Context
Irrigated crops in Spain represent 22% of the total cropland, a figure that has continued to increase since 2017. Drip and sprinkler irrigation systems have allowed producers to have more exhaustive control of the resources they are consumed, although it also entails high expenses and a significant initial investment.
One of the biggest constraints in agriculture is knowing when to water, and in what quantity. Drought has become a great threat to the countryside and is one of the challenges to which it is necessary to respond immediately. Technological innovation is the key to solving it.
In irrigation there is a high energy dependency. Due to the increase in electricity rates in recent years, energy costs in irrigation have skyrocketed, causing a loss of profitability in irrigated agriculture. This increase in cost together with the intensification of energy needs has caused a significant increase in production costs.
The modernization of hydraulic infrastructures has brought positive effects due to the designs to operate on demand, with water available to decide how and when to irrigate, but the need for these hydraulic systems to work under a wide range of operating conditions, pressure and flow, makes the management of water and irrigation communities an extremely complex task.
There are multiple strategies for optimizing the water-energy nexus, such as sectorization of the distribution network or control of critical points, but all of them reduce the degree of freedom of irrigators when establishing their irrigation programming, reducing part of the favorable aspects. of modernization.
The great revolution in ICT technologies, sensors and automatic processing capacity has opened new possibilities for optimizing water and energy. The methodological integration of different techniques such as Artificial Neural Networks, Fuzzy Logic, Decision Trees, etc., form the core of Artificial Intelligence, allowing human knowledge to be incorporated effectively and to design adaptation strategies for better performance of information systems. water distribution and irrigation. The use of drones will allow the results to be validated.
Activities
1. Definition of the water needs of each crop and meteorological analysis
2. Determination of the parameters to measure. Analysis of the necessary sensors (temperature, air humidity, soil humidity, photogrammetry, phenological state, availability of solar energy, etc.)
3. Study and analysis of strategies, algorithms and applications
4. Assessment of energy needs
5. Implementation of the pilots, sensorization and application of the algorithms
6. Pilot validation and replicability
7. Analysis of the reduction of the water footprint and the carbon footprint
8. Dissemination
Activities
1. Definición de las necesidades hídricas de cada cultivo y análisis meteorológico
2. Determinación de los parámetros a medir. Análisis de los sensores necesarios (Tª, Hdad aire, Hdad suelo, fotogrametría, estado fenológico, disponibilidad de energía solar, etc.)
3. Estudio y análisis de las estrategias, algoritmos y aplicaciones
4. Evaluación de las necesidades energéticas
5. Implementación de los pilotos, sensorización y aplicación de los algoritmos
6. Validación de los pilotos y replicabilidad
7. Análisis de la reducción de la huella hídrica y de la huella de carbono
8. Diseminación
Additional comments
The agriculture sector is a sector that, although it has traditionally been considered far from technological advances, has found in technology a strategic ally that will allow it to be more efficient with minimal environmental impact. In this sense, two of the technologies that are expected to have the most impact in the agricultural field are IoT (Internet of Things) and AI (Artificial Intelligence). Through IoT sensors, a multitude of data related to the crop and the soil can be obtained (such as phenological state, soil humidity, etc.) and the environmental conditions in which it is located (temperature, air humidity, solar radiation, etc.). ). This data can be analyzed using AI to obtain various useful information for the farmer such as crop evolution patterns, water needs and appropriate timing for irrigation, deviations in said patterns, amount of solar energy available to carry out irrigation, etc. . And all this can be viewed by the farmer in real time and remotely through his mobile phone, for example. It is an innovative project aimed at promoting and promoting agriculture at the national level through digitalization and AI and its application to solar irrigation, lowering energy costs due to the use of solar energy and reducing water consumption and footprint. of carbon, with the corresponding environmental improvement. Complies with the environmental and climate objectives of the European Union and with the guidelines established in the European Green Deal, mainly with objective B: Efficiency in the use of resources, in particular precision and smart agriculture, innovation and digitalization and modernization of machinery and production equipment, promoting intelligent use of water resources through digitalization and innovation with the application of ICT and AI technologies on agricultural farms. The project is included in one of the chapters of Annex I of the TFEU, specifically within chapter 6 “live plants and floriculture products” since it is based on the development of digital and sustainable agriculture through INTELLIGENT SOLAR IRRIGATION, using new technologies. ICT to reduce and optimize irrigation, being able to give crops the necessary amount of water at the right time, and improving the efficiency of water and energy resources, thanks to computerized irrigation management and control.
