Context
One of the ambitious goals of the Farm2Fork strategy is to reduce the use of pesticides in the EU by 50%. The expected increase in plant pests due to climate change and the intensification of food production systems offsets this target. The need to control new pest invasions and already established pests are, in fact, increasing pesticide use. Hence, new tools and methods are needed to prevent new pest entry into Europe, and to use pesticides more efficiently for established pests.
Currently, no more than 3% of the imported consignments are subjected to phytosanitary inspections which are based on visual inspections. Thus, quarantine, priority and other important agricultural pests, such as the Fall army worm (FAW), Cotton ball worm (CBW), the Brown Marmorated Stink Bug (BMSB) or the pinewood nematode (PWN) can easily slip through import control into the EU. In addition, this currently used screening methods are ill-suited and unsatisfactory for the quarantine pest Phytophthora ramorum (PhR)[1] because: 1) the root ball where the pathogen usually resides is not examined 2) infested plants are often non-symptomatic due to the use of fungicides and fungi-static products, suppressing but not killing the pathogen 3) reliable isolation and molecular detection methods are not used because they are too costly and time consuming. PurPest will enable an increase in the inspection rate and detection success by developing a SSP for non-invasive, reliable and high throughput plant material inspection during import.
Objectives
According to the current plant health regulation of the EU, most agricultural and forest plants or plant products that are entering the EU must have a phytosanitary certificate guaranteeing that they are properly inspected. This should reduce the risk of new pests entering Europe. However, several international and regional reports from the EU/EEA region on invasion of quarantine or priority pests have shown that the restriction and elimination of these pests have not been satisfactory[1]. Currently established pests are managed by broad field applications of pesticides based on expert knowledge. This approach leads to excessive use when pesticide application is performed at the wrong time and to areas in the field where there are no pest attacks. Both challenges are rooted in the fact that pests are hard to detect and existing methods for detection are costly and unreliable.The main objective of PurPest is to control serious plant pests during import and to manage them in the field by developing a unique concept enabling pest detection in a timely and non-invasive manner.
Activities
The first phase is to perform controlled experiments in isolated laboratories where the host plants are subjected to pest attacks. Custom built VOC collectors will be used to sample the air surrounding the plant to collect the emitted VOCs. The collected air samples will be thoroughly analysed for the VOC content and a comprehensive database will be compiled and shared in a publicly open data repository. In phase 2 the project will develop the sensor components for detection of the identified VOCs. These will be integrated in phase 3 and tested with gradually more complex mixtures of the identified VOCs. During this phase a selection of the best sensor components will be made constituting the second milestone of the project. These sensor components will be integrated into the six sensor system prototypes. In Phase 4 the six SSPs will be tested in import- and field conditions for verifications of pest detection. The results will be verified by current standard methods (ground truthing), such as visual assessment and molecular tests. Feedback will be given for possible improvements. The final two phases will evaluate the effect of the pest detection concept from PurPest on target pest spread and establishment, as well as the economic, ecological and societal impact of the developed technology. Through all phases of the project there will be significant dissemination activities
Project details
- Main funding source
- Horizon Europe (EU Research and Innovation Programme)
- Type of Horizon project
- Other Horizon funded projects
- Project acronym
- PurPest
- CORDIS Fact sheet
- Project contribution to CAP specific objectives
-
- Increasing competitiveness
- Environmental care
- Preserving landscapes and biodiversity
- Protecting food and health quality
- Project contribution to EU Strategies
-
- Reducing the overall use and risk of chemical pesticides and/or use of more hazardous pesticides
- Fostering organic farming and/or organic aquaculture, with the aim of increased uptake
- Improving management of natural resources used by agriculture, such as water, soil and air
- Protecting and/or restoring of biodiversity and ecosystem services within agrarian and forest systems
- Fostering biodiversity friendly afforestation and reforestation
EUR 8 414 940.00
Total budget
Total contributions including EU funding.
EUR 6 472 231.00
EU contribution
Any type of EU funding.
26 Practice Abstracts
Het plantgezondheidsbeleid van de Europese Unie is in 2000 gestart met een richtlijn die tot doel heeft planten en plantaardige producten te beschermen tegen de introductie en verspreiding van plagen binnen de EU. De richtlijn werd in 2014 uitgebreid met een extra verordening. Deze verordening zorgt ervoor dat de inspanning van de EU lidstaten om schade van invasieve soorten te verminderen, wordt gecoordineerd en geharmoniseerd. Als laatste is de Plantgezondheidswet in 2019 in werking getreden. Deze wet bevat onder andere de introductie van plantenpaspoorten en fysiosanitaire certificaten, de oprichting van een Europees meldsysteem voor onderscheppingen van schadelijke organismen (EUROPHYT) en de creatie van een prioriteitenlijst van soorten die een hoog risico hebben voor de land- en tuinbouwsector. Al met al heeft de wetgeving het doel om de de spreiding van plagen doormiddel van handel te verminderen. Ondanks initiële zorgen blijkt uit recent onderzoek dat “de EU-regelgeving ten opzichte plantgezondheid een beperkte impact had op de import". Echter geeft consistente toename van de nieuwe plagen aan dat het huidige beleid mogelijk verdere verbeterd moet worden. Het is gebleken dat preventie en vroege detectie aanzienlijk kosten efficiënter zijn dat de uitroeiing van bestaande plagen. Verbeterde strategieën in deze stadia zijn dus noodzakelijk. PurPest heeft als doel om inzicht te krijgen in de voorkeuren van boeren in de EU ten aanzien van de adoptie van nieuwe methoden voor de bestrijding van plagen. Verder zal het project de potentie van deze nieuwe methoden als EU-brede managementstrategie beoordelen. Eén van de verwachte uitkomsten is de identificatie van kosteneffectieve controle strategieën. Dit wordt gedaan door de potentiële economische impact van nieuwe plagen te vergelijken met de voordelen en kosten die gepaard gaan met verschillende controlestrategieën.
