μιας γενιάς με εξειδικευμένους επιστήμονες και μηχανικούς παράλληλα εκπαιδευμένους από τη βιομηχανία και από κορυφαία ερευνητικά ιδρύματα, που να βρίσκονται σε θέση να αναπτύξουν θεμελιώδη κατανόηση και τεχνολογίες στον τομέα και την εφαρμογή τους στην Ευρωπαϊκή αγορά. Τρεις ερευνητικοί στόχοι έθεσαν τα θεμέλια αυτού του φιλόδοξου προγράμματος: (i) ενίσχυση της ανάκτησης ενέργειας από ρεύματα λυμάτων εμπνευσμένα από την έννοια της κυκλικής οικονομίας, (ii) βελτίωση της ενεργειακής απόδοσης της απολύμανσης του νερού και απομάκρυνση των ρύπων αναδυόμενου ενδιαφέροντος και (iii)αύξηση της ανθεκτικότητας των κατανεμημένων οικιακών ασφαλών συστημάτων πόσιμου νερού που αντιμετωπίζουν πιθανές προκλήσεις για την υγεία και την ασφάλεια. Το πρόγραμμα έχει σχεδιαστεί ειδικά για να καλλιεργήσει ένα επιχειρηματικό πνεύμα με το συνεργατικό σχεδιασμό, ανάπτυξη και κατασκευή νέων πρωτοτύπων ευθυγραμμισμένων με τους τρεις ερευνητικούς στόχους. Αυτή η έννοια της κατάρτισης θα έχει μακροπρόθεσμο αντίκτυπο παρέχοντας ένα ρεύμα από άρτια εκπαιδευμένους, καινοτόμους επιστήμονες και μηχανικούς ικανούς να ανταλλάσουν ιδέες και να αναπτύσσουν δημιουργικές λύσεις για την υιοθέτηση νέων τεχνολογιών στην αγορά.

Microplastics have been the subject of increasing focus over the last decade since they have been found in virtually all waters and oceans around the globe. While rivers are assumed to be a major contributor of microplastic pollution to the marine environment, urban wastewater treatment plants (UWTPs) are expected to be a significant emission source of not only microplastic particles but also of the less studied nano-size plastic to freshwaters. The NANO-CARRIERS project aims through an inter-disciplinary approach at developing new understanding of the risk posed emission of micro- and nanoplastics (MNPs) into aquatic ecosystems in the context of emission and spread of chemical additives, contaminants of emerging concern (CECs) and antibiotic resistance genes through laboratory experiments, field measurements and focused case studies.

Our main approaches will combine laboratory experiments to assess the sorption of DNA to MNPs of different type and sizes, the development of a tool box with methodological developments and harmonisation of protocols for the measurement of MNPs and associated chemicals in wastewater effluents, and field measurements under various scenarios of wastewater effluent treatment, release and re-use.

Τα μικροπλαστικά έχουν αποτελέσει αντικείμενο αυξανόμενης προσοχής την τελευταία δεκαετία, δεδομένου ότι έχουν βρεθεί σχεδόν σε όλα τα νερά και τους ωκεανούς, σε όλο τον κόσμο. Ενώ οι ποταμοί θεωρείται ότι συμβάλλουν σημαντικά στη ρύπανση από μικροπλαστικά στο θαλάσσιο περιβάλλον, οι εγκαταστάσεις επεξεργασίας αστικών λυμάτων (UWTPs) αναμένεται να αποτελέσουν σημαντική πηγή εκπομπών όχι μόνο μικροπλαστικών σωματιδίων αλλά και του λιγότερο μελετημένου πλαστικού νανο-μεγέθους σε γλυκά νερά. Το έργο NANO-CARRIERS στοχεύει μέσω μιας διεπιστημονικής προσέγγισης στην ανάπτυξη νέας κατανόησης του κινδύνου εκπομπής μικρο-και νανοπλαστικών (MNPs) σε υδάτινα οικοσυστήματα, στο πλαίσιο της εκπομπής και της εξάπλωσης χημικών πρόσθετων, μολυσματικών παραγόντων αναδυόμενης ανησυχίας (CECs) και γονιδίων ανθεκτικότητας στα αντιβιοτικά μέσω εργαστηριακών πειραμάτων, μετρήσεων πεδίου και εστιασμένων περιπτωσιολογικών μελετών.

This project aims to investigate the safe and sustainable treatment of wastewater for irrigation, with minimized ecological and agronomic impacts. The overall concept is to develop cost-effective modular, de-centralized wastewater treatment/irrigation systems coupled to decision support tools that enables coupling/decoupling of treatment modules for the removal of pathogens, compounds of emerging concern (CECs) and salinity as a function of the wastewater source and measured quality parameters, to ensure optimal reused water quality for irrigation and long-term sustainability of irrigated soils. The first objective is the optimization and evaluation of energy-efficient secondary treatment modules specifically designed for integration to decentralized wastewater reuse systems. The second objective is the development and evaluation of novel advanced treatment (tertiary) modules for integration into decentralized wastewater reuse systems for reduction of microbial pathogens, mobile genetic elements (MGEs), antibiotic resistance genes (ARGs) and CECs, while the final objective is the development and evaluation of modules for reduction of effluent salinity to prevent soil salinization, which under certain conditions cause deterioration of soil quality and crop decline overtime.

Το έργο αυτό στοχεύει στη διερεύνηση της ασφαλούς και βιώσιμης επεξεργασίας λυμάτων για άρδευση, με ελαχιστοποιημένες οικολογικές και αγρονομικές επιπτώσεις. Η γενική ιδέα είναι να αναπτυχθούν οικονομικά αποδοτικά αρθρωτά, αποσυγκεντρωμένα συστήματα επεξεργασίας λυμάτων/άρδευσης σε συνδυασμό με εργαλεία υποστήριξης αποφάσεων που επιτρέπουν τη σύνδεση/αποσύνδεση των μονάδων επεξεργασίας για την απομάκρυνση παθογόνων, ενώσεων αναδυόμενης ανησυχίας (CEC) και αλατότητας ως συνάρτηση της πηγής λυμάτων και των μετρούμενων παραμέτρων ποιότητας, για να εξασφαλιστεί η βέλτιστη ποιότητα του επαναχρησιμοποιημένου νερού για άρδευση και μακροπρόθεσμη βιωσιμότητα των αρδευόμενων εδαφών. Ο πρώτος στόχος είναι η βελτιστοποίηση και αξιολόγηση ενεργειακά αποδοτικών μονάδων δευτεροβάθμιας επεξεργασίας ειδικά σχεδιασμένων για ενσωμάτωση σε αποκεντρωμένα συστήματα επαναχρησιμοποίησης λυμάτων. Ο δεύτερος στόχος είναι η ανάπτυξη και αξιολόγηση νέων προχωρημένων μονάδων προηγμένης θεραπείας (τριτοβάθμια) για ενσωμάτωση σε αποκεντρωμένα συστήματα επαναχρησιμοποίησης λυμάτων για τη μείωση των μικροβιακών παθογόνων, κινητικά γενετικά στοιχεία (MGE), γονίδια αντοχής στα αντιβιοτικά (ARGs) και CECs, ενώ ο τελικός στόχος είναι την ανάπτυξη και αξιολόγηση ενοτήτων για τη μείωση της αλατότητας των λυμάτων για την πρόληψη της αλάτωσης του εδάφους, οι οποίες υπό ορισμένες συνθήκες προκαλούν επιδείνωση της ποιότητας του εδάφους και μείωση της καλλιέργειας υπερωρίες.

The Drôme watershed is identified as having a quantitative deficit by the SDAGE of the Rhône Méditerranée basin. The objective of this study is to help restore the quantitative and qualitative balance of the territory through an evaluation of the water reuse potential of the territory.

The study is carried out on the entire Drôme watershed in order to integrate on the one hand all the public and private stakeholders involved in water management, and on the other hand all the local constraints and stakes on the water resource. This approach allows the optimization of strategies, scenarios and technical options proposed at the territorial scale. In addition, the study integrates in a broad way the multi-sources (conventional surface and underground resources, treated wastewater from collective and individual plants, industrial wastewater) and the multi-uses (agriculture, industries, breeding, fire fighting, green spaces...).



The project is divided into several phases:

1) Phase 1: Assessment of water reuse opportunities on the territory, i.e. characterization of the available non-conventional resources (quality, volumes, existing and future potential uses) while integrating the demographic and climate change perspectives, as well as the local environmental and socio-economic context. The methodology adopted is multi-criteria analysis, with the following families of criteria :

- Replicability at the scale of the watershed

- Environmental and socio-economic impacts on the territory

- Short-term feasibility

The aim is to prioritize the sites and scenarios with the highest potential for the implementation of water reuse pilots. A technical, economic, regulatory, social and organizational feasibility study is also conducted for 3 priority sites.

2) Phase 2: Implementation and monitoring of pilot demonstrator projects

3) Phase 3: Replication of the demonstrators on other large-scale sites throughout the territory

Le bassin versant de la Drôme est identifié en déficit quantitatif par le SDAGE du bassin Rhône Méditerranée. L'objectif de cette étude est d'aider à rétablir l’équilibre quantitatif et qualitatif du territoire via une évaluation du potentiel de réutilisation des eaux du territoire.

L’étude est menée sur l’intégralité du bassin versant de la Drôme afin d’intégrer d’une part l’ensemble des acteurs, publics et privés, impliqués dans la gestion de l’eau, et d’autre part l’ensemble des contraintes et enjeux locaux sur la ressource en eau. Cette démarche permet ainsi une optimisation des stratégies, des scénarios et des filières techniques proposées à l’échelle du territoire. En outre, l’étude intègre de manière large le multi-sources (ressources conventionnelles de surface et souterraines, eaux usées traitées domestiques issues de stations collectives et individuelles, eaux d’origine industrielle…) et le multi-usages (agriculture, industries, élevages, lutte incendie, espaces verts…).



Le projet se divise en plusieurs phases :

1) Phase 1 : Evaluation des opportunités de réutilisation du territoire, c’est-à-dire caractérisation des ressources non conventionnelles disponibles (qualité, volumes, usages potentiels existants et futurs) en intégrant les perspectives démographiques et de changement climatique, ainsi que le contexte local environnemental et socio-économique. La méthodologie adoptée est l’analyse multicritère, avec les familles de critères suivantes :

- Réplicabilité à l’échelle du bassin versant

- Impacts environnementaux et socio-économiques sur le territoire

- Faisabilité à court terme

Le but est ainsi de prioriser les sites et les scénarios à plus fort potentiel pour la mise en place de pilotes de réutilisation des eaux. Une étude de faisabilité technique, économique, réglementaire, sociale, organisationnelle est également réalisée pour 3 sites prioritaires.

2) Phase 2 : Mise en œuvre et suivi de projets pilotes démonstrateurs

3) Phase 3 : Réplication des démonstrateurs sur d’autres sites grande échelle sur l’ensemble du territoire

Given the climatic and demographic challenges, the ENLARGE project aims to develop solutions and decision-making tools to assess the value of decentralised approaches in the context of urban development projects. The final objective is to suggest ways to anticipate global changes and optimise the use of resources while allowing for environmentally friendly economic development and resilience of urban communities over the long term.

Based on case studies applied to 4 cities (Amsterdam NL, Miami USA, Marseille FR and Florianopolis BRE), this project aims to

- Analyse different technological hubs through sustainable urban development scenarios, inculding the development of urban agriculture;

- Develop multi-scale and multi-agent modelling tools to better understand and optimise the solutions selected in our scenarios;

- Produce environmental, economic and social indicators adapted to different urban contexts to realise and compare centralised systems with decentralised systems.



The main results of this ongoing project are the following:

- A consolidated database of decentralised urban water and nutrient reuse projects (feedback) with a focus on the Water-Food-Energy nexus. This database makes it possible to analyse these feedbacks on different aspects: technical, economic, organisational, regulatory and benefits.

- Technically, economically and regulatory framework scenarios for the circular economy of water and nutrients adapted to the local contexts of the cities of Marseille, Florianopolis and Vitoria, and validated by local stakeholders.

- A model (still under construction) using VENSIM software whose ambition exceeds that of the ENLARGE project: it aims to become a complete decision-making tool for the study of decentralised solutions for source separation and circular economy of water and nutrients (for local agriculture production).

Face aux enjeux climatiques et démographiques, la vocation du projet ENLARGE est de développer des solutions et outils d’aide à la décision permettant d’évaluer l’intérêt des approches décentralisées dans le cadre de projets d’aménagement urbain. L’objectif final est de proposer des pistes pour anticiper les changements globaux et optimiser l’usage des ressources tout en permettant un développement économique respectueux de l’environnement et une résilience des communautés urbaines sur le long terme.