Additional information
This project will positively contribute to the improvement of the economic results of the three main beneficiaries: farmers, developers of solar energy installations and developers of digital technologies and AI.
The aim is to facilitate the transfer and application of the knowledge necessary to support science-based agriculture that can make crops profitable, increase the efficiency of their work and optimize natural resources; promoting digital technologies and Artificial Intelligence to generate employment and attract young people and women, promoting energy self-consumption and advancing the development of the rural world.
Taking advantage of solar energy potential is key to meeting the objectives of reducing the share of CO2 emissions derived from energy production set in the Paris Agreement. Furthermore, the use of solar energy for the development of typical agricultural activities, such as irrigation, would allow a reduction in the carbon footprint of more than 50%.
On the other hand, the use of new technologies will allow reducing water consumption, treating and capturing useful information about the state of the soil and the phenological state of crops, improving productivity.
At a social level, the rural world of inland Spain is emptying, crops are abandoned and the average age of the population is growing alarmingly while the youngest people abandon the farms. This exodus to urban areas shows that the rural population has two fundamental characteristics: it is masculinized and aged. To change this trend it is necessary to provide added value to your activity. The solution is based on taking advantage of favorable factors to promote an economic model based on the establishment of the population, the maximum use of available resources and the promotion of economic activities around agricultural production. The compatibility of solar irrigation with digital technology would make it possible to stop this phenomenon of depopulation in rural areas, helping to improve economic performance and creating value in these spaces. Women have a primary role in the rural world that can be enhanced by the activities that generate economies induced by the main one.
Project details
- Main funding source
- CAP Strategic Plans 2023-2027 for Operational Groups
- Additional funding source
- Private funding
- Project contribution to EU Strategies
-
- Achieving climate neutrality
- Improving management of natural resources used by agriculture, such as water, soil and air
- Territorial scope
- Cross-border
Budget information
-
EAFRD contribution EUR 163 526.76
-
National co-financing EUR 40 881.69
-
Private funding EUR 12 950.00
-
EAFRD contribution EUR 97 473.78
-
National co-financing EUR 24 368.44
-
EAFRD contribution EUR 105 036.11
-
National co-financing EUR 26 259.03
-
EAFRD contribution EUR 102 480.85
-
National co-financing EUR 25 620.21
Resources
9 Practice Abstracts
7. Análisis de la reducción de la huella hídrica y de la huella de carbono
La reducción del impacto ambiental del proyecto es clave para poder concienciar a los interesados y a la sociedad en general del uso de energías renovables en sustitución de energía eléctrica procedente de combustibles fósiles, permitiendo optimizar a su vez el consumo de agua.
La huella hídrica es un indicador que refleja el uso total de agua fresca que se emplea para producir los bienes y servicios. La huella de carbono hace referencia a la cantidad de gases de efecto invernadero que se han emitido durante la producción de un bien o servicio.
Hay que medir los consumos actuales de agua y analizar todos los datos para saber que reducción se ha logrado a lo largo del proyecto.
Para la huella de carbono se analizarán todos los datos, desde los factores de emisión, potenciales de calentamiento atmosférico, etc.
Se considerará también la capacidad de almacenamiento de energía a tiempo real: En función de los datos de rendimiento solar y necesidades energéticas en cada momento.
El resultado de esta actividad es un estudio de sostenibilidad ambiental.
7. Analysis of the reduction of the water footprint and the carbon footprint
Reducing the environmental impact of the project is key to raising awareness among stakeholders and society in general of the use of renewable energy to replace electrical energy from fossil fuels, allowing water consumption to be optimized.
The water footprint is an indicator that reflects the total use of fresh water used to produce goods and services. The carbon footprint refers to the amount of greenhouse gases that have been emitted during the production of a good or service.
Current water consumption must be measured and all data analyzed to know what reduction has been achieved throughout the project.
For the carbon footprint, all data will be analyzed, from emission factors, atmospheric warming potentials, etc.
The real-time energy storage capacity will also be considered: Depending on the solar performance data and energy needs at all times.
The result of this activity is an environmental sustainability study.
3. Estudio y análisis de las estrategias, algoritmos y aplicaciones.
Se analizarán los diferentes procesos que es necesario monitorizar para seleccionar los dataloggers más adecuados, que permitan proporcionar a los agricultores datos sobre el tipo de amenazas que pueden afectar al desarrollo fenológico para después tomar decisiones fundamentadas al respecto. Se elegirán según los procesos a controlar. Se definirán y desarrollarán los algoritmos para el correcto funcionamiento del software en las aplicaciones haciendo hincapié en la optimización tanto de los recursos hídricos como energéticos en base a las previsiones meteorológicas.