Η φυτοϋγειονομική πολιτική της Ευρωπαϊκής Ένωσης ξεκίνησε το 2000, με μια οδηγία που στοχεύει στην προστασία των φυτών και των φυτικών προϊόντων από την εισαγωγή και εξάπλωση οργανισμών επιβλαβών για τα φυτά εντός της ΕΕ. Έπειτα, η ΕΕ εξέδωσε άλλον ένα κανονισμό το 2014, για τον συντονισμό και την εναρμόνιση των προσπαθειών των ευρωπαϊκών κρατών μελών για την πρόληψη και την ελαχιστοποίηση των βλαβερών επιπτώσεων από ξενικά είδη. Ο ακρογωνιαίος λίθος αυτού του καθεστώτος, ο νόμος για την υγεία των φυτών, τέθηκε σε ισχύ το 2019. Ορισμένα βασικά στοιχεία αυτής της νομοθεσίας, όπως τα φυτοϋγειονομικά διαβατήρια και τα φυτοϋγειονομικά πιστοποιητικά, η θέσπιση ενός ευρωπαϊκού συστήματος ειδοποίησης για τις για διακοπές εισερχόμενων φυτικών εμπορευμάτων (EUROPHYT) και οι λίστες προτεραιότητας των ειδών που θέτουν υψηλό κίνδυνο στους τομείς της γεωργίας και της δασοκομίας στην ΕΕ, έχουν ως στόχο τη διασφάλιση των εμπορικών συναλλαγών.
Παρά τις αρχικές ανησυχίες, σχετικά με βιωσιμότητα του ευρωπαϊκού εμπορίου, πρόσφατη έρευνα δείχνει ότι "Οι φυτοϋγειονομικοί κανονισμοί της ΕΕ είχαν περιορισμένο αντίκτυπο στις εισαγωγές, έως κανένα". Παρόλα αυτά, η συνεχής αύξηση στις εισαγωγές παρασίτων δείχνει ότι οι τρέχουσες πολιτικές ενδέχεται να απαιτούν περαιτέρω βελτίωση. Η πρόληψη και η έγκαιρη ανίχνευση έχουν αποδειχθεί οικονομικά αποδοτικότερες, σε σύγκριση με την μέτρα διαχείρισης και εξάλειψης, επισημαίνοντας την ανάγκη για βελτιωμένες στρατηγικές σε αυτά τα στάδια.
Το ευρωπαϊκό πρόγραμμα «PurPest» στοχεύει να κατανοήσει τις προτιμήσεις των ευρωπαίων αγροτών ως προς υιοθέτηση νέων μέτρων ελέγχου παρασίτων, συμπεριλαμβανομένης του αισθητήρα, και να αξιολογήσει τις δυνατότητές του ως μια κοινή Ευρωπαϊκή στρατηγική. Ένα από τα αναμενόμενα αποτελέσματα είναι ο προσδιορισμός των πιο οικονομικά αποδοτικών.
The European Union’s plant health policy was initiated in 2000, with a Directive that aims to protect plants and plant products against the introduction and spread of pests within the EU. In addition, the EU adopted another Regulation in 2014 to coordinate and harmonize EU Member States’ efforts to prevent and minimize the harmful effects of invasive alien species. The cornerstone of this regime, the Plant Health Law, came into effect in 2019. Some key components of this legislation, such as plant passports and phytosanitary certificates, the establishment of a European notification system for Plant Health Interceptions (EUROPHYT), and priority lists of species posing high risk to EU agriculture and forestry sectors, are meant to ensure safe trade. Despite initial concerns, regarding the openness of EU trade, recent research suggests that “The EU plant health regulations had a limited impact on imports, if any”. The consistent increase in pest introductions indicates that current policies may require further enhancement. Prevention and early detection have proven to be significantly more cost-effective than eradication, highlighting the need for improved strategies at these stages. PurPest aims to understand the EU farmers’ preferences towards the adoption of novel pest control methods, including the sensor device, and assess its potential as an EU-wide management strategy. One of the expected outcomes is the identification of cost-effective management intervention(s). This is done by comparing the potential economic impact induced by the target pests with the benefits and costs that accompany different control strategies.
PurPest-prosjektet søker å oppdage invasive skadegjørere ved å oppdage ‘lukt’ enten produsert av skadegjøreren eller den angrepne planten. Disse luktene kan være i form av flyktige organiske forbindelser (VOC). Det er to store utfordringer for vår tilnærming. Den første er de potensielt ekstremt lave konsentrasjonene av relevante VOC som må detekteres. Den andre er den enorme mengden bakgrunns-VOC-er som må ignoreres av skadedyrsensoren. For å møte disse utfordringene utvikler PurPest-partnerne en sensor-system-prototype (SSP) som vil inkludere ulike sensorteknologier for å sikre maksimal sannsynlighet for suksess og tilpasning. SSP vil ha fire hoveddeler; pre-konsentrasjon, separasjon og deteksjon av VOC og dataanalyse. Pre-konsentrasjonen senker grensen for deteksjon av systemet, og øker sjansene for skadedyrsdeteksjon. For PurPest utvikler vi miniatyr lavenergiovner som frigjør de innsamlede VOC-ene. Separasjonen gjør det mulig å diskriminere VOC-er for å skille bakgrunns-VOC-ene fra skadedyrrelaterte VOC-er. I tillegg bruker vi 3D-printing og nye belegg for å miniatyrisere disse enhetene. Deteksjonsenheten registrerer mengden av VOC-ene som kommer gjennom separasjonen. For dette utvikler vi elektroniske neser, optiske sensorer og hybridsystemer for maksimal deteksjonseffektivitet. Dataanalysen sammenligner resultatene med et sett med kriterier ved hjelp av kunstig intelligens for å fastslå sannsynligheten for tilstedeværelse av. Gjennom innovasjon retter vi oss mot en bærbar sensorenhet på under 15 kg som drastisk vil øke påvisningen av invasive både på importstedet og i felten.
The PurPest project seeks to detect invasive pests by detecting odours either produced by the pest or the attacked plant. These odours can be in the form of volatile organic compounds (VOCs). There are two major challenges to our approach. The first is the potentially extremely low concentrations of relevant VOCs that need to be detected. The other is the vast amount of background VOCs that need to be ignored by the pest sensor. To meet these challenges, the PurPest partners are developing a Sensor System Prototype (SSP) that will include various sensing technologies to ensure maximum probability of success and adaptation. The SSP will have four main parts; pre-concentration, separation and detection of VOCs and data analysis.
The pre-concentration lowers the limit of detection of the system, increasing the chances of pest detection. For PurPest we are developing miniature low energy ovens that release the collected VOCs. The separation enables discrimination of VOCs to separate the background VOCs from the pest-related VOCs. In addition, we are using 3D printing and novel coatings to miniaturise these units. The detection unit registers the amount of the VOCs coming through the separation. For this we are developing electronic noses, optical based sensors and hybrid systems for maximum detection efficiency. The data analysis compares the results to a set of criteria using artificial intelligence to establish the probability of the presence of pests. Through innovation, we are targeting a portable sensing unit weighting under 15 kg that will drastically increase the detection of invasive pests both at point of import and in the field.
Die Baumwolleule, Helicoverpa armigera, befällt zahlreiche Kulturpflanzen. Viele davon haben eine hohe wirtschaftlicher Bedeutung, wie z.B. Baumwolle, Mais, Tomate, Sonnenblume und diverse Hülsenfrüchte, aber auch viele Zierpflanzen. Die Motten sind exzellente Flieger, die weite Distanzen bis zu 2000 m zurücklegen können. Dieser Schaderreger hat durchschnittlich 4-6 Generationen/Jahr, in den Tropen sogar 10-11 Generationen/Jahr. Die Larven der Baumwolleule sind sehr gefräßige Pflanzenfresser, die großen Schaden anrichten können. Außerdem kann sich H. armigera sehr schnell an neue Umweltbedingungen anpassen. All diese biologischen Charakteristika machen die Baumwolleule zu einem bedeutenden Schädling, der sich schnell ausbreitet. Im PurPest Projekt wollen wir einen Artspezifischen Duftstoff-Sensor für die Baumwolleule entwickeln, um den Schädling einfach nachweisen zu können, z.B. während des Imports von Pflanzenmaterial. Dazu führen wir Duftstoffsammlungen und chemische Analysen von gesunden und befallenen Pflanzen durch. Wir arbeiten mit verschiedenen Wirtspflanzen (Tomate, Sonnenblume, Erbse) und vergleichen hier die Duftstoffprofile von den gesunden Pflanzen mit denen von mit Eiern oder Larven befallenen Pflanzen. Ziel ist es eine Art Marker-Duftstoff zu finden, welcher den Schaderregerbefall robust und sicher anzeigt, unabhängig von der Pflanzenart oder anderen Stressfaktoren, wie z.B. Befall anderer Schaderreger oder Umweltstress (hohe/niedrige Temperaturen, Staunässe oder Trockenheit). In dieser frühen Projektphase wissen wir bereits, dass Duftstoffe von Eiern und Larvenkot geeignet sein könnten, um unseren Schädling nachzuweisen.
Geographical Location
Norge
Pestfagerfly, Helicoverpa armigera, er en møll som kan angripe flere kulturplanter fra ulike familier. Mange av vertsplantene er økonomisk viktige, som for eksempel bomull, mais, tomat, solsikke, flere belgvekster, og flere prydplanter. Den voksne møllen er en dyktig flyger, og kan migrere over lange avstander på opptil 2000 km. Arten har 4-6 generasjoner i året, med opptil 10-11 generasjoner i året i tropiske strøk. Larvene er svært destruktive planteetere, og arten tilpasser seg raskt til nye miljøforhold. Disse karakteristikkene gjør pestfagerfly til en alvorlig planteskadegjører, som raskt kan invadere nye områdene. I PurPest-prosjektet ønsker vi å utvikle en artsspesifikk sensor som kan oppdage pestfagerfly ved hjelp av luktstoff. Denne teknologien kan blant annet være nyttig for å kunne oppdage pestfagerfly i ved import av plantemateriale. I prosjektet samler vi luktstoff fra friske og angrepne planter, som analyseres kjemisk. Vi arbeider med ulike vertsplanter (tomat, solsikke og ert) og ser etter forskjeller i luktstoffprofilen til friske planter sammenlignet med planter infisert med egg eller larver fra pestfagerfly. Målet er å finne et luktstoff som kan fungere som et kjennetegn for akkurat denne arten, uavhengig av hvilken plante det stammer fra og hva slags typer stress planten er utsatt for (angrep fra andre skadegjørere, tørke, for høy eller lav temperatur osv.). Så langt i prosjektet har vi allerede funnet ut at luktstoff fra egg og ekskrementer til pestfagerfly kan være nyttige for å oppdage skadegjøreren.
Geographical Location
Norge
The Cotton Bollworm, Helicoverpa armigera, feed on numerous crops of diverse plant families. Many crops of high economic importance are included in its host range, such as cotton, maize, tomato, sunflower, and several legumes, but also several ornamental plants. The adults of this moth are excellent flyers and can migrate over long distances up to 2000 km. The species can have 4-6 generations/year and up to 10-11 generations/year in tropical regions. The larvae are highly destructive plant feeders. The species can adapt rapidly to new environmental conditions, to optimize its survival. All these characteristics in their biology make the Cotton Bollworm a serious pest, quickly invading new areas. In the PurPest project we aim to develop a species specific volatile-based sensors to detect the Cotton Bollworm, for example during import of plant material in import containers. We perform volatile collections followed by chemical analyses of healthy and infested plants. We work with different host plants of the moth (tomato, sunflower, pea) and look for differences in the volatile profile of healthy plants versus plants infected by eggs or larvae of the Cotton Bollworm. The aim is to find a kind of marker volatiles, which are robustly associated wth our target pest, independent of plant species and other types of stress like the attack of other pests or environmental stressors (e.g. high/low temperature or water logging/drought). In this early stage of the project, we know already that volatiles released from eggs and feces of the larvae might be good candidates for pest detection.
Geographical Location
Norge
La cimice asiatica (Halyomorpha halys) è un insetto dannoso di origine asiatica che è riuscito a diffondersi attraverso rotte commerciali internazionali e ad insediarsi in diverse aree del mondo, inclusa l’Europa, causando significanti perdite nella produzione di frutta, verdura e noci. Data la mancanza di nemici naturali efficaci, per la gestione di questa cimice si ricorre principalmente all’uso di insetticidi, aumentando sostanzialmente i costi di produzione. È quindi fondamentale prevenirne l’introduzione in aree ancora libere, controllando il materiale vegetale di importazione presso i punti di accesso. È inoltre obbligo garantire l’assenza della cimice dal materiale in esportazione. I costi ed i tempi di ispezione sono però elevati, e metodi rapidi ed efficaci sono perciò essenziali. Il progetto PurPest mira a sviluppare dei sensori capaci di rilevare i composti organici volatili (odori) rilasciati dalla cimice o dalle piante da questa infestate, permettendo un rapido screening del container o del materiale in import/export. Primi risultati mostrano un profilo specifico di odori rilasciati da questa specie di cimice che possono essere utilizzati per rilevarne la presenza. L’intercettazione lungo le rotte di introduzione e diffusione ridurrà notevolmente il rischio che la cimice si insedi in nuovi territori, evitando con ciò enormi danni economici alle coltivazioni di frutta, verdura e noci in Europa, e garantendo la qualità delle esportazioni.
The Brown Marmorated Stink Bug (BMSB, Halyomorpha halys), is an Asiatic insect pest that managed to spread through international trade routes and establish in many regions worldwide, including Europe, causing significant losses in fruit, vegetable and nut production. Lacking effective natural enemies, its management largely relies on insecticides, increasing production costs substantially. It is therefore crucial to prevent its introduction into BMSB-free regions, by screening imported plant material at the ports of entry. It is also mandatory to ensure the exported goods to be free from the pest. However, plant inspections are costly and time consuming, whilst quick, effective detection methods are strongly needed. The PurPest project aims at developing sensing devices, detecting the volatile organic compounds (VOCs) or odors released by the pest or the pest-infested plants, allowing rapid screening of plant materials in containers or trading goods. First results showed that the BMSB produces unique odour profiles that could be exploited for their detection. Intercepting the pest along its introduction and spread routes will greatly reduce the chances of pest establishment, avoiding enormous economic losses to the fruit, nut and vegetable growing regions in Europe, and ensuring a pest-free status of the exportations.
La larva della lafigma (Spodoptera frugiperda), un lepidottero nottuido, particolarmente dannoso, è in grado di nutrirsi di numerose colture, con una forte preferenza per il mais. Originario delle Americhe, è stato segnalato per la prima volta in Africa nel 2016 e si è successivamente diffuso in Africa subsahariana, in Asia e in Oceania. Recentemente sono stati segnalati avvistamenti in Grecia e in Romania, e si prevede una rapida diffusione in tutta l'Europa. Stiamo attualmente lavorando su due diverse strategie per rilevare la presenza di questo insetto sulle piante. La prima strategia prevede il monitoraggio dell’insetto nei contenitori di importazione presso le frontiere europee utilizzando pannocchie di mais. Le nostre ricerche hanno evidenziato la presenza di un composto facilmente identificabile, specificamente emesso dalle feci dei bruchi in diversi stadi di sviluppo, che potrebbe essere impiegato per il rilevamento dell'insetto. La seconda strategia consiste nel rilevare l'insetto che si nutre di mais direttamente nel campo. Abbiamo fatto progressi considerevoli con due tipi di sensori di odore. Questi sensori possono facilmente distinguere tra piante di mais infestate e piante sane, anche in condizioni di campo. Questi primi risultati sono promettenti per il nostro obiettivo finale di impiegare robot mobili dotati di sensori di odore per informare in tempo reale gli agricoltori sulla posizione specifica delle larve nei loro campi
A lagarta do cartucho do milho, Spodoptera frugiperda, é uma lagarta altamente destrutiva que pode se alimentar de muitas culturas, mas ataca preferencialmente o milho. Originária da América, observado pela primeira vez no continente Africano em 2016, desde então espalhou-se pela África Subsariana, Ásia e Oceânia. Este inseto causa enormes perdas econômicas e para seu controle uma quantidade excessiva de pesticidas é usada em todo o mundo. Recentemente foi encontrado na Grécia e na Roménia e espera-se que se espalhe rapidamente por toda a Europa. Nós estamos trabalhando em duas estratégias diferentes para detectar esta praga através de sensores de odor. A primeira é detectar a praga em contentores de importação nas fronteiras européias em espigas de milho. Nossas coletas de odores até o momento não detectaram nenhum odor específico que difenrenciem espigas saudáveis de infestadas. No entanto, seguimos buscando odores em espigas com suas coberturas foliares. Porém, nossa pesquisa revelou um composto facilmente detectável, emitido especificamente pelos excrementos de lagartas em diferentes estágios de desenvolvimento e que poderia ser usado para a detecção do inseto.
A segunda estratégia é detectar o inseto se alimentando do milho diretamente no campo. Nós fizemos progressos consideráveis com dois tipos de sensores de odor. Esses sensores podem distinguir facilmente entre plantas de milho infestadas e plantas saudáveis, mesmo em condições de campo. Estes resultados iniciais são promissores para o nosso objetivo final de utilizar robôs móveis equipados com sensores de odor para informar os agricultores em tempo real sobre a localização específica das lagartas nos campos de milho.
El gusano cogollero del maíz, Spodoptera frugiperda, es una oruga altamente destructiva que puede alimentarse de muchos cultivos, pero ataca preferentemente al maíz. Originaria de América, se observó por primera vez en el continente africano en 2016 y desde entonces se ha extendido rápidamente a África subsahariana, Asia y Oceanía. Este insecto causa enormes pérdidas económicas y para su control una enorme cuantidad de pesticidas es usada en todo el mundo. Recientemente se ha encontrado en Grecia y Rumania y se espera que se extienda rápidamente por toda Europa. Estamos trabajando en dos estrategias diferentes para detectar esta plaga mediante sensores de olores. El primero es detectar la plaga en los contenedores de importación de mazorcas de maíz en las fronteras europeas. Nuestras colecciones de olores no han detectado ningún olor específico que distinguen mazorcas sanas de infestadas. Aún seguimos buscando olores en mazorcas que todavía tienen las hojas. Sin embargo, nuestra investigación reveló un compuesto fácilmente detectable, emitido específicamente por los excrementos de las orugas en diferentes estados de desarrollo, y que podría usarse para la detección de esta plaga.
La segunda estrategia es detectar el insecto alimentándose del maíz directamente en el campo. Hemos logrado avances considerables con dos tipos de sensores de olores. Estos sensores pueden distinguir fácilmente entre plantas de maíz infestadas y plantas sanas, incluso en condiciones de campo. Estos resultados iniciales son prometedores para nuestro objetivo final de utilizar robots móviles equipados con sensores de olores para informar a los agricultores en tiempo real sobre la ubicación específica de las orugas en los campos de maíz.
De legerrups, Spodoptera frugiperda, is een zeer destructieve veelvraat die een sterke voorkeur heeft voor maisplanten. Zij komt oorspronkelijk uit Amerika, maar heeft zich sinds 2016 over heel Afrika ten zuiden van de Sahara verspreid en daarna ook over Azië en Oceanië. In deze gebieden veroorzaakt zij enorme schade, met als gevolg een sterke toename van het gebruik van schadelijke bestrijdingsmiddelen. Onlangs is de legerrups ook waargenomen in Griekenland en Roemenië. En ze zal zich snel over het hele vaste land van Europa verspreiden. Om op tijd in te grijpen proberen we op twee manieren de aanwezigheid van de rupsen met behulp van reuksensors aan te tonen. De eerste is aan de grens, bij de import van maiskolven. Ons onderzoek heeft tot nu toe geen specifieke reukstof voor maiskolven met rupsen aangetoond, echter, we moeten nog aangetaste kolven met bladomhulsel onderzoeken. Het is te verwachten dat dit zal leiden tot een beter resultaat. Verzamelingen van reukstoffen van de insecten zelf in de verschillende stadia van de ontwikkelingsfase hebben laten zien dat er een specifieke geurstof afgescheiden wordt door de uitwerpselen van de rupsen die de aanwezigheid van het insect kan aantonen. De tweede strategie is om de aanwezigheid van de rups aan te tonen met de geur van planten die door de rups zijn aangetast in maisvelden. Wij hebben aanzienlijke vorderingen gemaakt met behulp van twee bestaande reuksensors. Deze sensors kunnen direct onderscheid maken tussen door rupsen aangetaste en niet-aangetaste maisplanten, ook in het open veld. Het uiteindelijke doel is om zulke reuksensors in robots te instaleren zodat boeren op tijd op de hoogte worden gesteld van de plekken waar de rupsen zich in hun akker bevinden.
Der Herbst-Heerwurm, Spodoptera frugiperda, eine gefrässige Raupe, kann sich von zahlreichen Kulturpflanzen ernähren, bevorzugt aber Mais als Wirtspflanze. Ursprünglich stammt er aus Amerika, wurde 2016 erstmals in Afrika beobachtet und hat sich seitdem auf ganz Afrika südlich der Sahara und dann auch auf Asien und Ozeanien ausgebreitet. Dort hat er enorme Ernteverluste und einen erhöhten Pestizideinsatz verursacht. Vor kurzem wurde er auch in Griechenland und Rumänien nachgewiesen und wird sich wahrscheinlich rasch in ganz Europa ausbreiten.Wir arbeiten an zwei Strategien, um den Schädling mit Geruchssensoren aufzuspüren. Die erste besteht darin, den Schädling in Importcontainern an den europäischen Grenzen aufzuspüren, wobei der wahrscheinlichste Weg die Einfuhr über Maiskolben wäre. Bisher konnten wir noch keine Geruchsmarker von gesunden und befallenen Maiskolben identifizieren, aber wir müssen noch Gerüche von befallenen Kolben analysieren, an denen noch die Hüllblätter hängen. Bei Untersuchungen an den Insekten selbst hingegen konnten wir einen leicht nachweisbaren Duftstoff finden, der spezifisch von den Exkrementen der Raupen freigesetzt wird und für den Schädlingsnachweis verwendet werden könnte. Die zweite Strategie besteht darin, den Schädling direkt in den Maisfeldern aufzuspüren. Wir haben mit zwei Arten von Geruchssensoren erhebliche Fortschritte erzielt. Diese Sensoren können auch unter Feldbedingungen ohne weiteres zwischen befallenen und gesunden Maispflanzen unterscheiden. Diese ersten Ergebnisse sind vielversprechend für unser Ziel, mobile Roboter mit Geruchssensoren einzusetzen, um Landwirte in Echtzeit über die genaue Lage der Befallsherde in ihren Feldern zu informieren.
Le légionnaire d'automne, Spodoptera frugiperda, est une chenille hautement destructrice qui peut se nourrir de nombreuses cultures, mais qui préfère grandement le maïs. Originaire d’Amérique, observé en Afrique en 2016 pour la première fois, il s'est depuis propagé en Afrique subsaharienne, en Asie et en Océanie. Il a partout causé d'énormes pertes de récoltes et une augmentation de l’utilisation de pesticides. Récemment, il a été observé en Grèce et en Roumanie et devrait se propager rapidement dans toute l'Europe. Nous travaillons sur deux stratégies différentes pour détecter le ravageur avec des capteurs d'odeurs. La première consiste à détecter le ravageur dans les conteneurs d'importation aux frontières européennes sur des épis de maïs. Nos collections d'odeurs provenant d'épis sains ou infestés n'ont jusqu'à présent identifié aucun marqueur volatil, cependant, nous devons encore tester les épis avec leurs enveloppes de feuilles. Nos recherches ont en effet révélé un composé facilement détectable émis spécifiquement par les excréments des chenilles à différents stades et pourrait être utilisé pour la détection de l'insecte. La deuxième stratégie consiste à détecter l’insecte se nourrissant de maïs directement dans le champ. Nous avons réalisé des progrès considérables avec deux types de capteurs d'odeurs. Ces capteurs peuvent facilement distinguer entre les plantes de maïs infestées et les plantes saines, même dans des conditions de terrain. Ces premiers résultats sont prometteurs pour notre objectif ultime d'employer des robots mobiles munis des capteurs d'odeurs pour informer en temps réel les agriculteurs sur l'emplacement spécifique des chenilles dans leurs champs.
The fall armyworm, Spodoptera frugiperda, is a highly destructive caterpillar that can feed on numerous crops, but greatly prefers maize. It is native to the Americas, but since the first observation in Africa in 2016, it has spread to all of sub-Saharan Africa, and then Asia as well as Oceania. On these continents it has caused tremendous crop losses and increases in pesticide applications. Recently, it has been observed in Greece and Rumania and is likely to rapidly spread throughout continental Europe. We are working on two strategies to detect the pest with odor sensors. The first is to detect the pest in import containers at European borders. The mostly likely way it would be imported would be on maize cobs. Our collections of odours from healthy and infested cobs, so far have not identified any marker volatiles, however, we still have to measure odors from infested cobs with the husk leaves still attached. This is expected to provide odor information that can be exploited for detection during import. Collection of odors from the insects themselves at different caterpillar stages has revealed a readily detectable compound that was specifically emitted from the caterpillars’ feces and could be used for detection of the insect. The second strategy is to detect the fall armyworm feeding on maize in the field. We have made considerable progress with two types of existing odor detection sensors. These sensors can readily distinguish between caterpillar-infested and healthy maize plants, even under field conditions. These first results hold great promise for our ultimate objective to employ robotic rovers with odor sensors to inform farmers in real-time about the specific location of the fall armyworm in their fields
La enfermedad del marchitamiento del pino (MPD) tiene un gran impacto en los bosques de pino de la Península Ibérica, provocando importantes pérdidas económicas en la industria maderera. La detección precoz y el seguimiento rápido sobre el terreno, tanto en las unidades de tratamiento de la madera como en los puntos transfronterizos son vitales para controlar la enfermedad. El monitoreo incluye examinar muestras de madera y corteza en los puertos y confirmar los tratamientos térmicos, así como supervisionar los puntos críticos de infección en el bosque. En el ámbito del proyecto PurPest se investigan técnicas de detección avanzadas basadas en la "huella digital" volátil emitida por material infectado. Este procedimiento puede ser realizado in situ por personal no especializado, permitiendo el procesamiento de muestras en los puntos de entrada y la detección eficiente de la presencia del nematodo de la madera de pino. Su uso a gran escala en la Unión Europea puede impedir la libre circulación y la entrada desde los países afectados hacia los países exentos de agentes nocivos que impactan el bosque. Los beneficios prácticos del proyecto PurPest van más allá de la mera detección: explora el camino hacia un futuro más ecológico y sostenible para la industria de la madera de pino. Al contener la dispersión del MPD, esta nueva metodología minimiza los costos de gestión, aumentando la productividad de los silvicultores y operadores económicos del sector del pino. Adicionalmente, PurPest permite a los profesionales de la industria adoptar intervenciones específicas que apoyen la protección de los bosques de coníferas.
A doença da murchidão do pinheiro (DMP) tem um grande impacto nas florestas de pinheiro da Península ibérica, resultando em grandes perdas económicas na indústria madeireira. A detecção precoce e rápida monitorização no campo, em unidades de tratamento da mdeira ou em pontos transfronteiriços, são vitais para o controlo da doença. A monitorização inclui a triagem de amostras de madeira e casca nos portos e a confirmação de tratamentos térmicos, bem como a vigilância de focos de infecção na floresta. No âmbito do projeto PURPEST, são investigadas técnicas avançadas de detecção baseadas na "impressão digital" volátil emitida pelo material infectado. Este procedimento pode adicionalmente ser realizado no local por pessoal não especializado, permitindo o processamento das amostras nos postos de entrada e a detecção eficiente da presença do nemátode da madeira do pinheiro. A sua utilização em larga escala na União Europeia, pode prevenir o livre-trânsito e a entrada de agentes nocivos com impacto na floresta, dos países afetados para os isentos. Os benefícios práticos do projeto PurPest vão além da mera detecção - abrem caminho para um futuro mais verde e sustentável para a indústria da madeira de pinheiro. Ao conter a dispersão da DMP, esta nova metodologia minimiza os custos de gestão, aumentando a produtividade para silvicultores e operadores económicos da fileira do pinho. Além disso, PurPest capacita os profissionais da indústria a adotarem intervenções direcionadas, apoiando a proteção das florestas de resinosas.
In Europe, pine wilt disease (PWD) greatly impacts the Iberian pine forests, leading to economic losses in the wood industry. Early detection and faster monitoring in the field, wood processing companies, or border entry points are vital for disease control. Monitoring includes manual screening of wooden materials at ports and confirming successful heat treatments, as well as surveillance of established infection focal points and new hotspots in our pine forests.
Within the PURPEST project, PWN detection is improved by relying on a volatile “fingerprint” emitted by infected material, using recent technological developments to construct a volatile sensor system prototype. This approach offers a non-invasive method for early PWD detection with the potential to reduce the analysis time and effort. It can also be carried out on-site by non-specialized personnel, allowing rapid processing of the material at the borders and efficiently detecting the presence of the pinewood nematode. If employed on the larger scale in the European Union, it can prevent free movement and entry of serious pests, and forestry pests/diseases from affected countries to exempt countries. The practical benefits of the PurPest project extend beyond mere detection - they pave the way for a greener, more sustainable future for the pine wood industry. By containing the dispersion of PWD, the new methodology minimizes the need for restricting management practices, cutting costs, and boosting productivity for foresters and wood companies. Furthermore, by enabling site-specific pest control in the field, PurPest empowers industry practitioners to adopt targeted interventions, supporting the comprehensive protection of pine forests.
Rod oomycet Phytophthora v současnosti zahrnuje cca 260 druhů ve 14 fylogenetických kladech. Většinou se jedná o rostlinné patogeny šířící se půdou a/nebo vzduchem, které způsobují široké spektrum chorobných příznaků jako je hniloba kořenů a krčků, rakovina kůry, plísně listů a výhonků, hniloba plodů na stromech, keřích a bylinách. V celosvětovém měřítku způsobují nepůvodní druhy rodu Phytophthora některé z nejničivějších epidemií zahradnických a zemědělských plodin, okrasných rostlin, lesních dřevin a celých přírodních ekosystémů. Primárním způsobem, jak se patogeny z rodu Phytophthora šíří mezi kontinenty, je transport a následně výsadba zamořeného rostlinného materiálu ze školek. Školky v Evropě a Severní Americe jsou téměř všudypřítomně zamořeny vysokým počtem převážně exotických invazních druhů z rodu Phytophthora. Kvůli běžnému a pravidelnému používání fungicidů a fungistatických chemikálií je projev příznaků choroby často potlačen a přítomnost patogenu tak maskována. Standartní fytosanitární praxe vizuálních kontrol rostlin na příznaky uvedených karanténních organismů je ve většině případů ke zjištění skryté přítomnosti patogenů z rodu Phytophthora nedostačující. Projekt PURPEST se zaměřuje na detekci volatilních organických sloučenin (VOCs) a změn v rostlinných VOCs vzorcích vlivem působení druhů z rodu Phytophthora. Doposud jsme získali druhově specifické VOC ze 30 různých druhů Phytophthora a příbuzných druhů. Tato zjištění jsou základem pro vytvoření detekčního nástroje založeného na analýze VOCs k odhalení těchto agresivních a škodlivých patogenů během fytosanitárních kontrol nebo ve školkách.
Die Gattung Phytophthora umfasst derzeit etwa 260 Arten in 14 phylogenetischen Gruppen. Viele der ihnen angehörenden Arten sind Pflanzenpathogene mit einem bodenbürtigen- und/oder luftbürtigen Lebensstil, die Krankheitssymptome wie Wurzel- und Kragenfäule, Rindennekrosen, Blatt- und Triebwelke sowie Fruchtfäule bei Gehölzen und krautigen Pflanzen verursachen können. Weltweit verursachen nicht-einheimische Phytophthora-Arten schwerwiegende Epidemien in der Gartenbau- und Landwirtschaft und in natürlichen Ökosystemen. Der Hauptverbreitungsweg dieser Pathogene zwischen Kontinenten und in die Umwelt ist der Transport und die Pflanzung von befallenem Pflanzenmaterial. In Europa und Nordamerika sind Baumschulen großflächig mit meist exotischen Phytophthora-Arten befallen. Aufgrund des häufigen und regelmäßigen Einsatzes von Fungiziden und fungistatischen Chemikalien werden Krankheitssymptome unterdrückt, was die Anwesenheit der Pathogene verschleiert. Die standardmäßige phytosanitäre Praxis der visuellen Inspektion von Pflanzen ist daher in den meisten Fällen ungeeignet, die versteckte Anwesenheit von Phytophthora-Pathogenen zu erkennen. Im Projekt PurPest charakterisieren wir sowohl die Duftstoffe, die von Phytophthora-Arten freigesetzt werden als auch Veränderungen im Duftstoffmuster der von Phytophthora befallenen Pflanzen. Bisher haben wir artsspezifische Duftstoffmuster von 30 verschiedenen Phytophthora- und verwandten Oomyceten-Arten erhalten. Diese Erkenntnisse bilden die Grundlage für einen duftstoffbasierten Phytophthora-Sensor, der diese schädlichen und aggressiven Pathogene während der Importinspektionen, in Baumschulen und anderswo sicher aufspüren kann.
The oomycete genus Phytophthora currently comprises ca 260 species in 14 phylogenetic clades. Most species are primary plant pathogens with a soilborne and/or aerial lifestyle causing a wide range of disease symptoms like root and collar rot, bark cankers, leaf and shoot blights and fruit rots in trees, shrubs and herbaceous plants. On a global scale, non-native Phytophthora species cause some of the most damaging epidemics of horticultural and agricultural crops, ornamentals, forest trees and natural ecosystems. The primary pathway of Phytophthora pathogens between continents and into the wider environment is the transport and planting of infested nursery stock. In Europe and North America, nurseries are almost ubiquitously infested with a high number of mostly exotic invasive Phytophthora species. Due to the common and regular use of fungicides and fungi-static chemicals the expression of disease symptoms in infested nursery plants is often suppressed masking the presence of the pathogens. Therefore, the standard phytosanitary practice of visual inspections of plants for symptoms of listed quarantine organisms is in most cases inappropriate to detect the hidden presence of Phytophthora pathogens. In the PurPest project we aim to detect both volatile organic compounds (VOCs) released by Phytophthora species and changes in VOC patterns of plants induced by Phytophthora infections. So far, we have obtained species-specific VOC patterns from 30 different Phytophthora and related species. These findings are the basis for a VOC based Phytophthora detection tool to locate these harmful and aggressive pathogens during phytosanitary import inspections, in nurseries and elsewhere.
Einwandernde Pflanzenschädlinge stellen eine erhebliche Bedrohung für die Pflanzengesundheit und die sichere Lebensmittelproduktion dar. Diese Schädlinge können als blinde Passagiere auf Pflanzenmaterial in die EU einreisen und zwischen EU-Ländern transportiert werden. Momentan werden bei Importkontrollen nur ca. 3 % der auf diese Weise importierten Pflanzenschädlinge erkannt. Neue Sensortechnologie, die Schädlinge anhand von spezifischen Duftstoffen erkennt, könnte das Aufspüren dieser Schädlinge deutlich vereinfachen. Jede Pflanze emittiert bestimmte Duftstoffe, die ihren Stressstatus widerspiegelt. Wenn eine Pflanze von einem Schädling angegriffen wird, ändert sich ihr Duftprofil. Unterschiedliche Schädlinge verursachen unterschiedliche Duftstoffprofile. Das PurPest-Projekt zielt darauf ab, eine Sensorplattform zu entwickeln, die das Duftstoffprofil von Pflanzen erkennt, die mit einem von fünf wirtschaftlich wichtigen Pflanzenschädlingen infiziert sind, mit dem Krankheitserreger Phytophthora ramorum, der Kiefernholznematode, dem Herbst-Heerwurm, der Marmorierten Baumwanze und der Baumwolleule. Diese Sensorplattform wird ähnlich einer elektronischen Nase funktionieren und soll ein praktisches, verlässliches Werkzeug für Pflanzenimporteure, Baumschulenbesitzer und Mitarbeiter der Forstindustrie darstellen, um die Ausbreitung von Pflanzenschädlingen in Europa einzudämmen. Landwirte können dieses System auch nutzen, um befallene Pflanzen auf dem Feld aufzuspüren. Dies würde so eine gezieltere Verwendung von Pestiziden bedeuten und damit unnötige Nutzung von Pestiziden reduzieren.
Fremmede planteskadegjørere utgjør en stor trussel mot plantehelse og trygg matproduksjon. Planteskadegjørere kan enkelt spres over landegrenser som blindpassasjerer på plantemateriale. Av disse skadegjørerne blir bare 3 % oppdaget under importkontroller. Dette tallet kan økes betraktelig dersom man tar i bruk en ny sensorteknologi som kan oppdage planteskadegjørere ved hjelp av flyktige forbindelser. Alle planter skiller ut flyktige forbindelser, som en slags lukt. Plantens luktstoffprofil, det vil si sammensetningen av luktstoff som skilles ut, endrer seg når planten blir infisert av en skadegjører. Angrep fra ulike skadegjørere resulterer i ulike luktstoffprofiler. Dette prosjektet har som mål å utvikle en sensorplattform som kan gjenkjenne luktstoffprofilen til planter infisert med fem økonomisk viktige skadegjørere. Sensorplattformen skal fungere som en elektronisk nese som kan lukte seg frem til skadegjørerne. Systemet skal være brukervennlig, og vil kunne brukes til å undersøke et stort antall planter. Den vil være et verdifullt verktøy i importkontroll av planter og kan redusere antallet planteskadegjørere som introduseres til et land. Systemet vil også kunne brukes i landbruket til å oppdage infiserte planter i felt. Dette åpner opp for mer målrettet bruk av plantevernmidler, som kan redusere behovet for plantevernmidler.
Alien plant pests are a major threat to plant health and safe food production. Plant pests can easily be spread between countries as stowaways on plant material. Only 3 % of the plant pests that are imported this way are detected in import controls. This number could be increased significantly with the help of new sensor technology that detects pests using volatile organic compounds (VOCs). All plants emit VOCs, which can be described as plant odours. The VOC profile, i.e. the composition of the VOCs that the plant emits, changes when the plant is attacked by a pest. Attacks from different pests produce different VOC profiles. This project aims to develop a sensor platform that can recognise the VOC profile from plants infected with five economically important plant pests. The sensor platform will work as an electronic nose that can efficiently sniff out pests. The system will be user friendly and can be used to easily screen a large number of plants for pest attack. It will be a valuable tool for plant importers, nursery owners and forest industry employees to detect and reduce the spread of plant pests infesting plant material. The system can also be utilized by farmers to detect infected plants in the field. This will allow for more targeted pesticide use and thus reduce the need for pesticides.
Contacts
Project email
Project coordinator
-
Norsk Institutt for Bioøkonomi
Project coordinator