A partir de cas d’études appliqués à 4 villes (Amsterdam NL, Miami USA, Marseille FR et Florianopolis BRE), ce projet vise ainsi à :

• Analyser différentes solutions technologiques au travers de scénarios de développement urbain durables ;

• Développer des outils de modélisation multi-échelles et multi-agents pour mieux appréhender et optimiser les solutions sélectionnées dans nos scénarios, incluant l'agriculture urbaine ;

• Produire des indicateurs environnementaux, économiques et sociaux adaptés à différents contextes urbains pour réaliser et comparer des systèmes centralisés avec des systèmes décentralisés.



Les résultats marquants de ce projet en cours sont les suivants :

1) Une base de données consolidée de projets (retours d’expérience) décentralisés en milieu urbain de réutilisation des eaux et des nutriments avec un focus sur le nexus Eau-Alimentation-Energie. Cette base de données permet d’analyser sur différents aspects ces REX : techniques, économiques, organisationnels, réglementaires et bénéfices.

2) Des scénarios cadrés techniquement, économiquement et réglementairement d’économie circulaire de l’eau et des nutriments adaptés aux contextes locaux des villes de Marseille de Florianopolis et de Vitoria, et validés par des acteurs locaux.

3) Un modèle (toujours en cours de construction) sous logiciel VENSIM dont l’ambition dépasse celle du projet ENLARGE : il vise à devenir un outil d’aide à la décision complet pour l’étude de solutions décentralisées de séparation à la source et d’économie circulaire de l’eau et des nutriments (pour leur valorisation en agriculture urbaine).

Murviel-lès-Montpellier, a municipality west of Montpellier, has a wastewater treatment plant with planted aerated filters (1500 p.e). In the futur, access to water for irrigation will be crucial to preserve agricultural activity, in particular vineyards in the municipality.



In this context, reclaimed water for irrigation seems to be a relevant solution for reducing pollution, preserving the sensitive environment, facilitating farmers' access to water resources for irrigation and valorizing the nutrients in wastewater for agronomic purposes.



The main objectives of the platform are :

- Adapt wastewater treatment to usage (irrigation or discharge)

- Optimize the sustainability and efficiency of irrigation systems

- Valorize the agronomic nutrients present in treated water

- Control sanitary and environmental risks (survival of pathogens in irrigation systems, atmosphere or soil, monitoring of emerging pollutants in agricultural systems)



The overall experimental work will focus on the acquisition of references under controlled conditions (soil tanks) in the station and under real conditions, on an agricultural plot.

Murviel-lès-Montpellier, commune à l’ouest de Montpellier, possède une station de traitement des eaux usées par filtres plantés aérés (1500 EH). Sur la commune, l’accès à l’eau pour l’irrigation conditionnera dans un avenir proche le maintien de l’activité agricole, et de la viniculture en particulier.



Dans ce contexte, la réutilisation des eaux pour l’irrigation apparaît comme une solution pertinente pour diminuer la pollution, préserver le milieu sensible, faciliter l’accès des agriculteurs à la ressource en eau pour l’irrigation et valoriser les nutriments des eaux à des fins agronomiques.



Les principaux objectifs de cette plateforme sont :

• Adapter le traitement des eaux usées à l’usage en sortie de station d’épuration (irrigation ou rejet)

• Optimiser la durabilité et l’efficience des systèmes d’irrigation

• Valoriser les eaux usées traitées d’un point de vue agronomique

• Maîtriser les risques sanitaires et environnementaux (survie des pathogènes dans les systèmes d’irrigation, l’atmosphère ou le sol, suivi de polluants émergents en système agricole)



Le travail expérimental global portera sur l’acquisition de références à la fois en conditions contrôlées (bacs de sol) dans l’enceinte de la station d’épuration et en conditions réelles, sur une parcelle agricole en culture.

In order to promote environmentally friendly irrigated agricultural activities, to anticipate the scarcity of water resources and to rehabilitate wastelands for a better management of the landscape, the municipality of La Flotte, on the island of Ré, has set up a program to reuse water from the "Le Clos Martin" WWTP.

Thus, 600 000 m3 of water per year are treated thanks to a screen, a grit chamber, an aeration tank, a clarifier and a disinfection by ultra-violet and chlorine. Chemical and bacteriological controls are carried out by an accredited laboratory (COD, TSS and Escherichia coli) in order to guarantee an A water quality. This system allows for the supply of water for several uses: market gardening, potato production and equestrian centers. Each year, about 20,000 m3 of effluent are used for the irrigation of about 50 ha

This irrigation program, established in collaboration with the Association des Irrigants de La Flotte en Ré, benefits from a prefectural decree.

Afin de promouvoir des activités agricoles irriguées respectueuses de l'environnement, d'anticiper la raréfaction de la ressource en eau et de réhabiliter les friches pour une meilleure gestion du paysage, la commune de La Flotte, sur l’île de Ré, a mis en place un programme de réutilisation des eaux de la STEP " Le Clos Martin ".

Ainsi, 600 000 m3 d’eau par an sont traitées grâce à un dégrillage, un dessableur-dégraisseur, un bassin d’aération, un clarificateur et une désinfection par ultra-violet et par chlore. Des contrôles chimiques et bactériologiques sont effectués par un laboratoire accrédité (DCO, MES et Escherichia coli) afin de garantir une qualité d'eau A. Ce dispositif permet d’alimenter en eau plusieurs usages : maraîchage, production de pommes de terre et centres équestres. Ce sont chaque année environ 20 000 m3 d'effluent qui sont valorisés pour l'irrigation d'environ 50 ha.

Ce programme d'irrigation, établi en collaboration avec l'Association des Irrigants de La Flotte en Ré, bénéficie d'un arrêté préfectoral.

The salinity of treated water is a major problem for the implementation of sustainable water reuse projects.

Pays de l'Or Agglomération and the city of La Grande Motte wish to use the water from the Wastewater treatment plant, whose salinity varies greatly throughout the year, for the irrigation of the city's golf course. Some reclaimed waters are too salty to be used as they are for agricultural irrigation and must be diluted.

Pays de l'Or Agglomération therefore wished to carry out in situ tests on a dedicated platform at the treatment plant in order to :

- Quantify the risks related to salinity;

- Optimize the dilution rates;

- Identify tolerant turf.



Thus, La Grande Motte demonstrator platform has been set up with 4 types of turf, grown in above-ground culture tanks of 1 m2, which are:

- Agrostis,

- Ray-Grass,

- Cynodon dactylon,

- Ray-Grass/Fescue



And 5 types of irrigation water:

- undiluted reclaimed water at max. 3 dS/m

- reclaimed water diluted to 2 dS/m

- reclaimed water diluted to 1,5 dS/m

- reclaimed water diluted to 1 dS/m

- control drinking water

The combination of these modalities should make it possible to select a variety of turf and a dilution of regenerated water appropriate for sustainable irrigation of the La Grande-Motte golf course.

La salinité des eaux traitées est une problématique majeure pour la mise en place de projets durables de réutilisation des eaux.

Pays de l’Or Agglomération et la ville de La Grande Motte souhaitent valoriser les eaux de la station de traitement pour l’irrigation du Golf de la ville. Certaines eaux traitées sont trop salées pour être utilisées telles quelles en irrigation agricole et doivent être diluées.

Pays de l’Or Agglomération a donc souhaité mener des tests in situ sur une plate-forme dédiée sur la station de traitement afin :

• De quantifier les risques relatifs à la salinité ;

• D’optimiser les taux de dilution ;

• D’identifier des gazons tolérants.



Ainsi, la plateforme démonstrateur de La Grande Motte a été mise en place avec 4 types de gazons cultivés en bac hors sol de 1 m2 :

- Agrostis,

- Ray-Grass,

- Cynodon dactylon,

- Ray-Grass/Fétuque



Et 5 types d’eau d’irrigation :

- eau traitée non diluée à max. 3 dS/m

- eau traitée diluée à 2 dS/m

- eau traitée diluée à 1,5 dS/m

- eau traitée diluée à 1 dS/m

- eau potable témoin

La combinaison de ces modalités doit permettre de sélectionner une variété de gazon et une dilution d’eau traitée appropriée à une irrigation durable du golf de La Grande-Motte.

The island of Noirmoutier, located on the French Atlantic coast, has no fresh water supply, and almost all of its drinking water is imported. Since 1980, the treated water by the wastewater treatment plants of La Salaisière and La Casie (tertiary treatment by lagoon) is reused for the irrigation of potato crops. Several reasons have motivated this water reuse project :

- The population of the island has a high seasonal variability;

- Potato crops (high value) but high water demand ;

- Sensitive receiving environment.

Today, about 380 ha are irrigated (710 ha irrigable) with an average of 300 000 m3 of reclaimed water per year. The lagoons and storage basins are managed by the municipality, while the pumping station and the irrigation network are managed by the Irrigation and Drainage Association of Noirmoutier (ASDI).

From an economic point of view, the cost of the tertiary treatment and the storage basins was covered by the municipality with the financial support of the Water Agency. The pumping station and the irrigation network were financed by the water users association with some departmental support. The total investment amounted to 5.6 M€, i.e. 14 700 € per irrigated ha. Operation and maintenance amounted to approximately 170,000 €/year, or 450 €/ha.

L’île de Noirmoutier, située sur la côte atlantique française ne possède pas de réserve d’eau douce, et presque toute l’eau potable est importée. Plusieurs raisons ont motivé la réutilisation des eaux usées traitées sur l'ile :

- La population de l'ile présente une forte variabilité saisonnière ;

- Culture de la pomme de terre (haute valeur ajoutée) mais gourmande en eau;

- Milieu récepteur sensible.

Dès 1980, les eaux traitées par les stations d'épuration de La Salaisière et La Casie (traitement tertiaire par lagunage) sont réutilisées pour l'irrigation de cultures de pommes de terre. Aujourd'hui c'est environ 380 ha qui sont irrigués (710 ha irrigables) avec en moyenne 300 000 m3/an. Les lagunes et bassins de stockage sont gérés par la communauté de communes, tandis que la station de pompage et le réseau d’irrigation sont gérés par l’association syndicale de drainage et d'irrigation de l'île de Noirmoutier (ASDI). D’un point de vue économique, le coût du traitement tertiaire et des bassins de stockage a été couvert par la communauté de communes avec l’appui financier de l’Agence de l’Eau Loire-Bretagne. La station de pompage et le réseau d’irrigation ont été financés par l’association d’irrigants avec quelques aides départementales. Les investissements se sont élevés au total à 5.6 M€, soit 14 700 € par ha irrigué. L’exploitation et l’entretien s’élèvent à environ 170 000 €/an, soit 450 €/ha.

A pioneer in the reuse of treated wastewater in France, the Limagne Noire water users association has been irrigating 700 ha of crops since 1996. The Limagne Noire plain is a strip of land located in the north of the Puy-de-Dôme department in France. Cereal farms irrigate their crops with reclaimed water from a sugar factory and the Clermont-Ferrand municipal wastewater treatment plant.

The following elements contributed to the implementation of the project:

- The Bourdon site of the Cristal-Union sugar factory is located near the water treatment plant of the city of Clermont-Ferrand and the agricultural perimeter of Limagne Noire (sugar beet);

- No water resources are available for irrigation (Beldat river with low flow and very polluted, no groundwater, 20 km distance to the Allier river);

- There is a strong demand for irrigation by farmers to ensure and increase yields;

- Irrigation is mandatory for corn seed contracts with Limagrain.

The project was launched in 1996, after raising 5.4 million euros in funding. One third was financed by the member farmers at a rate of €1,800/ha. The rest was paid by the sugar factory and various public institutions.

As of April 1st, 200,000 m3 of beet washing water from the Bourdon sugar factory is stored in 12 ha of basins where the UV rays of the sun destroy the pathogens. The purified water is then progressively spread (April-May), it has a significant fertilizing value. Once empty, the basins are refilled with 30% of the water from the municipality wastewater treatment plant. The water finishes its purification using the same process, then is reused for irrigation. This means that 900,000 m3/year of purified water from the plant is reused from May to September.

In all, 700 ha are irrigated annually, for an equipped surface of 1500 ha.

Pionnière de la réutilisation des eaux usées traitées en France, l’Association Syndicale Autorisée Limagne Noire irrigue, depuis 1996, 700 ha de cultures. La plaine de la Limagne Noire est une bande de terre située au nord du département du Puy-de-Dôme en France. Des exploitations céréalières y irriguent leurs cultures grâce à l’eau recyclée d’une sucrerie et de la station d’épuration de Clermont-Ferrand.