Además, se realizarán algunos vuelos de prueba que permitirá comprobar que los algoritmos funcionan con los datos a tiempo real sin necesidad de desplegar sensorica que ofrece varias restricciones sobre todo en temas de conectividad.
Una vez comprobado el funcionamiento de los algoritmos de control se desarrollará una plataforma web con un enfoque “mobile first” para que los agricultores puedan acceder a la información de manera sencilla.
Los resultados son los algoritmos y las aplicaciones de los dispositivos móviles.
3. Study and analysis of strategies, algorithms and applications.
The different processes that need to be monitored will be analyzed to select the most appropriate dataloggers, which allow farmers to be provided with data on the type of threats that can affect phenological development and then make informed decisions in this regard. They will be chosen according to the processes to be controlled. Algorithms will be defined and developed for the correct functioning of the software in the applications, emphasizing the optimization of both water and energy resources based on weather forecasts.
In addition, some test flights will be carried out to verify that the algorithms work with the data in real time without the need to deploy sensors that offer several restrictions, especially in connectivity issues.
Once the operation of the control algorithms has been verified, a web platform will be developed with a “mobile first” approach so that farmers can access the information easily.
The results are algorithms and applications on mobile devices.
1. Definición de las necesidades hídricas de cada cultivo y análisis meteorológico
Se han definido los cultivos en función de las necesidades regionales y los sistemas de cultivo. Así, en el piloto de Nava de Arévalo se va a seguir una rotación de cultivos en los 35 meses de duración del proyecto (cebolla, maíz y cereal), en Carcaixent se van a cultivar aguacates, cultivo muy exigente y con mucha demanda de agua.
Para los cultivos seleccionados se va a realizar un análisis de las necesidades hídricas de cada uno de ellos para establecer un calendario inicial de riegos y analizar las necesidades de agua que se requieren. Además, se realizará un análisis meteorológico para tener datos que puedan permitir la definición de los algoritmos y se elaborará un estudio sobre el óptimo dimensionamiento de las balsas, para poder disponer de agua de riego en el momento en que este sea necesario.
El resultado de esta actividad es la identificación de todos los parámetros a medir, y la obtención de bases de datos necesarios para la toma de medidas y decisiones, que permitirán la correlación de datos y la definición de los algoritmos de aplicación al proyecto.
1. Definition of the water needs of each crop and meteorological analysis
Crops have been defined based on regional needs and cropping systems. Thus, in the Nava de Arévalo pilot a crop rotation will be followed over the 35-month duration of the project (onion, corn and cereal), in Carcaixent avocados will be grown, a very demanding crop with a lot of water demand. .
For the selected crops, an analysis of the water needs of each of them will be carried out to establish an initial irrigation schedule and analyze the water needs required. In addition, a meteorological analysis will be carried out to have data that can allow the definition of the algorithms and a study will be prepared on the optimal sizing of the ponds, to be able to have irrigation water at the time when it is necessary.
The result of this activity is the identification of all the parameters to be measured, and the obtaining of databases necessary for making measurements and decisions, which will allow the correlation of data and the definition of the algorithms for application to the project.
Las actividades de difusión de CONTROL tienen como objetivo promover el libre acceso a nuevos conocimientos científico-técnicos y contribuir a la amplia aceptación nacional y europea, y a la mejora de los resultados del proyecto por parte de grupos objetivo específicos para lograr el impacto que CONTROL prevé. El proyecto seguirá una estrategia de difusión que se caracteriza por: (i) centrarse en los resultados clave del proyecto, que puede crear impacto ya sea por los participantes del proyecto o por otros grupos objetivo; (ii) divulgación pública de los resultados por medios adecuados, distintos de los que resulten de su protección o explotación; (iii) centrarse en la divulgación de los resultados al aquellos que pueden hacer un mejor uso de ellos (grupos objetivo); (iv) selección de herramientas de difusión apropiadas con cada grupo objetivo; (v) realización de actividades de difusión que sean proporcionales a la escala del proyecto. Las medidas de difusión se llevarán a cabo de forma individual y colectiva por todos los socios, en estrecha cooperación, dirigido a todos los grupos objetivo mencionados anteriormente, a nivel local, regional y nacional.
CONTROL's dissemination activities aim to promote free access to new scientific-technical knowledge and contribute to broad national and European acceptance, and the improvement of project results by specific target groups to achieve the impact that CONTROL envisions.