Les éléments suivants ont contribué à la mise en place du projet :

- Le site Bourdon de la sucrerie Cristal-Union est localisé à proximité de la station d’épuration de la ville de Clermont-Ferrand et du périmètre agricole de Limagne Noire (betterave Sucrière) ;

- Aucune ressource en eau n’est disponible pour l’irrigation (cours d’eau du Beldat à faible débit et très pollué, pas de nappe souterraine, distance de 20 km jusqu’à l’Allier) ;

- Il y a une forte demande en irrigation pour les agriculteurs afin d’assurer et d’augmenter les rendements ;

- L’irrigation est obligatoire pour la mise en place de contrats maïs semence avec Limagrain.

Le projet a vu le jour en 1996, après une levée de fonds de 5,4 millions d'euros. Un tiers fut financé par les agriculteurs adhérents à raison de 1 800 €/ha. Le reste fut pris en charge par la sucrerie et divers organismes publics.

Dès le 1er avril, 200 000 m3 d’eau de lavage des betteraves de la sucrerie Bourdon sont stockés dans 12 ha de bassins et les UV du soleil y détruisent les pathogènes. L’eau épurée est ensuite progressivement épandue (avril-mai), elle possède d’ailleurs une valeur fertilisante non négligeable. Une fois vides, les bassins sont à nouveau remplis avec 30 % des eaux de la station d’épuration Clermont Métropole. Les eaux y finissent leur épuration selon le même procédé, puis sont réutilisées pour l’irrigation. Ce sont 900 000 m3/an d’eaux épurées de la station qui sont ainsi réutilisées de mai à septembre.

En tout, ce sont 700 ha qui sont irrigués annuellement, pour une surface équipée de 1500 ha.

The Drôme watershed is identified as having a quantitative deficit by the SDAGE of the Rhône Méditerranée basin. The objective of this study is to help restore the quantitative and qualitative balance of the territory through an evaluation of the water reuse potential of the territory.

The study is carried out on the entire Drôme watershed in order to integrate on the one hand all the public and private stakeholders involved in water management, and on the other hand all the local constraints and stakes on the water resource. This approach allows the optimization of strategies, scenarios and technical options proposed at the territorial scale. In addition, the study integrates in a broad way the multi-sources (conventional surface and underground resources, treated wastewater from collective and individual plants, industrial wastewater) and the multi-uses (agriculture, industries, breeding, fire fighting, green spaces...).



The project is divided into several phases:

1) Phase 1: Assessment of water reuse opportunities on the territory, i.e. characterization of the available non-conventional resources (quality, volumes, existing and future potential uses) while integrating the demographic and climate change perspectives, as well as the local environmental and socio-economic context. The methodology adopted is multi-criteria analysis, with the following families of criteria :

- Replicability at the scale of the watershed

- Environmental and socio-economic impacts on the territory

- Short-term feasibility

The aim is to prioritize the sites and scenarios with the highest potential for the implementation of water reuse pilots. A technical, economic, regulatory, social and organizational feasibility study is also conducted for 3 priority sites.

2) Phase 2: Implementation and monitoring of pilot demonstrator projects

3) Phase 3: Replication of the demonstrators on other large-scale sites throughout the territory

Le bassin versant de la Drôme est identifié en déficit quantitatif par le SDAGE du bassin Rhône Méditerranée. L'objectif de cette étude est d'aider à rétablir l’équilibre quantitatif et qualitatif du territoire via une évaluation du potentiel de réutilisation des eaux du territoire.

L’étude est menée sur l’intégralité du bassin versant de la Drôme afin d’intégrer d’une part l’ensemble des acteurs, publics et privés, impliqués dans la gestion de l’eau, et d’autre part l’ensemble des contraintes et enjeux locaux sur la ressource en eau. Cette démarche permet ainsi une optimisation des stratégies, des scénarios et des filières techniques proposées à l’échelle du territoire. En outre, l’étude intègre de manière large le multi-sources (ressources conventionnelles de surface et souterraines, eaux usées traitées domestiques issues de stations collectives et individuelles, eaux d’origine industrielle…) et le multi-usages (agriculture, industries, élevages, lutte incendie, espaces verts…).



Le projet se divise en plusieurs phases :

1) Phase 1 : Evaluation des opportunités de réutilisation du territoire, c’est-à-dire caractérisation des ressources non conventionnelles disponibles (qualité, volumes, usages potentiels existants et futurs) en intégrant les perspectives démographiques et de changement climatique, ainsi que le contexte local environnemental et socio-économique. La méthodologie adoptée est l’analyse multicritère, avec les familles de critères suivantes :

- Réplicabilité à l’échelle du bassin versant

- Impacts environnementaux et socio-économiques sur le territoire

- Faisabilité à court terme

Le but est ainsi de prioriser les sites et les scénarios à plus fort potentiel pour la mise en place de pilotes de réutilisation des eaux. Une étude de faisabilité technique, économique, réglementaire, sociale, organisationnelle est également réalisée pour 3 sites prioritaires.

2) Phase 2 : Mise en œuvre et suivi de projets pilotes démonstrateurs

3) Phase 3 : Réplication des démonstrateurs sur d’autres sites grande échelle sur l’ensemble du territoire

Given the climatic and demographic challenges, the ENLARGE project aims to develop solutions and decision-making tools to assess the value of decentralised approaches in the context of urban development projects. The final objective is to suggest ways to anticipate global changes and optimise the use of resources while allowing for environmentally friendly economic development and resilience of urban communities over the long term.

Based on case studies applied to 4 cities (Amsterdam NL, Miami USA, Marseille FR and Florianopolis BRE), this project aims to

- Analyse different technological hubs through sustainable urban development scenarios, inculding the development of urban agriculture;

- Develop multi-scale and multi-agent modelling tools to better understand and optimise the solutions selected in our scenarios;

- Produce environmental, economic and social indicators adapted to different urban contexts to realise and compare centralised systems with decentralised systems.



The main results of this ongoing project are the following:

- A consolidated database of decentralised urban water and nutrient reuse projects (feedback) with a focus on the Water-Food-Energy nexus. This database makes it possible to analyse these feedbacks on different aspects: technical, economic, organisational, regulatory and benefits.

- Technically, economically and regulatory framework scenarios for the circular economy of water and nutrients adapted to the local contexts of the cities of Marseille, Florianopolis and Vitoria, and validated by local stakeholders.

- A model (still under construction) using VENSIM software whose ambition exceeds that of the ENLARGE project: it aims to become a complete decision-making tool for the study of decentralised solutions for source separation and circular economy of water and nutrients (for local agriculture production).

Face aux enjeux climatiques et démographiques, la vocation du projet ENLARGE est de développer des solutions et outils d’aide à la décision permettant d’évaluer l’intérêt des approches décentralisées dans le cadre de projets d’aménagement urbain. L’objectif final est de proposer des pistes pour anticiper les changements globaux et optimiser l’usage des ressources tout en permettant un développement économique respectueux de l’environnement et une résilience des communautés urbaines sur le long terme.

A partir de cas d’études appliqués à 4 villes (Amsterdam NL, Miami USA, Marseille FR et Florianopolis BRE), ce projet vise ainsi à :

• Analyser différentes solutions technologiques au travers de scénarios de développement urbain durables ;

• Développer des outils de modélisation multi-échelles et multi-agents pour mieux appréhender et optimiser les solutions sélectionnées dans nos scénarios, incluant l'agriculture urbaine ;

• Produire des indicateurs environnementaux, économiques et sociaux adaptés à différents contextes urbains pour réaliser et comparer des systèmes centralisés avec des systèmes décentralisés.



Les résultats marquants de ce projet en cours sont les suivants :

1) Une base de données consolidée de projets (retours d’expérience) décentralisés en milieu urbain de réutilisation des eaux et des nutriments avec un focus sur le nexus Eau-Alimentation-Energie. Cette base de données permet d’analyser sur différents aspects ces REX : techniques, économiques, organisationnels, réglementaires et bénéfices.

2) Des scénarios cadrés techniquement, économiquement et réglementairement d’économie circulaire de l’eau et des nutriments adaptés aux contextes locaux des villes de Marseille de Florianopolis et de Vitoria, et validés par des acteurs locaux.

3) Un modèle (toujours en cours de construction) sous logiciel VENSIM dont l’ambition dépasse celle du projet ENLARGE : il vise à devenir un outil d’aide à la décision complet pour l’étude de solutions décentralisées de séparation à la source et d’économie circulaire de l’eau et des nutriments (pour leur valorisation en agriculture urbaine).

Livestock production is concentrated in certain regions, some without enough area for land spreading valorised effluents. Therefore, in order to be competitive and comply with legal requirements, the sector should promote a circular economy, pursuing new alternatives for effluents management. The project aims to valorise livestock effluents as a resource, focusing on the production and integrated management of the different flows generated and to optimise the use of effluents as secondary raw materials, recovering energy and nutrients, improving farm nutrient balances and promoting sustainable management. Considering the economic and environmental importance of the agricultural sector, and the challenges it faces, this project will create concrete solutions that increase the efficiency of water and nutrient utilization, reduce the environmental impact of farming and add value to livestock coproducts. The contribution to the development of new organic fertilizers and the identification of users of the agricultural sector; will benefit the environment and the national economy, by reducing the use of other types of inputs.

The expected results include: i) a roadmap for effluents management, linked to farm characteristics and regional constraints, ii) support decision-making on centralised / decentralised solutions, iii) contribute to sustainable livestock intensification and landscape planning, to face climate change and resource scarcity. The beneficiaries will be the animal producers and farmers, its sustainability, and the image and brand of the sector.

A produção pecuária concentra-se em determinadas regiões, algumas sem área suficiente para aplicação dos efluentes produzidos. Assim, para ser competitivo e cumprir os requisitos legais, o setor deve promover uma economia circular, procurando novas alternativas de gestão de efluentes.

Esta iniciativa visa uma abordagem de valorização de um recurso, focada nos diferentes interesses que convergem na produção e gestão adequada e integrada dos fluxos gerados nos sistemas agropecuários (sociais, políticos, económicos, técnicos e ambientais), assegurando o desenvolvimento sustentável, a nível regional/nacional. Em todos os passos relacionados com a gestão destes fluxos (produção, recolha, armazenamento, valorização e reutilização nas condições locais), o objetivo da valorização não será apenas evitar a sua eliminação, mas também reduzir a exploração de recursos naturais, pela reciclagem. A identificação (pela definição de indicadores), quantificação e hierarquização de fluxos serão fundamentais, permitindo balanços de nutrientes a nível das explorações e consequente gestão sustentável.

Os resultados esperados incluem: i) um roteiro para a gestão de efluentes, ligado às características da exploração e restrições regionais, ii) apoiar a tomada de decisão com soluções centralizadas / descentralizadas, iii) contribuir para a intensificação sustentável dos sistemas de produção animal e para o planeamento paisagístico, face ás alterações climáticas e escassez dos recursos. Os beneficiários serão os agricultores e produtores de animais, a sua sustentabilidade e a imagem de marca do setor.

A produção pecuária concentra-se em determinadas regiões, algumas sem área suficiente para aplicação dos efluentes produzidos. Assim, para ser competitivo e cumprir os requisitos legais, o setor deve promover uma economia circular, procurando novas alternativas de gestão de efluentes.

Esta iniciativa visa uma abordagem de valorização de um recurso, focada nos diferentes interesses que convergem na produção e gestão adequada e integrada dos fluxos gerados nos sistemas agropecuários (sociais, políticos, económicos, técnicos e ambientais), assegurando o desenvolvimento sustentável, a nível regional/nacional. Em todos os passos relacionados com a gestão destes fluxos (produção, recolha, armazenamento, valorização e reutilização nas condições locais), o objetivo da valorização não será apenas evitar a sua eliminação, mas também reduzir a exploração de recursos naturais, pela reciclagem. A identificação (pela definição de indicadores), quantificação e hierarquização de fluxos serão fundamentais, permitindo balanços de nutrientes a nível das explorações e consequente gestão sustentável.

Os resultados esperados incluem: i) um roteiro para a gestão de efluentes, ligado às características da exploração e restrições regionais, ii) apoiar a tomada de decisão com soluções centralizadas / descentralizadas, iii) contribuir para a intensificação sustentável dos sistemas de produção animal e para o planeamento paisagístico, face ás alterações climáticas e escassez dos recursos. Os beneficiários serão os agricultores e produtores de animais, a sua sustentabilidade e a imagem de marca do setor.

This work was carried out in the Algarve in 2019, and aimed to evaluate the possibilities and advantages of reusing the treated effluent from the Faro Noroeste WWTP for irrigation of an orchard of 'Valencia Late' (Citrus sinensis) grafted on citranje 'Troyer'. From January to July, the quantity and quality of treated effluent was monitored to verify compliance with the requirements defined in recent legal guidelines in Europe. The characterization of the soil and groundwater used so far for irrigation was carried out. During the experimental period, the energy consumption associated with the movement of water was inventoried, comparing the scenario of irrigation of orange groves with underground water with the scenario of irrigation with treated effluent. Based on the energy consumption of these two irrigation scenarios, carbon emissions in the WWTP-Laranjal system were estimated. The suitability of the treated effluent for watering the orange grove was confirmed, in qualitative and quantitative terms. It was found that the reuse of wastewater has several environmental advantages: (1) it avoids possible eutrophication phenomena due to the discharge of treated effluent into the Ria Formosa; (2) reduces groundwater uptake from an aquifer that already has saline intrusion; (3) reduces the use of applied synthetic fertilizers (N and P) by more than 30%; (4) and improves the organic matter content and therefore the productivity of the soil. On the other hand, the optimization of the irrigation system makes it possible to reduce energy consumption and associated carbon emissions, as well as water losses through evapotranspiration. Finally, a more productive soil will enhance greater atmospheric carbon sequestration by orange trees, improving the global carbon balance in citrus production.

Este trabalho realizou-se no Algarve em 2019, e pretendeu avaliar possibilidades e vantagens da reutilização do efluente tratado da ETAR Faro Noroeste para rega de um pomar de ‘Valencia Late’ (Citrus sinensis) enxertada em citranjeira ‘Troyer’. Monitorizou-se de janeiro a julho a quantidade e a qualidade do efluente tratado para verificação do cumprimento dos requisitos definidos nas recentes orientações legais na Europa. Procedeu-se à caracterização do solo e da água subterrânea utilizada até ao momento para a rega. Durante o período experimental, inventariaram-se os consumos energéticos associados à movimentação da água, comparando-se o cenário da rega do laranjal com a água subterrânea com o cenário da rega com efluente tratado. Com base nos consumos energéticos destes dois cenários de rega, foram estimadas as emissões de carbono no sistema ETAR-Laranjal. Confirmou-se a aptidão do efluente tratado para a rega do laranjal, em termos qualitativos e quantitativos. Verificou-se que a reutilização de água residual apresenta várias vantagens ambientais: (1) evita possíveis fenómenos de eutrofização por descarga do efluente tratado na Ria Formosa; (2) reduz a captação de água subterrânea de um aquífero que já apresenta intrusão salina; (3) reduz em mais de 30 % o uso de fertilizantes de síntese aplicados (de N e de P); (4) e melhora o teor de matéria orgânica e portanto a produtividade do solo. Por outro lado, a otimização do sistema de rega, permite reduzir os consumos energéticos e as emissões de carbono a eles associadas, bem como as perdas de água por evapotranspiração. Finalmente, um solo mais produtivo vai potenciar maior sequestro de carbono atmosférico pelas laranjeiras, melhorando o balanço global de carbono na produção dos citrinos.

The Society currently faces three major interrelated challenges: climate change, food scarcity and environmental pollution, entailing nutritional challenges related to a growing population in a global scenario of low production associated with climate change.

It is imperative to find solutions that address the mitigation of climate change and that allow, at the same time, to find alternative nutritional solutions, increasing the resilience of the production systems.

The NETA Project - New Strategies in Wastewater Treatment, presents an innovative opportunity to develop a process that aims at the valorization of wastewater (WW) transforming them into a source of nutrients and water resources, destined essentially to the agri-food sector, with the simultaneous application of new industrial solutions. Thus, from the conversion of WW (urban, livestock and agro-industrial) the project will create three new lines of final products, intended for animal nutrition and plant nutrition, but also for the fuel, plastics and pharmaceutical industry.

The NETA Project aims to take both the technology for treating these WW and the chemical precipitation technique, patented and currently applied only at the laboratory scale, up to a pre-commercial level converting, through installation of pilot units which will be tested throughout the project.

Holistically, the objectives of the NETA project will contribute to the closure of nutrient cycles at the farm or agribusiness level, in line with the current concept of Zero Waste and a Circular Economy. They will give rise to a new business opportunity for the leading company, allowing not only the consequent entry into new WW treatment markets, but also the development of new differentiated products.

Water scarcity is a worldwide problem and agriculture alone accounts for 70% consumption of Earth’s fresh water. So, wastewater reuse for irrigation is mandatory in a sustainable perspective. However, many treatments conventionally applied in wastewater treatment plants (WWTP) render useless against emergent contaminants such as antibiotics, antibiotic resistant bacteria/ antibiotic resistance genes, and viruses. Furthermore, WWTPs are pointed out as potential hotspots for proliferation and dissemination of antibiotic resistance. AgriWWater project proposes to stimulate wastewater reuse for agriculture irrigation by mitigating such microbiological risk. Therefore, the project aims to: 1) clarify the potential of a WWTP to promote and disseminate antibiotic resistant bacteria and respective resistance genes, 2) characterize the WWTP virome and its dissemination into the environment 3) develop and optimize protocols that will allow an accurate safety evaluation of treated water and future comparisons between studies 4) optimize and apply efficient treatment processes (through a nanofiltration pilot unit devolved by the team) that can be transferred to the industry and 5) evaluate the safety of raspberries irrigated with the treated water. At long term, AgriWWater project intends to lead to the development of a sustainable agriculture system by promoting an efficient and safe use of water resources, with the reutilization of reclaimed water, thus closing the urban water cycle.

A escassez de água é um problema mundial e a agricultura por si só é responsável por 70% do consumo de água doce da Terra. Assim, numa perfectiva mais sustentável a reutilização de águas residuais para irrigação torna-se obrigatória. No entanto, muitos dos tratamentos convencionalmente aplicados em estações de tratamento de águas residuais (ETARs) são ineficientes contra contaminantes emergentes, como antibióticos, bactérias resistentes a antibióticos/ genes de resistência a antibióticos, e vírus. Além disso, as ETARs são apontadas como potenciais hotspots na proliferação e disseminação de resistências a antibióticos. O projeto AgriWWater propõe estimular a reutilização de água residual na irrigação agrícola, mitigando o risco microbiológico. Assim, o projeto visa: 1) esclarecer o potencial das ETARs na disseminação de bactérias resistentes a antibióticos e respetivos genes de resistência, 2) caracterizar o viroma presente nas ETARs e a sua disseminação para o meio ambiente 3) desenvolver e otimizar protocolos que permitirão uma avaliação precisa da segurança microbiológica da água tratada e futuras comparações entre estudos 4) otimizar e aplicar processos de tratamento eficientes (através de uma unidade piloto de nano filtração desenvolvida pela equipa) que podem ser transferidos para a indústria e 5) avaliar a segurança de framboesas irrigadas com a água tratada. A longo prazo, o projeto AgriWWater pretende levar ao desenvolvimento de um sistema de agricultura sustentável, promovendo uma utilização eficiente e segura dos recursos hídricos, com o reaproveitamento da água residual, fechando assim o ciclo urbano da água.

Rice cultivation is strategic for food security in many countries and rice human consumption across the Mediterranean has been steadily increasing. The traditional cultivation of rice does not allow to increase the production due to the unavailability of soils suitable to continuous flooding and the scarcity of water. Thus, it is urgent to find solutions, such as the use of TWW for irrigation by subsurface dripping, which outlines the extension of cultivation to highlands and lighter soils, using water of unconventional origin. In this sense, an experiment was carried out under controlled conditions to evaluate the effects of urban TWW for rice irrigation. TWW from the Coimbrões Plant, Leiria, was used and the chemical and microbiological effects on the soil and on the quality of rice production in relation to heavy metals were evaluated. The results obtained indicate a significant effect on the increase in soil salinity during the vegetative cycle; yet, with reduced impacts on production, a problem that is mitigated after the autumn-winter period, by the internal drainage due to precipitation. The microbiological effects on the soil did not reveal any problems. Regarding heavy metals (arsenic, cadmium, lead and mercury) in the harvested grain, no significant risk elements were identified either. The results are very favorable due to the arsenic content, due to the aerobic conditions of drip irrigation. Practical recommendations: Safeguard the farmer's contact with the TWW in the storage and in the maintenance of the irrigation system; Monitor the soil salinity, to avoid crop damage, resorting, if necessary, to the leaching fraction; Ensure good internal drainage of the soil, namely through underground drainage; Monitor production quality.

O cultivo de arroz é estratégico para a segurança alimentar em muitos países e o consumo humano em todo o Mediterrâneo tem vindo a aumentar de forma regular. O cultivo tradicional de arroz não permite aumentar a produção pela indisponibilidade de solos com aptidão ao alagamento contínuo e pela escassez de água, sendo urgente encontrar novas soluções, tal como o uso de ART por gotejamento subterrâneo, que perspectiva a extensão do cultivo a terras altas e a solos ligeiros, com recurso a água de origem não convencional. Neste sentido realizou-se um ensaio em condições controladas para avaliar os efeitos do uso de ART urbana na rega do arroz. Usou-se ART da Estação de Coimbrões, Leiria, e avaliou-se os efeitos químicos e microbiológicos no solo e na qualidade da produção de arroz relativamente a metais pesados. Os resultados obtidos indicam um efeito significativo no aumento de salinidade do solo durante o ciclo vegetativo, mas com reduzidos impactes na produção, problema que é mitigado após o período outono-inverno, devido à drenagem interna por ação da precipitação. Os efeitos microbiológicos no solo, não revelaram problemas. Sobre os metais pesados (arsénio, cádmio, chumbo e mercúrio) no grão colhido também não se identificaram elementos de risco significativos. Os resultados são muito favoráveis devido ao teor descipiente de arsénio, pelas condições aeróbias da rega gota-a-gota. Recomendações práticas: Acautelar o contacto do agricultor com a ART no armazenamento e na manutenção do sistema de rega; Monitorizar a salinidade do solo, para evitar danos para a cultura, recorrendo se necessário, à fração de lavagem; Garantir boa drenagem interna do solo, designadamente através de drenagem subterrânea; Monitorizar a qualidade a produção.

Integrated management of efficient and safe reclamation and reuse of urban wastewater in agriculture.

Its objective is to develop irrigation management practices and protocols for a sustainable agricultural production. Innovative solutions will be provided to optimize the management of reclaimed water and limit any negative effects on agricultural production (microbiological contamination, deterioration of quality, increased soil salinity, etc.).

The project has scientific, technological and social objectives:

- Evaluate and compare treatments for the elimination of emerging pollutants in wastewater.

- Eliminate risks associated with the use of reclaimed water (route and persistence of emerging pollutants and PTS in horticultural crops).

- Improve the yield of woody products irrigated with reclaimed water.

- Evaluate the effect of water deficit and the use of reclaimed water (physiological and agronomic parameters) to establish criteria for optimal irrigation management.

- Optimize two advanced purification technologies for the elimination of emerging pollutants.

- Develop technologies and protocols to improve the efficiency of reclaimed water use in agriculture (sensors, dual irrigation, and ozone).

- Develop an ICT platform to promote information.

- Encourage the development of advanced treatment systems in wastewater treatment plants.

- Obtain high quality reclaimed water.

- Disseminate the results to improve public acceptance in the use and management of reclaimed water.

Gestión integrada de la regeneración y reutilización eficiente y segura de aguas residuales urbanas en la agricultura

Su objetivo es desarrollar prácticas de gestión y protocolos para el manejo del riego, necesarias para conseguir una producción agrícola sostenible. Para conseguir la optimización en el manejo de las aguas regeneradas y limitar así cualquier efecto negativo sobre la producción agrícola (contaminación microbiológica, deterioro de la calidad, incremento de la salinidad en el suelo, etc), se aportarán soluciones innovadoras.

El proyecto tiene objetivos científicos, tecnológicos y sociales:

- Evaluar y comparar tratamientos de eliminación de contaminantes emergentes en aguas residuales.

- Eliminar riesgos asociados al uso de agua regenerada (ruta y persistencia de contaminantes emergentes y PTS en cultivos hortícolas).

- Mejorar el rendimiento de productos leñosos regados con agua regenerada.

- Evaluar el efecto del déficit hídrico y el uso de agua regenerada (parámetros fisiológicos y agronómicos) para establecer criterios de manejo óptimo del riego.

- Optimizar dos tecnologías avanzadas en depuración para la eliminación de contaminantes emergentes.

- Desarrollar tecnologías y protocolos para mejorar la eficiencia del uso del agua regenerada en agricultura (sensores, riego dual, ozono).

- Desarrollar una plataforma TIC para promocionar la información.

- Fomentar el desarrollo de sistemas de tratamiento avanzados en plantas depuradoras de aguas residuales.

- Obtener un recurso hídrico de calidad

- Difundir los resultados para mejorar la aceptación pública en el uso y manejo de las aguas regeneradas.

Non Conventional WAter RE-use in Agriculture in MEditerranean Countries

Partners: Italy, Palestine, Jordan, Tunisia, Spain.

MENAWARE aims to increase the access to water through wastewater treatment and regeneration, to be used as a complementary source in irrigation and to strengthen the capacity of governmental institutions, non-state actors, technicians and farmers.

The expected results are:

- 6 wastewater treatment plants equipped with new low-cost pre and post-treatment systems (Im hoff tank, permeable reactive barriers, sand filters, UV, chlorination) to improve the quality of treated wastewater for agricultural uses.

- 46.5 hectares of land irrigated with treated wastewater with efficient systems (low-cost innovative sprinklers, subsurface drip irrigation).

- 5 training sessions for managers, technicians of local institutions and farmers.

- 1 interactive web plataform with information related to best practices and legislation on non - conventional water management.

Re utilización de fuentes de agua no convencionales en agricultura en países mediterráneos

Socios: Italia, Palestina, Jordania, Túnez y España.

MENAWARE tiene como objetivo aumentar el acceso al agua mediante el tratamiento y la regeneración de las aguas residuales, para utilizarlas como fuente complementaria en el riego y reforzar la capacidad de las instituciones gubernamentales, los agentes no estatales, los técnicos y los agricultores.

Los resultados previstos son:

- 6 plantas de tratamiento de aguas residuales equipadas con nuevos sistemas de pre y post tratamiento de bajo coste (tanque Im hoff, barreras reactivas permeables, filtros de arena, UV, cloración) para mejorar la calidad de las aguas residuales tratadas para usos agrícolas.

- 46,5 hectáreas de terreno regadas con aguas regeneradas, a través de sistemas eficientes (aspersores innovadores de bajo coste, riego por goteo sub superficial).

- 5 sesiones de formación para gestores, técnicos de instituciones locales y agricultores.

-1 plataforma web interactiva con información referida a la legislación y buenas prácticas en la gestión de fuentes de agua no convencional.

“Promoting Sustainable Irrigation Management and non-conventional water use in the Mediterranean”

Partners: Italy, Jordan, Lebanon, Tunisia, Spain

The project will bring innovative solutions combining water use efficiency and non-conventional water, as well as capacity building. Also, the project will work on cross-border capacities building and enhancing of public - private cooperation.

Expected results:

- Increase water usage efficiency by 30 % at a pilot farm level.

- Substitute clean water by non-conventional water up to 100 %.

- Boost by 5 - 10 % the investments in sustainable irrigation from the private and public sector.

- 292 stakeholders trained on water usage efficiency and non-conventional water use.

- 4 investment initiatives and cross-border thematic field visits to showcase most efficient irrigation techniques.

- Testing of 8 new technologies to demonstrate the potential of treated wastewater, desalination and mixed water for irrigation.

- On- field dissemination among 400 farmers to raise awareness on new solutions for irrigation.

"Promover la gestión sostenible de la irrigación y el uso de fuentes no convencionales de agua en el Mediterráneo"

Socios: Italia, Jordania, Líbano, Túnez, España

El proyecto pretende aportar soluciones innovadoras que combinen la eficiencia en el uso del agua con la implementación de fuentes no convencionales. Además, abordará el desarrollo de capacidades, la creación de capacidades transfronterizas y en la mejora de la cooperación público-privada.

Resultados esperados:

- Aumentar la eficiencia en el uso del agua en un 30% a nivel de granja piloto.

- Sustituir el agua limpia por agua no convencional hasta el 100%.

- Aumentar entre un 5 y un 10 % las inversiones en regadío sostenible por parte de los sectores público y privado.

- 292 partes interesadas formadas en la eficiencia del uso del agua y el uso de agua no convencional.

- 4 iniciativas de inversión y visitas de campo temáticas transfronterizas para mostrar las técnicas de riego más eficientes.

- Prueba de 8 nuevas tecnologías para demostrar el potencial de las aguas residuales tratadas, la desalinización y las aguas mixtas para el riego.

- Difusión sobre el terreno entre 400 agricultores para sensibilizarlos sobre las nuevas soluciones de riego.

“Towards Sustainable Treatment and Reuse of Wastewater in the Mediterranean Region”

Partners: Greece, Spain, Malta, Lebanon, Tunisia.

Bring an eco-innovative wastewater treatment technology that will consist of anaerobic digestion, constructed wetlands and solar treatment for the cost-effective treatment of urban wastewater with minimal costs of operation and maximum environmental benefits.

Expected results:

 Change the paradigm around wastewater to a all-year-round resource with multiple uses.

 Implement a low cost operation and maintenance system through the use of solar panels for energy, the production of biogas and fertilizers and the building of wetlands.

 Collect inputs from stakeholders on the reuse potential of treated effluent.

 Establish three demonstration units for wastewater treatment and reuse, combining anaerobic digestion, constructed wetland and solar treatment in Tunisia, Lebanon and Spain.

 Three local action and investment plans established targeting a combined reuse potential of 900.000 m3

 Train 180 persons in the use of eco-innovative system of wastewater treatment.

"Hacia un tratamiento y una reutilización sostenible de las aguas residuales en la región mediterránea"

Socios: Grecia, España, Malta, Líbano y Túnez.

Su objetivo es aportar una tecnología eco-innovadora de tratamiento de aguas residuales que consistirá en digestión anaeróbica, los humedales construidos y el tratamiento solar para el tratamiento rentable de las aguas residuales urbanas con costes mínimos de funcionamiento y máximos beneficios medioambientales.

Entre sus resultados esperados están:

 Cambiar el paradigma en torno a las aguas residuales para convertirlas en un recurso de uso múltiple durante todo el año.

 Implementar un sistema de operación y mantenimiento de bajo coste mediante el uso de paneles solares para la energía, la producción de biogás y fertilizantes y la construcción de humedales.

 Recoger las aportaciones de las partes interesadas sobre el potencial de reutilización de los efluentes tratados.

 Establecer tres unidades de demostración para el tratamiento y la reutilización de aguas residuales, combinando la digestión anaeróbica, los humedales construidos y el tratamiento solar en Túnez, Líbano y España.

 Establecimiento de tres planes de acción e inversión locales con un potencial de reutilización combinado de 900.000 m3

 Formar a 180 personas en el uso del sistema eco-innovador de tratamiento de aguas residuales.

The objective of the project is to scale up the technology for on-demand biogas production with WWTP sludge, based on the pilot scale model developed in LIFE ECOdigestion. It will be implemented in two plants, in Portugal and Spain.

The expected contribution of the project is:

- To scale the tool to adapt it to the operational parameters of the plants and to guarantee its stability at full scale.

- Develop a simulation tool for the co-digestion of waste (slurry and agri-food waste) that is intuitive for users.

- 98 % adjustment of target and simulated biogas production.

- Obtain a 90 % model fit between target and produced biogas.

- Valorise agri-food waste as co-substrates.

- Increase the amount of waste that can be treated in the WWTP by 192 %.

- Increase the amount of biogas produced by 14% by better dosing of waste and mixtures.

- Promote the use of biogas as green energy.

- To reduce the annual emission of greenhouse gases.

El objetivo del proyecto es escalar la tecnología para la producción de biogás bajo demanda con lodo de EDAR, a partir del modelo a escala piloto desarrollado en LIFE ECOdigestion. Se implementará en dos plantas, en Portugal y España.

La contribución esperada del proyecto es:

• Escalar la herramienta para adaptarla a los parámetros operativos de las plantas y garantizar su estabilidad a escala real.

• Desarrollar una herramienta de simulación para la codigestión de residuos (purines y residuos agroalimentarios) intuitiva para los usuarios.

• Ajustar al 98 % la producción de biogás objetivo y el simulado.

• Obtener un modelo de ajuste al 90 % entre el biogás objetivo y el producido.

• Valorizar los residuos agroalimentarios como cosustratos.

• Incrementar la cantidad de residuos que pueden tratarse en la EDAR en un 192 %.

• Aumentar la cantidad de biogás producido en un 14 % al dosificar mejor residuos y mezclas.

• Favorecer el uso de biogás como energía verde.

• Reducir la emisión anual de gases de efecto invernadero.

Aparhant is a small village of 1,200 inhabitants in the slightly hilly and sparsely populated southwestern part of Hungary. Almost all households are connected to the drinking water supply network operated by the local municipality.

According to Hungarian environmental legislation, at least three different technical solutions must always be designed and at least one of them must be the so-called "natural wastewater treatment technology". In a feasibility study conducted in 1977, the following four systems were described:

a) Artificial lake system with vegetation without artificial aeration (after pre-treatment, the wastewater should enter the artificial lake, where the vegetation grows naturally or can be planted, after which the runoff from the lake enters the water source from surface water);

b) A system of an artificial lake, the outflow of which should pass through a sand filter (the soil is the water intake);

c) Anaerobic artificial pond with subsequent irrigation of poplars (treated wastewater should not be collected for drainage, but should seep into the soil of poplar plantations);

d) Classical (artificial) biological treatment (SBR) and irrigation of poplars (treated wastewater should not be collected for drainage, but should seep into the soil of poplar plantations).

In each case, the water should be collected in settling tanks and transported to the pre-treatment before entering the relevant system. It is also recommended that the resulting sludge be composted and used in agriculture.

Comparing the four possible solutions, solution (c) (anaerobic artificial lake with poplar plantations) seems to be the most economical, taking into account the investment and operating costs. Also taking into account the criterion of environmental protection, this decision seems superb. The reliability and small number of service personnel is typical of solution ( c ).

Today, septic waste of 80 m3 per day is treated in the poplar forest and the root zone of the system.

Soil sampling is carried out every month, but after the start of operation every third month. There are also monitoring wells to control groundwater quality, especially when the groundwater level is too low. Monitoring proves that the pollution of nearby fields, groundwater and fishponds stops. The total nitrogen load is about 1200–1400 kgN / ha / year. (The planned forest was 1.6 ha, but today it is 3–3.5 ha). About 20-30% of the nitrogen is probably removed through the harvest and from the sheep grazing.



Schematic diagram of the built system:



The collected septic waste from households is transported to the collection tank with a sieve. The pre-treatment is performed in a two-stage settling tank, after which the water is directed to a sealed collection tank. The collected water is fed by gravity to the natural areas for biological treatment - forest and wetland with reeds. Irrigation lasts about a year and the activated sludge is removed from the sedimentation tank once a week.



Collection tank with sieve V = 10 m3 d = 10 mm 2-stage settling tank V0 = 25 m3, T0 = 5h VTOT = 100 m3, TTOT = 150 dη BOD = 30%, η SS = 80%



Protective collection tank V = 330 m3, A = 240 m2 Poplar forest A = 1.6 ha Load = 2300 mm / a Load BOD = 1.8 kg / m2 / y. Qd = 80



m3 / d Sieve waste Sludge Q = ~ 8 m3 / 7 days.



Exp. root zone - reed bed Vmedia = 264 m3, Load = 20x50mm / year. A = 440 m2, BOD load = 0.9 kg / m2 / year



Poplar trees are used freely by residents for heating. The reed from the built wetland is cut every year and is also used by the local population for various purposes. The consolidated sludge is transported to the composting site every 4-6 weeks. Compostable sludge is used in agriculture.



The grass between the trees should not be pruned, as the flock of sheep from the village "supports" it, ie. money is saved annually for several workers. Elementary school students participate in the planting of the tree plantation and take measurements in biology classes to study the ongoing natural processes in wastewater treatment. Residents are very satisfied with the wastewater treatment plant.



Their environment has improved, health has been protected and new jobs have been created for some unemployed. The use of sludge, trees and reeds leads to additional benefits. Research with the poplar plantation in Aparhant shows a practical and acceptable solution, beneficial for the environment, the economy, unemployment and environmental awareness for low-income people.

Апархант е малко селище от 1200 жители в леко хълмистата и рядко населена югозападна част на Унгария. Почти всички домакинства са свързани с питейната водоснабдителна мрежа, експлоатирана от местната община. Хората ползват прости санитарни решения (тоалетни със септичен резервоар или отходни места – клозети)

Според Унгарското законодателство по околна среда, поне три различни технически решения трябва да се проектират винаги и поне едно от тях трябва да е така наречената “природна технология за пречистване на отпадъчни води”. В извършеното предпроектно проучване през 1977 г. следните четири системи са описани:

a) Система от изкуствено езеро с растителност без изкуствена аерация (след предварително пречистване, отпадъчната вода би трябвало да постъпва към изкуственото езеро, в което растителността се развива по естествен начин или може да бъде засадена, след което оттока от езерото постъпва към водоизточника от повърхностна вода);

b) Система от изкуствено езеро, оттока от което би трябвало да премине през пясъчен филтър (почвата е водоприемника);

c) Анаеробно изкуствено езеро с последващо напояване на тополи (пречистената отпадъчна вода не би трябвало да се събира дренажно, а да се просмуква в почвата на тополовите насаждения);

d) Класическо (изкуствено) биологическо пречистване (SBR) и напояване на тополи (пречистената отпадъчна вода не би трябвало да се събира дренажно, а да се просмуква в почвата на тополовите насаждения).

Във всеки от случаите, водата би трябвало да се събира в утаителни резервоари и да се транспортира към пред-очистката преди да постъпи към съответната система. Също така се препоръчва получената утайка да се компостира и използва в земеделието.

Сравнявайки четирите възможни решения, решение (с) (анаеробно изкуствено езеро с тополови насаждения) изглежда най-икономически изгодно, отчитайки инвестиционните и експлоатационни разходи. Също, при вземането в предвид на критерия за опазване на околната среда, това решение изглежда превъзходно. Надеждността и малкият брой обслужващ персонал е характерно за решение (с).

След предпроектното проучване и последващата сравнителна оценка, алтернатива (с) беше предложена на Инспектора по околна среда, който прие предложението с допълнителни препоръки. Беше разработен изпълнителен план, който да развие и опише детайлно модифицираната алтернатива (c). Изпълнението й започна и през 2001 г. системата беше пусната в експлоатация. Днес септичен отпадък от 80 м3 на денонощие се третира в тополовата гора и кореновата зона на системата.

Почвеното пробонабиране се извършва на всеки месец (2000 г.), но след започване на експлоатацията на всеки трети месец. Има също и мониторингови кладенци за контролиране качеството на подпочвените води, особено, когато нивото на подпочвените води е твърде ниско. Мониторингът доказва, че замърсяването на близките полета, подпочвените води и рибарниците спира. Общото азотно натоварване е около 1200-1400 кгN/ха/г. (Планираната гора е била 1,6 ха, но днес е 3-35ха). Около 20–30% от азота вероятно е отстранен чрез събраната реколта и от пашата на овцете.



Принципна схема на изградената система:



Събраният септичен отпадък от домакинствата се транспортира до събирателния резервоар със ситото. Пред-очистката се извършва в двустепенен резервоар за утаяване, след който водата се насочва към пломбиран резервоар за събиране. Събраната вода се подава гравитационно към природните площи за биологично пречистване - гора и влажна зона с тръстика. Напояването трае около година и активната утайка се изнася от утаителния резервоар един път седмично.



Събирателен резервоар със сито V = 10 м3 d = 10 мм 2-степенен утаителен резервоар Vо = 25 м3, Tо = 5ч. Vтот = 100 м3, Tтот = 150 dη BOD = 30 %, η SS = 80%



Защитен събирателен резервоар V = 330 м3, A = 240 м2 Тополова гора A =1.6 ха Натоварване = 2300 мм/a Натоварване БПК = 1,8 кг/м2/г. Qd = 80



м3/д Отпадък от ситото Утайка Q = ~ 8 м3/ 7дни .



Експ. коренова зона – тръстиково легло Vmedia = 264 м3, Товар= 20x50мм/г. A = 440 м2, ТоварБПК = 0.9 кг/м2/г



Тополовите дървета се използват свободно от жителите за отопляване. Тръстиката от изградената влажна зона се реже всяка година и също се използва от местното население за различни цели. Консолидираната утайка се транспортира към мястото на компостиране на всеки 4-6 седмици. Компостираната утайка се използва в земеделието.



Тревата между дърветата не бива да се подрязва, тъй като стадото овце от селото я “поддържа”, т.е. ежегодно се пестят пари за няколко работника. Учениците от първоначалното училище участват при засаждането на дървесната плантация и в часовете по биология правят измервания, за да изучат протичащите природни процеси при пречистването на отпадъчни води. Жителите са много удовлетворени от пречиствателната станция за отпадъчни води.



Околната им среда е подобрена, здравето защитено и са създадени нови работни места за някои безработни. Използването на утайката, дърветата и тръстиките води до допълнителни ползи. Изследванията с тополовата плантация в Апархант показват едно практическо и приемливо решение, благотворно за околната среда, икономиката, безработицата и екологичното съзнание за хора с ниски доходи.

Laga is a small village in Southeastern Sweden. All 50 houses are connected to a central water supply network, improved in 1998 over traditional water treatment plants is selected outdoor sand filter, since the natural system is considered a more reliable and equally effective. After pre-treatment in a septic tank, the water is pumped to a filter bed and distributed through vertical pipes. The system works without technical problems and maintenance costs are low. The staff visits the station once a week. No chemicals are used, little electricity is consumed and the sludge produced is minimal. After purification, the values for suspended solids, BOD and bacteria are below the minimum requirements. As a subsequent purification, a system of pools works, after which the water infiltrates and evaporates. Most sand filters in Sweden rely on gravity. Larger systems use a pump to distribute the water. Sand filters are built with a drainage layer on the bottom. Large beds should be divided into small areas to which water can enter individually. A new system from Norway uses water distribution nozzles that allow a very even distribution of water, even during the filter filling. Using spraying equipment and poor quality filter material, about 10 times higher wastewater load can be achieved than is possible with conventional infiltration or sand filter system.

Soil filters are dimensioned depending on the BOD load and the amount of water. The figures refer to normal runoff after a sedimentation tank with a BOD of about 200-350 mg/l).

Infiltration in natural soils: 30-40 mm/d

Covered sand filter bed (using gravity) 50-60 mm/d

Covered sand filter bed (using pump) 60-80 mm/d

Open sand filter bed 80-120 mm/d

Norwegian spray (using a medium of 2-6 mm) 250-500 mm/d

Experiments and results

Vertical soil filters are robust with a large and stable purification capacity.

Removal of bacteria and viruses is better and more reliable than wastewater treatment plants. Vertical soil filters offer limited recycling of nutrients if they are used, but combined with the so-called. separate toilet systems, direct phosphorus deposition or summer irrigation offer wonderful opportunities for sustainable sanitation.

Usually the cleaning capacity for removal of suspended solids and BOD is 90–99%, 30–60% removal of P (the use of silicate sand from alluvial deposits and soils containing aluminum and iron has a great influence on the removal of phosphorus) and 30% reduction of total nitrogen (70% nitrification). Pathogenic removal is more than 99%.

From the above it is clear that single-volume septic tanks are inefficient wastewater treatment plants, so the construction of such facilities should be avoided. Where there are already built ones to be processed as follows:

Existing scrape septic tank is built into the pattern of the purification plant as denitrifikator for anaerobic oxidation of carbon-containing organic substances by nitrates as acceptors of electrons. A second chamber for a bio-pool is being built - a nitrifier where an aeration system is installed and in combination with a bioenzyme preparation a sufficiently good decomposition of the organic substances is obtained. After biobasin, a secondary sediment wire is built as a third cell. From there, the water can be taken to irrigation fields for tertiary treatment according to the above scheme.

Отворен пясъчен филтър в Лага

Лага е малко село в Югоизточна Швеция. Всичките 50 къщи са свързани към централната водопреносна мрежа, ремонтирана през 1998 г. Пред традиционните пречиствателни станции е избран открит пясъчен филтър, тъй като природната система се счита за по-надеждна и еднакво ефективна. След предварителното третиране в септичен резервоар водата се изпомпва към филтърно легло и се разпределя чрез вертикални тръби. Системата работи без технически проблеми и разходите за поддръжка са ниски. Посещението на станцията от персонала е един път седмично. Не се използват химикали, консумира се малко електроенергия и произведената утайка е минимална. След пречистване, стойностите за суспендирани вещества, БПК и бактерии са под минималните изисквания. Като последващо пречистване работи система от басейни, след която водата се инфилтрира и изпарява. Повечето пясъчни филтри в Швеция разчитат на гравитачността. При по-големите системи се използва помпа за разпределяне на водата. Пясъчните филтри се изграждат с дренажен слой на дъното. Големите легла трябва да се разделят на малки площи, към които водата може да постъпва индивидуално. Нова система от Норвегия използва дюзи за разпределение на водата, които позволяват много равномерно разпределение, дори по течението на филтърния пълнеж. Ползвайки разпръсквателна техника и лошокачествен филтърен материал може да се постигне около 10 пъти по-високо натоварване с отпадъчна вода в сравнение с възможното при конвенционалната инфилтрация или пясъчна филтърна система

Почвените филтри са оразмерени в зависимост от натоварването по БПК и количество вода. Следващите цифри могат да се ползват като практическо правило при оразмеряването на вертикалните филтърни системи. (Хидравличните натоварвания трябва да се изчисляват по средноденонощния поток през максималната седмица.

Цифрите се отнасят за нормален отток след утаителен резервоар с БПК около 200-35 мг/л).

Инфилтрация в естествени почви: 30-40 мм/д

Покрито пясъчно филтърно легло (използващо гравитацията) 50-60 мм/д

Покрито пясъчно филтърно легло (използващо помпа) 60-80 мм/д

Открито пясъчно филтърно легло 80-120 мм/д

Норвежко разпръскване (използващо среда от 2-6 мм) 250-500 мм/д



Опити и резултати

Вертикалните почвени филтри са здрави с голям и стабилен капацитет на пречистване.

Отстраняването на бактерии и вируси е по-добро и по-благонадеждно в сравнение с пречиствателните станции. Вертикалните почвени филтри предлагат ограничено рециклиране на хранителни вещества, ако се ползват самите те, но комбинирани с т.нар. разделни тоалетни системи, директно утаяване на фосфора или лятно напояване се предлагат прекрасни възможности за устойчиви санитарни условия.

Обикновено пречиствателната способност при отстраняване на суспендирани вещества и БПК е 90–99%, 30–60% отстраняване на P (ползването на силикатен пясък от алувиалните отложения и на съдържащи алуминий и желязо почви има голямо влияние при отстраняването на фосфор) и 30% намаление на общия азот (70% нитрификация). Патогенното отстраняване е повече от 99%.

От изложеното до тук става ясно, че еднообемните септични ями са неефективни съоръжения за пречистване на отпадъчни води, затова трябва да се избягва строежа на такива съоръжения. Там където има вече изградени такива да бъдат преработени по следния начин:

Съществуващата изгребна септична яма се вгражда в схемата на пречиствателна станция като денитрификатор за анаеробно окисление на въглеродо-съдържащи органични вещества чрез нитрати като акцептори на електрони. Изгражда се втора камера за био-басейн- нитрификатор където се монтира аерираща система и в комбинация с биоензимен препарат се получава достатъчно добро разграждане на органичните вещества. След био-басейна се изгражда и вторичен утаител като трета камера. От там водата може да се отведе към напоителните полета за третично пречистване по гореописаната схема.

In Kågeröd, a town in the southernmost part of Sweden (municipality

of Svalöv), pre-treated wastewater from a traditional treatment plant

is used for irrigation of an adjacent 11-ha willow plantation. The plant

serves about 1 500 people and also receives effluent from a milk powder

industry. This industrial wastewater is treated separately to “domestic” quality before being co-treated with the municipal wastewater. The

total BOD load amounts to approximately 5 000 person equivalents.

The main objectives are to exemplify the use of sustainable wastewater treatment technology where at the same time wastewater resources (water, nutrients, organic material) could be utilised.

The treatment plant consists of bar screens, an aerated sandtrap, a

surface-aerated activated sludge unit, and a chemical post-precipitation step for phosphorus removal. Outflowing water from the activated sludge clarifier (before the chemical precipitation process) is used for irrigation. This secondary effluent is assessed having an appropriate quality, partly due to the fact that a reduction of pathogens could be obtained in the biological step besides removal of solids in the sandtrap and the clarifier, reducing the risk of clogging of the irrigation equipment. Furthermore, the main part of the wastewater nutrients is still available in the wastewater after the biological treatment step.

In the license permit is regulated:

• Biologically treated wastewater is required as irrigation quality and

the amount of water and nutrients applied must not exceed plant requirements

• Treated wastewater must be applied close to the soil surface for avoiding spreading of aerosols to the surroundings

• Hygienic aspects in terms of possible spreading of infectious diseases secondarily by animals to animal/man must be evaluated

The wastewater irrigation started in full-scale in 1997 according to the regulations above. During a 2-year period before the final permit was

given, the hygienic aspects according to point 3 above were investigated at the site. The results in summary were that pathogens found in droppings or organs of animals living in or passing the irrigated plantation were those belonging to the natural pathogenic burden in the animals.

Hence, the hygienic risks are low as long as normal operation procedures are maintained.

Treatment performance is continuously evaluated and comparisons of

data concerning outlet qualities of treated wastewater to the receiving

river before and after the irrigation season show clear improvements

(see table). Hence, irrigation with biologically treated wastewater as an

advanced treatment method results in lower pollution load on the river

than conventional tertiary treatment.

Other advantages:

• Replaced manufactured fertilisers: N–P–K/800–110–400 кг/г

• Saved precipitation chemicals: 13 т AVR/г

• Decreased chemical sludge production

• Decreased electricity use:

-Less stirring in the flocculation step

-Less aeration and pumping of sludge

• Decreased fuel use:

-Fewer transports of chemical and sludge

• Awareness of resource recovery (closed–loop–like system) among citizens

В Kågeröd, град в най-южната част на Швеция (община на Svalöv), предварително пречистени отпадъчни води от традиционна пречиствателна станция се използват за напояване на съседна 11-ха плантация на върба. Станцията обслужва около 1 500 души и също така получава отпадъчни води от фабрика за производство на сухо мляко. Тази промишлена отпадъчна вода се пречиства отделно до „битово“ качество, преди да бъде пречистена заедно с битовите отпадъчни води. Общото натоварване на БПК възлиза на приблизително 5000 е.ж.

Основните цели тук са да се илюстрира използването на устойчива технология за пречистване на отпадъч+B68ни води, като в същото време могат да се използват ресурси от отпадъчните води (вода, хранителни вещества, органични вещества).

Пречиствателната станция се състои от решетки, аериран пясъкоуловител, агрегат за повърхностно аерирана активна утайка и химически етап след утаяване за отстраняване на фосфор. Изтичащата вода от пречиствателя на активната утайка (преди химическия процес на утаяване) се използва за напояване. Този вторичен отток се определя с подходящо качество, отчасти поради факта, че по време на биологичния етап може да се получи намаляване на патогените, освен отстраняване на твърди частици в пясъкоуловителя и утаителя, намалявайки риска от запушване на съоръжението за напояване. Освен това основната част от хранителните вещества все още е налична в отпадъчните води след биологичното пречистване.

В разрешителното за използване на водата е регламентирано:

• Биологично пречистените отпадъчни води като качество за напояване и количеството на приложените вода и хранителни вещества не трябва да надвишава изискванията на растенията

• Отпадъчните води трябва да се подават близо до повърхността на почвата, за да се избегнат разпространение на аерозоли в околността

• Трябва да бъдат оценени хигиенните аспекти по отношение на възможно разпространение на инфекциозни болести, вторично от животни върху животни / хора Напояването с отпадъчни води е започнало в пълен мащаб през 1997 г. По време на 2-годишен период преди окончателното разрешение, като се имат предвид, хигиенните аспекти е проучено мястото. Обобщените резултати са, че патогените, открити в изпражненията или органите на животни, живеещи в или преминаващи през напояваната плантация, са тези, които принадлежат към естествените патогенни при животните.

Следователно хигиенните рискове са ниски, докато се поддържат нормални експлоатационни процедури.

Ефективността на пречистването се оценява непрекъснато и сравненията на данни относно изходящите качества на пречистените отпадъчни води към приемащата река преди и след напоителния сезон показват ясни подобрения. Следователно напояването с биологично пречистени отпадъчни води като

усъвършенстван метод на третиране води до по-ниско натоварване на замърсяването на реката отколкото конвенционалното третично пречистване.

Други предимства:

• Произведени торове: N – P – K / 800–110–400 кг / г

• Спестени химикали: 13 т / г

• Намалено производство на химически утайки

• Намалено използване на електроенергия:

- По-малко разбъркване в етапа на флокулация

-Малко аериране и изпомпване на утайки

• Намалена употреба на гориво:

-По-малко транспортиране на химикали и утайки

• Информираност сред гражданите за възстановяване на ресурси (подобна на затворена верига система).

Municipalities in Sweden began construction of systems for wastewater treatment with more interest in local or group natural systems especially in rural areas, after the Sweden Agency for Environmental Protection published new guidelines for small-scale wastewater systems, which set out the requirements for health protection, environmental protection and nutrient recycling.

This initiative sets an example for the management and use of wastewater fractions in the agricultural sector in Finhosdalen, Sweden.

Finosdalen is a typical mountain ski tourist resort in northern Sweden. The number of people is changed from 1000 to 4000. The hydraulic load is 400 m3/person, but the peak values of the flow increases so during rain and snow melt. Built in 1987, the municipal plant uses slaked lime as a coagulant. The flow changes are equalized in the first buffer basin of 2400 m2 , after which it is recalled to small sedimentation basins, followed by the last sedimentation basin of 2800 m2. Plastic screens are used for suspending the passing a shortcut flows. The addition of lime - 600 g/m3 increases the pH to about 12, maintaining the level of phosphorus at the outlet about 0.5 mg/l (inlet 6.4 mg/l). Every year sediment is released from the small pools. The equipment is cheap, easy to maintain and efficient.

Chemical coagulants (lime or aluminum and iron salts) flocculate and precipitate particles and phosphorus from the water. Aluminum or iron-containing coagulants are much easier to use than lime. They can be used as liquids and added directly under pressure to a pipe at the bottom of the settling basins. Lime removes pathogens and the sludge becomes fertilizer. The problem is that the sludge obtained after liming is heavy and easily clogs pipes and drains and is needed to be taken into account when designing pipes, shafts and drains to be accessible for maintenance.

The sedimentation volumes are divided into several narrow pools. An additional cage is built for the cases when a pool goes out of operation (stopping the water and disposing of the sludge) , with the possibility of a settling time of 5-10 days. Floating particles are removed by means of a barrier or grid before the addition of coagulant.



Experiments and results

The purification efficiency is high and stable throughout the year. The removal of BOD is about 70-80% (the development of micro-algae in the summer explains the very low value). Phosphorus removal varies with the amount of coagulants added, but is usually about 80-95%. Nitrogen removal is high (50-75% bacterial transformation of nitrogen in ammonia to nitrogen gas).

When using lime, pathogenic removal is very high due to the high pH (pH 10.5-12). Retrievals include stripped of ammonia and receiving large amounts of sediment. On the other hand, the sludge obtained after liming is valuable for soil improvement due to the pH effect and the available phosphorus for the plants.

Aluminum and iron-containing coagulants are more suitable for operation, but less efficient from a sanitary point of view, and the resulting sludge is less suitable for recycling.

Общините в Швеция започват изграждането на системи за пречистване на отпадъчни води с повече интерес към локалните или групови природни системи най-вече в селските райони, след като шведската агенция за защита на околната среда публикува нови указания за малко-мащабни системи за отпадъчни води, в които са заложени изискванията за здравна защита, защита на околната среда и рециклиране на хранителните вещества.

Настоящата инициатива представя пример за управление и използване фракциите на отпадъчните води в земеделския сектор във Финьосдален, Швеция.

Финьосдален е типичен планински ски туристически курорт в северна Швеция. Броят на жителите се променя от около 1000 до 4000. Хидравличното натоварване е около 400 м3/човек, но върховите стойности на оттока нарастват по време на дъжд и снеготопене. Построената през 1987г. общинска станция, използва гасена вар като коагулант. Промените на дебита се изравняват в първия буферен басейн от 2400 м2, след който се припомват към малки утаителни басейни, последвани от последен утаителен басейн от 2800 м2. Пластични прегради се използват за спиране на минаващи по пряк път потоци. Добавката на вар - 600 гр/м3 увеличава рН до около 12, поддържайки нивото на фосфора на изход около 0,5 мг/л (на вход 6,4 мг/л). Всяка година се отделя утайката от малките басейни. Съоръжението е евтино, лесно за поддържане и ефективно.

Химическите коагуланти (вар или алуминиеви и железни соли) флокулират и утаяват частиците и фосфора от водата. Алуминий или желязо съдържащите коагуланти са много по-лесни за експлоатация в сравнение с варта. Те могат да се ползват като разтвори и да се добавят директно под налягане в тръба на дъното на утаителните басейни. Варта отстранява патогените и утайката става за тор. Проблем е, че получената утайка след варуване е тежка и лесно задръства тръбите и водостоците и се взема предвид при проектирането на тръбите, шахтите и водостоците, за да бъдат достъпни за обслужване.

Утаителните обеми са разделени на няколко тесни басейна. Една допълнителна клетка е построена за случаите, когато един басейн излиза от експлоатация (спиране на водата и изхвърляне на утайката), с възможност на времепрестой за утаяване от 5-10 дни. Плуващите частици се отстраняват с помощта на преграда или решетка преди добавката на коагулант.



Опити и резултати

Пречиствателната ефективност е висока и стабилна през цялата година. Отстраняването на БПК е около 70–80% (развитието на микроводорасли през лятото обяснява твърде ниската стойност). Отстраняването на фосфора се променя с количествата на добавените коагуланти, но обикновено е около 80–95 %. Отстраняването на азота е високо (50–75% бактериална трансформация на азота в амоняка до молекулен азот).

При използването на вар патогенното отстраняване е много високо поради високото рН (pH 10,5-12). Това включва утаяване на амоняка и получаване на големи количества утайка. От друга страна, получената утайка след варуване е ценна за подобряване на почвата поради рН ефекта и наличният фосфор за растенията.

Алумий и желязо съдържащите коагуланти са по-подходящи при експлоатация, но по-малко ефективни от санитарна гледна точка и получената утайка е по-малко подходяща за рециклиране.

The winery Castello Banfi is located in Montalcino, Italy.The estate covers 2,830 ha, one third of which is cultivated with vineyards, while the rest has olive groves, orchards with plum trees, and forest. The case shows such solution so the winery was able to cut the energy used by its wastewater treatment plant in half by implementation of Sanitaire membrane disc diffusers and a Sanitaire TurboMAX turbo blower.

The winery, which makes 10 million bottles per year, produces wastewater from seasonal cleaning activities associated with winemaking. This wastewater has a high chemical oxygen demand (COD), which if not properly treated, would damage the delicate environmental balance of the surrounding area.

The aeration solution supports seasonal changes in the amount of wastewater produced. In the harvest season, between August and October, the winery is at full capacity. The containers used for the grapes need to be systematically cleaned, as well as the yard where vehicles from the countryside stop, need to be systematically cleaned. As a result up to 40 m3 of wastewater is treated per hour for a few months. During the rest of the year, the workload is drastically reduced.

The winery installed 622 Silver Series II membrane disc diffusers on the bottom of the aeration tank. The diffusers use an advanced membrane perforation technique that creates an extremely fine, uniform bubble pattern for optimal oxygen transfer. They help to increase operating efficiency with their unique membrane shape, integrated O-ring, and top-sealing threaded retainer ring, which eliminates leakage.

When the winery’s wastewater arrives at the aeration tank its COD can be as high as 1,000 mg/liter. The Sanitaire diffusers lower the COD to 10 mg/liter, well below the legal limit of 160 mg/liter for discharge into surface waters. This high-quality treatment, and the removal of other pollutants, enables the winery to reuse part of the water for industrial processes and for the irrigation of its plum trees. This water reuse helps the winery limit its environmental impact and operating costs.

As a result, at the end of the first full year of operation, energy consumption was reduced by more than 50 %.

Винарната Castello Banfi се намира в Монталчино, Италия. Имението обхваща 2830 ха, една трета от които се обработва с лозя, а в останалата част има маслинови горички, овощни градини със сливови дървета и гора. Случаят показва такова решение, че винарната е постигнала състояние да намали наполовина енергията, използвана от пречиствателната станция за отпадъчни води чрез внедряване на мембранни дискови дифузори Sanitaire и тураератор Sanitaire TurboMAX.

Винарната, която прави 10 милиона бутилки годишно, произвежда отпадъчни води от сезонни дейности по почистване, свързани с производството на вино. Тази отпадъчна вода има високо химично потребление на кислорода (ХПК), което, ако не бъде правилно обработено, би навредило на деликатния екологичен баланс на околната среда.

Решението за аерация подпомага сезонните промени в количеството произведени отпадъчни води. През сезона на прибиране на реколтата, между август и октомври, избата е с пълен капацитет. Контейнерите, използвани за гроздето, трябва системно да се почистват, както и двора, където спират превозни средства от провинцията, да се почистват систематично. В резултат на това се пречистват до 40 м3 отпадъчни води на час в продължение на няколко месеца. През останалата част от годината натоварването драстично намалява.

Винарната е монтирала 622 Silver Series II мембранни дискови дифузори на дъното на аерационния резервоар. Дифузорите използват усъвършенствана техника на перфорация на мембраната, която създава изключително фин, равномерен модел на мехурчета за оптимален пренос на кислород. Те спомагат за повишаване на оперативната ефективност с уникалната си форма на мембраната, интегрирания О-пръстен и горния уплътняващ фиксиращ пръстен с резба, което елиминира течовете.

Когато отпадъчните води на винарната пристигнат в аерационния резервоар, нейното ХПК може да достигне до 1000 мг/л. Дифузорите Sanitaire понижават ХПК до 10 мг/л, много под законовата граница от 160 мг/л за изхвърляне в повърхностни води. Това висококачествено третиране и премахването на други замърсители позволява на винарната да използва повторно част от водата за промишлени процеси и за напояване на сливовите си дървета. Това повторно използване на водата помага на винарната да ограничи въздействието си върху околната среда и оперативните разходи.

В резултат на това в края на първата пълна година на работа потреблението на енергия беше намалено с повече от 50 процента.

The project is focused on reusing water within a company in Zlatosel village, Bulgaria. The company uses the reclaimed water from rose-flower distillation. The rose distillery process mixes hot water and rose flowers in a distillation apparatus. This mixture is heated with steam to 110 °C for 150 min. During the process a rose distillate is produced. However, the residues are drained to the receiving shaft where a separating screw press is fitted. A screw press separates the water from the rose pulp used for extraction of oils filtering the sap to a BOD below 25 mg / dm3. The liquid fraction is then transported through a pump to a concrete tank for cooling from 80°С to 30°С, by means of a heat exchanger connected to a greenhouse installation or heat-pump unit water - water. Once cooled, it is transported by another pump via metal pipes and hoses. Surface irrigation is used on fields of 48 ha of the distilleries own crops (roses) by means of an established irrigation system or by tubular roller in the early hours of the day, when during the flowering period of the oil-bearing rose in May and June, the air temperature at night is 6-15°С. With this technology of using the waste cell juice after filtering and spreading small drops on the rose plantations, its enrichment with oxygen above 2.0 mg / dm3 is guaranteed.

Benefits in the reuse of waste products from the processing of rose flowers by the method of water distillation are an increase of up to 20% of yields per unit area in rose plantations with a good combination of mineral and organic fertilization and providing additional water for sprinkling during flowering of rose bushes, when are needed 100-250 litters per square meter of water for the entire flowering period of the oil-bearing rose.

Проектът е фокусиран върху повторна употреба на вода в производството в с. Златосел, България. Компанията използва регенерирана вода от дестилация на цветя от рози. Процесът на дестилерията на рози смесва гореща вода и розови цветя в дестилационен апарат. Тази смес се загрява с пара до 110 ° С за 150 минути. По време на процеса се получава розов дестилат. Остатъците обаче се оттичат към приемния вал, където е монтирана разделителна винтова преса филтрираща сока до БПК под 25 mg/dm3. Винтова преса отделя водата от розовата каша, използвана за извличане на масла. След това течната фракция се транспортира през помпа до бетонен резервоар за охлаждане от 80 °С до 30 °С, чрез топлообменник свързан с оранжерийна инсталация или термопомпен агрегат вода – вода. След като се охлади, той се транспортира от друга помпа чрез метални тръби и маркучи. Повърхностното напояване се използва на полета от 48 ха от собствените рози на дестилерията чрез изградена система за оросяване или чрез тръбно ролкови поливни системи в ранните часове на денонощието, когато в сроковете за цъфтежа на маслодайната роза през май и юни, въздушната температура през нощта е от 6-15 °С. При тази технология на използване на отпадния клетъчен сок след филтриране и разпръскване на малки капки върху розовите насаждения се гарантира обогатяването му с кислород над 2,0 mg/dm3.

Ползите от повторното използване на отпадни продукти от преработката на розов цвят чрез метода на водопарната дестилация са: увеличение до 20% на добивите от единица площ в розовите насаждения при добра комбинация на минерално и органично торене и осигуряване на допълнителна вода за дъждуване в периода на цъфтеж на розовите храсти, когато е необходимо от 100-250 л/кв.м. вода за целия срок на цъфтеж на маслодайната роза.

Drinking water supply of meat factory "Delicates-2" Ltd. in the village of Zhitnitsa is provided through a pipe well (ETC No. 1), around which a sanitary protection zone has been established by Order No. SOZ-M-104 / 25.02.2008, issued by the Director of EARBD - Plovdiv.

The owner of the meat processing factory has built and put into operation its own (local) treatment plant for mechanical and biological treatment of domestic and industrial wastewater. The company is engaged in cutting and producing meat products. The produced wastewater originates from the cleaning water of the equipment and water resulting from the processing of meat. The treated wastewater is discharged into a surface water body (River Pikla in Maritsa river valley). Own periodic measurements of the wastewater are performed, and so far no exceedance of individual emission limits (ELV) has been established. The treatment includes mechanical, physio-chemical and biological purification. From May to October, a part of the purified water is used for irrigation of poplar trees on an area of 1.6 ha owned by the company. During this period, the annual quantity of reclaimed water used for irrigation is about 0.026 hm³.The farming system consists of 1.6 ha of forestry with poplar trees, which is owned by the company.

Питейно-битово водоснабдяване на колбасарски цех „Деликатес-2“ ООД в с.Житница е осигурено чрез тръбен кладенец (ЕТК No1 ), около който е учредена санитарно-охранителна зона със Заповед No СОЗ-М-104/25.02.2008г., издадена от Директора на БДУВИБР –Пловдив.

Собственика на фабриката за месопреработка изгражда и въвежда в експлоатация локална пречиствателна станция за механично и биологично пречистване на битови и производствени отпадъчни води. Пречистените отпадъчни води се заустват в повърхностен воден обект.(река Пикла в поречието ан река Марица). Извършват се собствени периодични измервания на отпадъчните води, като досега не е установено превишаване на индивидуални емисионни ограничения (ИЕО).

Компанията се занимава с транжиране и производство на месни продукти. Произвежданите отпадъчни води произхождат от вода, използвана за почистване на оборудването и такава, получена в резултат на преработката на месо. Потокът включва и битови, фекални и промишлени отпадъчни води, които се пречистват в местна пречиствателна станция с автоматичен режим на работа. Процесът включва механично, физио-химично и биологично пречистване. От май до октомври част от пречистената вода се използва за напояване на тополови дървета с площ от 1,6 хектара, собственост на компанията. През този период годишното количество регенерирана вода, използвана за напояване, е около 0,026 hm³.

The use of reclaimed wastewater for livestock drinking and farming cleaning does not pose an acute risk for animal health. Water reuse for livestock production represents a feasible option in case of water shortages or lack of water availability and depending on the achieved water quality blending options could be considered. However, some considerations should be considered in case of water reuse for livestock drinking, because animal performance in terms of weight gain could be affected depending on the chemical quality of reclaimed wastewater.

Some conclusions from the experiments are:

• The water treatments with the lowest impact on the intestinal cells are the tertiary treatments that consisted on a UF followed by a UV disinfection and the UF treated wastewater without disinfection (UF technology contributes positively to the overall cell performance)

• The reclaimed water obtained by the treatment scheme installed in Torre Marimon, based on a UF and a UV disinfection achieved a water quality that fulfils most of the water quality objectives set for livestock drinking except for some salts (at concentrations around the threshold limits)

• The use of reclaimed wastewater for livestock drinking and farming cleaning does not pose an acute risk for animal health

• The in vivo experiments showed that reclaimed water, which has a higher content of dissolved salts than tap drinking water, was less preferred by animals and probably this is the reason that these same animals had slightly lower feed consumptions and weight gains

The water originates from the wastewater treatment plant of Almeria city in Spain. The irrigation community of Cuatro Vegas owns three water reservoirs for storage. Pressurized pipes are distributing the water to the agricultural fields. In the most recent zone, a centralized remote-control system is set in place. The reclaimed water from Almeria's wastewater treatment plant is distributed around a total area of 1,800 hectares (1,200 farms). The crops grown on the farms consist of vegetables (tomatoes) and fruit trees which are drip-irrigated in a greenhouse.

Cuatro Vegas is an irrigators association and represents 60 % of the General Community of Almeria Water Users (Comunidad General de Usuarios de las Aguas de Almería, CGUAL). The cost of reclaimed water is 0.20€/m³. Nevertheless, the water which is provided for irrigation is a mixture of the reclaimed water and different conventional water sources. As such, the price of the irrigation water is based on this mixture and is, in general, a bit lower than the 0.20€/m³. The irrigation community distributes 1,13 hm3 between 1,200 farms.

The wastewater treatment consists of disinfection by ultrafiltration and chlorination.

The AquaReUse facilities connect to the sewage system in the area and consist of two processes:

Wastewater treatment

• The supply of horticultural wastewater varies through the season. When little wastewater is available, ditch water can be let in

• In the first purification step, large and heavy particles are captured

• The wastewater is buffered in a reception cellar. Residual settable particles are separated from the wastewater here

• The water is biologically purified by filtration with a reed filter, and the removal of organic contaminants, germs and biodegradable plant protection products occurs

• The water is then visually clean, and the water is purified even further to make it suitable for reuse as irrigation water

Irrigation water preparation

• Oxidation of organic compounds and germs dissolved in the water

• Separation of last impurities and unwanted salts with a very fine filtration: reverse osmosis

• The purified fresh water is made available to horticultural companies through a distribution system. The surplus of purified water is introduced into the soil as a reserve

The outcomes:

• The salinization of the soil was encountered

• The glasshouse horticultural companies no longer must extract groundwater and/or surface water (since closed water chain is created)

• In addition to rainwater, the glasshouse horticultural companies have other good irrigation water for their business operations. In terms of costs, the alternative for the gardeners is comparable to a conventional irrigation water supply

• Less wastewater goes to the wastewater treatment plant, which results in significant cost savings

De AquaReUse-voorzieningen sluiten aan op het rioleringssysteem in het gebied en bestaan uit twee processen

Afvalwaterzuivering

• De aanvoer van tuinbouw afvalwater varieert door het seizoen. Wanneer er weinig afvalwater beschikbaar is, kan slootwater worden ingelaten

• Als eerste zuiveringsstap worden grote en zware deeltjes afgevangen

• Het afvalwater wordt gebufferd in een ontvangstkelder. Resterende bezinkbare deeltjes worden hier van het afvalwater gescheiden

• Het water wordt biologisch gezuiverd door filtratie met een rietfilter, en het verwijderen van organische verontreinigingen, ziektekiemen en biologisch afbreekbare gewasbeschermingsmiddelen vindt plaats

• Het water is dan visueel schoon en het water wordt nog verder gezuiverd om het geschikt te maken voor hergebruik als gietwater

Gietwaterbereiding

• Oxidatie van in het water opgeloste organische verbindingen en ziektekiemen

• Afscheiden van laatste verontreinigingen en ongewenste zouten met een zeer fijne filtratie omgekeerde osmose

• Het gezuiverde zoete water wordt via een distributiesysteem ter beschikking gesteld aan de tuinbouwondernemingen. Het overschot aan gezuiverd water wordt in de bodem gebracht als reserve

Resultaten:

• Gaan we verzilting van de bodem tegen

• Hoeven de glastuinbouwbedrijven zelf geen grond- en/of oppervlaktewater meer te onttrekken. Er ontstaat namelijk een gesloten waterketen

• Beschikken de glastuinbouwbedrijven naast hemelwater over ander goed gietwater voor hun bedrijfsvoering. Qua kosten is het alternatief voor de tuinders vergelijkbaar met een gangbare gietwatervoorziening

• Gaat er minder afvalwater naar de afvalwaterzuiveringsinstallatie = aanzienlijke kostenbesparing

Currently showing page content in native language where available

Contacts

Project coordinator

  • Project coordinator

Project partners

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner

  • Project partner