The project will follow a dissemination strategy that is characterized by: (i) focusing on the key results of the project, which can create impact either by the project participants or by other target groups; (ii) public dissemination of the results by appropriate means, other than those resulting from their protection or exploitation; (iii) focus on disseminating the results to those who can make best use of them (target groups); (iv) selection of appropriate dissemination tools with each target group; (v) carrying out dissemination activities that are proportional to the scale of the project. Dissemination measures will be carried out individually and collectively by all partners, in close cooperation, aimed at all the target groups mentioned above, at local, regional and national level.
6. Validación de los pilotos y replicabilidad
Implementados los pilotos se analizará el rendimiento de la instalación para proceder a su validación final, comprobando el correcto funcionamiento de los pilotos y garantizando que se alcanzan los objetivos establecidos en el proyecto.
Se analizará la viabilidad de llevar a cabo vuelos autónomos en parcelas de cultivo agrario para control periódico de forma totalmente desatendida. Se realizarán las gestiones necesarias para la obtención de permisos.
Según las necesidades de los cultivos implementados en los pilotos se decidirá en cada piloto cuando es el momento oportuno para validar las tecnologías y los resultados con los vuelos de los drones sensorizados.
Se desarrollará una plataforma de replicabilidad como punto de encuentro entre productores fotovoltaicos, productores agrícolas y expertos en tecnologías digitales, en la que podrán participar para complementar sus actividades y desarrollar iniciativas conjuntas. Se prevé que la plataforma continúe su actividad una vez que termine el proyecto.
Los resultados son un informe de viabilidad técnico-económica y la plataforma de replicabilidad comentada.
6. Pilot validation and replicability
Once the pilots have been implemented, the performance of the installation will be analyzed to proceed with its final validation, checking the correct functioning of the pilots and guaranteeing that the objectives established in the project are achieved.
The feasibility of carrying out autonomous flights in agricultural plots for periodic control in a completely unattended manner will be analyzed. The necessary procedures will be carried out to obtain permits.
Depending on the needs of the crops implemented in the pilots, each pilot will decide when is the right time to validate the technologies and the results with the flights of the sensorized drones.
A replicability platform will be developed as a meeting point between photovoltaic producers, agricultural producers and experts in digital technologies, in which they will be able to participate to complement their activities and develop joint initiatives. The platform is expected to continue its activity once the project ends.
The results are a technical-economic feasibility report and the commented replicability platform.
5. Implementación de los pilotos, sensorización y aplicación de los algoritmos.
La Implementación de cada uno de los pilotos y la sensorización de los mismos, a partir de la integración de los sensores seleccionados en la actividad 2, permitirá el establecimiento de las conexiones entre los sensores de suelo y los aéreos a través de sistemas como bluetooth.
Se aplicarán los algoritmos desarrollados a los diferentes dispositivos (teléfonos móviles, tablets, etc.). Se hará una primera validación para comprobar el correcto funcionamiento de todo el sistema.
Como resultado de esta actividad se generará un informe sobre la implementación y monitorización de los pilotos.
5. Implementation of the pilots, sensorization and application of the algorithms.
The implementation of each of the pilots and their sensorization, based on the integration of the sensors selected in activity 2, will allow the establishment of connections between the ground and aerial sensors through systems such as Bluetooth.
The developed algorithms will be applied to different devices (mobile phones, tablets, etc.). A first validation will be done to check the correct functioning of the entire system.
As a result of this activity, a report will be generated on the implementation and monitoring of the pilots.
4. Evaluación de las necesidades energéticas.
Estudiar las capacidades energéticas de las instalaciones fotovoltaicas con las que cuentan las plantas piloto y las necesidades energéticas de cada uno de los sistemas de riego que se pueden utilizar (goteo, aspersión, pivot, etc.), para determinar la necesidad de energía que se necesita para cubrir el 100% energético de las instalaciones con energía solar, y el número de placas y tipología más adecuado.
Estudio de la capacidad y cantidad de almacenamiento de energía. Actualmente, las balsas de acumulación de agua es la mejor batería de almacenamiento de energía en el sector del regadío , utilizando la balsa como un gran almacén de agua y/o energía, y, cuando no luce el día (y la instalación no genera kilovatios hora) poder tirar de ella.
Se estudiarán otras capacidades de almacenamiento y la cantidad de energía que se va a poder utilizar.
Como resultado se va a obtener un informe de viabilidad energética de las instalaciones de los riegos solares y de los sistemas de riego empleados.
4. Evaluation of energy needs.
Study the energy capacities of the photovoltaic installations that the pilot plants have and the energy needs of each of the irrigation systems that can be used (drip, sprinkler, pivot, etc.), to determine the energy need to be used. needs to cover 100% of the energy of the facilities with solar energy, and the most appropriate number of panels and typology.
Study of the capacity and quantity of energy storage. Currently, water accumulation ponds are the best energy storage battery in the irrigation sector, using the pond as a large store of water and/or energy, and, when daylight does not shine (and the installation does not generate kilowatts hour) to be able to pull it.
Other storage capacities and the amount of energy that can be used will be studied.
As a result, an energy feasibility report will be obtained for the solar irrigation installations and irrigation systems used.
2. Determinación de los parámetros a medir. Análisis de los sensores necesarios (Tª, Hdad del aire, Hdad del suelo, fotogrametría, estado fenológico, disponibilidad de energía solar, etc.).
Se tienen que definir todos los parámetros que pueden influir en el desarrollo de los cultivos y en las necesidades de riego, ya que es la base para poder optimizar la producción. Una vez identificados se va a realizar un análisis de los sensores que mejor se adapten a los requerimientos, eligiendo los sensores de Hdad del suelo, los sensores meteorológicos y los drones necesarios para la validación de los resultados.
Como resultado de esta actividad se elaborará un informe de los sensores asociado a los datos elegidos y a cada parámetro estudiado. Esto informe facilitará la selección de los sensores que mejor se adapten a las especificaciones buscadas en el proyecto.
2. Determination of the parameters to measure. Analysis of the necessary sensors (temperature, air humidity, soil humidity, photogrammetry, phenological state, availability of solar energy, etc.).
All the parameters that can influence crop development and irrigation needs must be defined, since it is the basis for optimizing production. Once identified, an analysis of the sensors that best adapt to the requirements will be carried out, choosing the soil humidity sensors, the meteorological sensors and the drones necessary to validate the results.
As a result of this activity, a sensor report will be prepared associated with the chosen data and each parameter studied. This report will facilitate the selection of the sensors that best adapt to the specifications sought in the project.
Transform agriculture into a smart and highly technological sector, applying digital technologies and Artificial Intelligence (AI) in solar irrigation and crop development. Digital technologies and AI, using sensors and drones to validate results, will improve the efficiency of solar irrigation, making the most of natural resources and reducing water and energy consumption. Process analysis and the definition of control algorithms will enable the development of applications for farmers' devices.
The main results to be achieved with the development of the project are:
• Identification of the parameters to be measured and the appropriate sensors associated with each parameter, through the development of a database and sensor report associated with the chosen data and monitoring.
• Classification of the energy needs of photovoltaic installations and irrigation systems through an energy feasibility report and the irrigation systems used.
• Algorithms and applications for farmers' devices in real time.
• Implementation of the pilots and their validation.
• Real-time information on energy storage capacity.
• Measurement of the reduction of water and carbon footprints through an environmental sustainability study.
• Report on the technical-economic feasibility of solar irrigation.
• Platform for replicability of solar irrigation depending on the crops and their phenological state.
Transformar la agricultura en un sector inteligente y altamente tecnológico, aplicando tecnologías digitales e Inteligencia Artificial (IA) en los riegos solares y en el desarrollo de los cultivos. Las tecnologías digitales e IA, mediante el uso de sensores y de drones para validar los resultados, mejorarán la eficiencia de los riegos solares, aprovechando al máximo los recursos naturales y reduciendo los consumos de agua y energía. El análisis de procesos y la definición de algoritmos de control permitirán desarrollar aplicaciones para los dispositivos de los agricultores.
Los principales resultados que se quiere alcanzar con el desarrollo del proyecto son:
• Identificación de los parámetros a medir y de los sensores adecuados asociados a cada parámetro, mediante el desarrollo de una base de datos e informe de sensores asociado a los datos elegidos y monitorización.
• Clasificación de las necesidades energéticas de las instalaciones fotovoltaicas y de los sistemas de riego mediante un informe de viabilidad energética y de los sistemas de riego empleados.
• Algoritmos y aplicaciones para los dispositivos de los agricultores en tiempo real.
• Implementación de los pilotos y validación de los mismos.
• Información a tiempo real de la capacidad de almacenamiento de la energía.
• Medición de la reducción de la huellas hídrica y de carbono mediante un estudio de sostenibilidad ambiental.
• Informe de viabilidad técnico-económica de los riegos solares.
• Plataforma de replicabilidad de los riegos solares en función de los cultivos y su estado fenológico.
Contacts
Project coordinator
-
Project coordinator
Project partners
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner