Context
Bioeconomy starts on the fields, yet meaningful participation of the primary sector in the bioeconomy is currently challenged, especially due to:
(i) poor cooperation and knowledge transfer between relevant stakeholders,
(ii) limited support to invest in R&D of new value chains.
To answer this challenge, the COOPID project proposes an effective strategy to mobilise primary producers and stimulate the uptake of inclusive and sustainable bio-based business models in the European primary production sector, considering regional & sectorial conditions.
Objectives
Mobilise EU primary producers to stimulate the widespread adoption of sustainable business models in the framework of the circular bioeconomy and increase their competitiveness.
Objectives
Movilizar a los productores primarios de la UE para estimular la amplia adopción de modelos de negocio sostenibles en el marco de la bioeconomía circular y aumentar su competitividad
Activities
A network of Bioeconomy Clusters from 10 EU countries has been created, involving: primary producers, industry, public sector, research&academia. We will foster the deployment of innovative bio-based business models in the primary production based on a 4- level knowledge transfer approach:selecting “Success Story Showcases” across EU which will be visited by “COOPID ambassadors”, they will organize workshops for sharing their main highlights among other primary producers, carrying out interactive dissemination engaging other audiences. Focus will be put on female and young producers. Recommendations for primary producers, policy-makers and academia&research will be elaborated.
Activities
Creación de una red de clusters de bioeconomía en 10 países de la UE: productores primarios, industria, sector público, investigación y academia. Fomento del despliegue de modelos de negocio innovadores basados en bioeconomía en la producción primaria, con un enfoque de transferencia de conocimiento de 4 niveles: seleccionando "casos de éxito" en la UE que serán visitados por "embajadores", que organizarán talleres para compartir sus principales logros con otros productores, harán una difusión interactiva que atraiga a otras audiencias, con especial hincapié en mujeres y jóvenes. Recomendaciones para productores primarios, responsables políticos y mundo académico y de investigación.
Project details
- Main funding source
- Horizon 2020 (EU Research and Innovation Programme)
- Horizon Project Type
- Multi-actor project
Location
- Main geographical location
- Madrid
EUR 1 999 994.00
Total budget
Total contributions including EU funding.
Project keyword
- Aquaculture
- Arable crops
- Organic farming
- Agro-ecology
- Crop rotation/crop diversification/dual-purpose or mixed cropping
- Biodiversity and nature
- Climate change (incl. GHG reduction, adaptation and mitigation, and other air related issues)
- Energy
- Circular economy, incl. waste, by-products and residues
10 Practice Abstracts
The bioeconomy, in order to develop in a sufficiently efficient way to respond to a low-carbon world with little use of non-renewable resources, must involve several stakeholders (sometimes dozens) throughout the value chain, from the farmer or the forester to the final product. Coordinating these actors is both the key issue, essential to the success of bioeconomy projects, and the main difficulty, jeopardising the success of the projects.The territories and the economic, scientific and political stakeholders in these territories are key for the development of these bio-based projects. The use of funding to develop proofs of concept, the support of universities to maintain a head start in innovation, a territorial vision of available resources and their use is essential to make these projects a reality.This type of approach makes it possible to gain in efficiency and therefore reduce costs (pooling of R&D, energy, reduction of transport) and also makes it possible to reduce greenhouse gas emissions through greater efficiency.1. Identify available bio-based resources (agricultural products, co-products, wood, etc.) and actors in its territories working in the bioeconomy2. Define a local policy on the bioeconomy in consultation with all the actors and give the main strategic orientations3. To provide technical and financial support to stakeholders in the realisation of their projects4. Organise local governance to enable all the players to coordinate5. Communicate on the importance of the bioeconomy for its territory
La bioéconomie, pour se développer de façon suffisamment efficace pour répondre à un monde bas carbone et peu utilisateur de ressources non renouvelables, doit mettre en mouvement plusieurs acteurs (parfois des dizaines) sur toute une chaine de valeur, de l'agriculteur ou du forestier au produit finalCoordonner ces acteurs est à la fois le sujet clef, essentiel à la réussite des projets de bioéconomie mais également la principale difficulté, mettant en péril la réussite des projets.Les territoires et les acteurs économiques, scientifiques, politiques de ces territoires, sont clefs pour permettre le développement de ces projets biosourcés. L'utilisation des financements pour développer les preuves de concept, l'appui des Universités pour maintenir une longueur d'avance en innovation, une vision territoriale des ressources disponibles et de leur usage est essentiel pour concrétiser ces projets.Ce type d'approche permet de gagner en efficacité et donc de réduire les couts (mutualisation de la R&D, de l'énergie, réduction du transport) et permet également de réduire les émissions de gaz à effet de serre par plus d'efficience.1. Identifier les ressources biosourcées disponibles (produits agricoles, coproduits, bois, etc.) et acteurs sur ses territoires travaillant autour de la bioéconomie2. Définir une politique locale autour de la bioéconomie en concertation avec l'ensemble des acteurs et donner de grandes orientations stratégiques3. Accompagner techniquement et financièrement les acteurs dans la concrétisation de leurs projets4. Organiser une gouvernance locale permettant à l'ensemble des acteurs de se coordonner5. Communiquer sur l'importance de la bioéconomie pour son territoire
The fossil resources we use on a daily basis are piling up in landfills and polluting ecosystems, at great cost to society. The bioeconomy is the key system for producing resources that can reduce our dependence on fossil fuels. However, some of these new projects (e.g. bio-based plastics) have the same drawbacks as fossil fuels, with the difficulty of reusing/recycling/composting them.Any company that develops around the bioeconomy must think of its economic model in terms of the circular economy. It must therefore consider the end of life of its product as well as its use, allowing for recycling or, at the very least, a return to the soil to maintain a biological cycle. Beyond that, the processes themselves must be thought out in terms of the circular economy to reduce its use of water and energy, in particular by working with its neighbours.Biosourced products or processes thought out in a circular economy logic allow both savings in monetary terms and a strong reduction of impacts on ecosystems.1. From the design stage of a product or supply chain, integrate the notion of circular economy and adapt its economic model according to2. Identify, in its processes, the resources (water, energy, raw materials but also human resources) that could be worked with its neighbours (heat recovery, sharing of certain skills, reuse of washing water, etc.).3. Adapt the end of life of the product so that it has no impact on the environment (reuse and repair, recycling, composting)
Les ressources fossiles que nous utilisons au quotidien s'entassent dans des décharges et polluent les écosystèmes, avec un cout important pour la société. La bioéconomie est le système clef de production de ressources capables de réduire notre dépendance au fossile. Toutefois, une partie de ces nouveaux projets (plastique biosourcés par exemple) portent les mêmes travers que les énergies fossiles avec une difficulté à le réutiliser / recycler / composter.Toute entreprise qui se développe autour de la bioéconomie doit penser son modèle économique dans une logique d'économie circulaire. Elle doit ainsi penser la fin de vie de son produit tout comme son utilisation, permettant un recyclage ou, a minima, un retour à la terre pour entretenir un cycle de production. Au-delà, les process même doivent être pensés en économie circulaire pour réduire son utilisation d'eau, d'énergie; cela en travaillant notamment avec ses voisins.Les produits ou process biosourcés réfléchis dans une logique d'économie circulaire permettent aussi bien des économies en termes monétaires qu'une forte réduction des impacts sur les écosystèmes1. Dès la conception d'un produit ou d'une chaine logistique, intégrer la notion d'économie circulaire et adapter son modèle économique en fonction2. Identifier, sur ses process, les ressources (eau, énergie, matières premières mais également ressources humaines) qui pourraient être travaillées avec ses voisins (récupération de chaleur, partage de certaines compétences, réutilisation d'une eau de lavage etc.)3. Adapter la fin de vie du produit de façon à qu'il n'ait pas d'impact sur l'environnement (réutilisation et réparation, recyclage, compostage)
The pomace is a solid residue derived from the winemaking process that farmers need to dispose. At farm level, usually the waste disposal represents a significant part of the total production costs for farmers. The main problems refer to the fact that the pomace needs to be collected and transported during the harvest period. Furthermore, the processing plants usually needs high volumes to be processed.The pomace has great potential because of its multiple use in different sectors: from the food industry providing with the utilization of red food colouring to the pharmaceutical industry where food supplement can be obtained from it. It can also be used as biomass. The farmers could deliver it to nearest processing plants, or it could also be withdrawn by local companies which then will process and further valorise the pomace for other uses. It supports farmer’s income differentiation and waste reduction.The valorisation of pomace contributes to the financial sustainability of the farmers which, in this way, are able to diversify their income. From the environmental perspective, it contributes to the reduction of waste.- Mapping and networking of the farms and companies potentially active or interested in the bioeconomy and circular economy .- Informal sharing of knowledge and information about the advantages of byproducts. (peer to peer) with the aim of enhancing the interests of farmers when dealing with byproducts.- Active involvement of local actors and strong communication campaign to overcome the initial skepticism.- Provide concrete benefits to the actors involved (buying the byproducts or organizing the logistics).
Le vinacce sono un residuo solido che deriva dal processo di vinificazione che gli agricoltori devono smaltire. Le vinacce hanno comunque grandi potenzialità per il loro utilizzo in diversi settori (cosmetico, alimentare, energetico etc). In tal senso, il loro utilizzo potrebbe incidere sulla differenziazione del reddito degli agricoltori e sulla riduzione degli sprechi. Gli agricoltori potrebbero conferire gli scarti agli impianti di lavorazione più vicini, oppure le vinacce potrebbero addirittura essere ritirate da aziende locali. Il coinvolgimento di aziende agricole situate nella stessa area e vicine all'impianto di trasformazione potrebbe agevolare, in questo senso, il problema logistico.La valorizzazione delle vinacce contribuisce alla sostenibilità economia degli agricoltori che potrebbero diversificare il proprio reddito. Mentre dal punto di vista ambientale, contribuisce alla riduzione dei rifiuti e alla conservazione delle risorse.Raccomandazioni:- Mappatura e networking delle aziende agricole e delle aziende potenzialmente attive o interessate alla bioeconomia e all'economia circolare in zone limitrofe- Condivisione informale delle conoscenze e informazioni sui vantaggi dei sottoprodotti (peer to peer) con l'obiettivo di valorizzare l’interesse degli agricoltori quando si tratta di sottoprodotti.- Coinvolgimento attivo degli attori locali con campagne di comunicazione targettizzate per superare lo scetticismo iniziale- Fornire vantaggi concreti agli attori coinvolti (acquistando i sottoprodotti o organizzando la logistica)
Olive oil sector generates significant quantities of by-products, excellent raw materials for conversion into biofuels. The evolution of the sector has urged cooperatives to seek technological solutions to move towards more sustainable business models in the use of their by-products beyond energy use.Solution: The development of technologies has led to a new by-product transformation: olive leaves, a lignocellulosic waste with great potential, providing added value prior to its use as fuel. The process is produced, with the collaboration of a technology partner, in the biorefineries located in the cooperative's industrial complex. This allows them to offer ingredients with high concentrations of oleuropein, hydroxytyrosol and triterpenes and innovative formulas with applications in food, pharmaceuticals, animal nutrition and cosmetics.Advantages: The cooperative - biorefinery - technology alliance results in an optimal, profitable and sustainable business model. Biorefineries located at the site of biomass generation are a key instrument of the EU-driven bioeconomy. Win-win strategy: the cooperative provides access to raw material and provides infrastructure to the complex, optimising logistical aspects and the technology partner provides technology development, all resulting in obtaining highly competitive bioproducts.Recommendations:1. Analyse, from the point of view of sustainability, the use of by-products.2. Collaboration with a technological partner allows the development of alternative ways of valorisation and access to new knowledge.3. The cooperative can offer raw materials, infrastructure and logistics.4. Establishment of partnerships: joint business model for a biorefinery.
El sector del aceite de oliva genera grandes cantidades de subproductos, excelentes materias primas para conversión en biocombustibles. La evolución del sector ha instado a las cooperativas a buscar soluciones tecnológicas para avanzar hacia modelos de negocio más sostenibles en el aprovechamiento de subproductos más allá del uso energético.El desarrollo de tecnologías ha llevado a una nueva transformación de subproductos: hojas de olivo, residuo lignocelulósico con potencial, dando valor añadido previo a su utilización como combustible. El proceso se produce, con la colaboración de un socio tecnológico, en biorefinerías ubicadas en el complejo industrial de la cooperativa. Esto permite ofrecer ingredientes con altas concentraciones en oleuropeína, hidroxitirosol y triterpenos y fórmulas innovadoras con aplicaciones en alimentación, farmacia, nutrición animal y cosmética.La alizanza cooperativa–biorefinería–tecnología resulta un modelo de negocio óptimo, rentable y sostenible. Biorrefinerías ubicadas en el lugar de generación de biomasas son claves en la bioeconomía impulsada por la UE. Estrategia win-win: La cooperativa da acceso a materia prima y dota de infraestructura al complejo, optimizando la logística y el socio tecnológico aporta desarrollo, dando todo lugar a la obtención de bioproductos altamente competitivos.Recomendaciones:- Analizar desde un punto de vista sostenible el aprovechamiento de subproductos.- Colaborar con un socio tecnológico permite el desarrollo de vías alternativas de valorización y acceso a nuevo conocimiento.- La cooperativa puede ofrecer materia prima, infraestructura y logística.- Establecimiento de alianzas: modelo de negocio conjunto para una biorefinería.
Bio-waste produced by the poultry sector over the last 60 years is estimated at 250,000 tons of poultry waste and 40,000 tons of slaughterhouse waste on average per year. Their efficient management can enhance both economic sustainability of the sector and the utilization of actions to protect the environment. In addition, the livestock sector and hence poultry farming, should be harmonized with the EU Climate Legislation, which sets clear targets for climate neutrality by 2050 with an intermediate target of a 55% reduction compared to 1990 levels, of net greenhouse gas emissions by 2030.In PINDOS, applied bioeconomy practices regard its energy autonomy, since heat produced by the incineration of poultry waste generates high-pressure steam that drives turbines to produce electricity used at PINDOS facilities. Through this process the use of fuel oil is replaced and partial energy self-sufficiency and minimization of fossil fuel consumption are achieved, since PINDOS covers 90% of its energy needs by the heat produced, while in the coming years it will covers the 100% of them by utilizing renewable energy sources. In addition, it operates an organic fertilizer production unit that utilize chicken manure through the process of aerobic fermentation. Finally, it processes and inactivates the slaughterhouse by-products and produces poultry meal and animal fat.The primary producers benefited from the application of the solution of PINDOS both financially and practically by overcoming the difficulties of managing their residues while, their environment-conscious behavior has been strengthened and they have improved the environmental footprint of their production units as the volume of their waste that remained unused has been minimized.
O πτηνοτροφικός τομέας τα τελευταία 60 έτη, παράγει 250.000 τόνους απορριμμάτων πουλερικών και 40.000 τόνων απορριμμάτων σφαγείων κατά μέσο όρο ετησίως. Η ορθή διαχείριση και αξιοποίησή τους μπορεί να ενισχύσει την οικονομική βιωσιμότητα του τομέα, αλλά και να ενισχύσει δράσεις προστασίας του περιβάλλοντος. Επιπλέον, ο παραγωγικός τομέας και κατά συνέπεια και η πτηνοτροφία, θα πρέπει να εναρμονιστεί με την Ευρωπαϊκή Νομοθεσία για το κλίμα, η οποία θέτει ξεκάθαρους στόχους για κλιματική ουδετερότητα έως το 2050 με ενδιάμεσο στόχο μείωσης κατά 55% σε σύγκριση με τα επίπεδα του 1990, των καθαρών εκπομπών αερίων του θερμοκηπίου έως το 2030.Στην ΠΙΝΔΟ, εφαρμόζονται πρακτικές βιοοικονομίας για την ενεργειακή της αυτονομία μέσω της ορθολογικής χρήσης των πτηνοτροφικών υπολειμμάτων. Η θερμότητα που προκύπτει από την αποτέφρωση των πτηνοτροφικών υπολειμμάτων παράγει ατμό υψηλής πίεσης που χρησιμοποιείται για τις ηλεκτρικές ανάγκες της ΠΙΝΔΟΥ και έτσι αντικαθίσταται το μαζούτ. Συγκεκριμένα, καλύπτεται το 90% των ενεργειακών αναγκών της, ενώ αναμένεται τα επόμενα χρόνια να φτάσει το 100% της κάλυψης αυτών αξιοποιώντας ανανεώσιμες πηγές ενέργειας. Επιπλέον, λειτουργούν μονάδες αερόβιας χώνευσης για την παραγωγή οργανικού λιπάσματος και αδρανοποίησης υποπροϊόντων σφαγείου για την παραγωγή πτηνάλευρου και ζωικού λίπους.Οι πρωτογενείς παραγωγοί επωφελήθηκαν από την εφαρμογή των πρακτικών της ΠΙΝΔΟΥ τόσο σε οικονομικό όσο και πρακτικό επίπεδο ξεπερνώντας τις δυσκολίες διαχείρισης των υπολειμμάτων τους. Ταυτόχρονα, έχει ενισχυθεί η περιβαλλοντική τους συνείδηση και έχουν βελτιώσει το περιβαλλοντικό αποτύπωμα των παραγωγικών τους μονάδων καθώς έχει ελαχιστοποιηθεί ο όγκος των απορριμμάτων τους που παρέμενε αχρησιμοποίητος.
Climate change, biodiversity loss and population growth are the global challenges of our era. These challenges affect to the whole food production sector. Humans are responsible for climate change largely due to our greenhouse gas emissions. Food production e.g. cultivation, cattle, transportation, industry, and packaging, creates emissions. The challenge is to discover and adopt sustainable methods to decrease emissions.Smart farming is an essential way to restrain carbon emissions. Improving soil condition boosts carbon absorption and also crop yields. Usage of renewable energy, biogas production, implementation of new technologies, and improved animal welfare and feeding solutions are effective ways to reduce emissions. Some of these farm scale actions not only reduce emissions but also improve the profitability of farms.Emission reduction measures improve the operating conditions of food production in the future. Often, these measures also improve self-sufficiency and financial profitability of domestic agriculture.1. Promote cooperation between food industry companies and biogas plants in order to utilize side streams from the food industry in biogas production in addition to manure and waste feed.2. Reduce emissions from peatlands by e.g. continuous grass cover, reducing tillage of soil, and restoration of low-yield fields.3. Implement carbon farming methods. Improve soil condition and use fertilisation methods with lower emissions. Use carbon footprint monitoring tools to know the effect of the actions.
Ilmastonmuutos, monimuotoisuuden vähentyminen ja väestön kasvu ovat haasteita ympäristössämme. Nämä haasteet vaikuttavat ruoantuotantoketjuun. Ihmiset ovat vastuussa ilmastonmuutoksesta ja ilmastoa haittaavista päästöistä. Ruuantuotanto, viljely, karja, logistiikka, teollisuus ja pakkausmateriaali tuotanto tuottavat päästöjä. Haasteenamme on löytää ja kehittää kestävämpiä tuotantotapoja päästöjen vähentämiseksi. Hyvässä kasvukunnossa olevat pellot sitovat paremmin hiiltä ja tuottavat paremmin. Uusituvan energian hyödyntäminen, biokaasun tuotanto, uuden teknologian hyödyntäminen ja eläinten hyvinvoinnista huolehtiminen ja rehulaadun parantaminen ovat tehokkaita tapoja vähentää tuotannon päästöjä. Maatilojen menetelmät päästöjen vähentämiseksi eivät vain vähennä päästöjä vaan ovat myös taloudellisesti kannattavia tuotantotapoja. Päästöjen vähennys mittarit ovat tulevaisuudessa osa vastuullista ruuantuotantoketjua. Usein nämä mittarit kehittävät myös tilojen omavaraisuutta ovat ovat taloudellisesti kannattavia maataloudelle. 1. Yhteistyö elintarviketeollisuuden ja biokaasutuotantolaitosten välillä mahdollistaa sivuvirtojen hyödyntämisen biokaasuntuotannossa ja on hyvä vaihtoehto syötteeksi lannan ja rehun ohella. 2. Keinoja päästöjen vähentämiseksi turvepelloilla ovat kasvipeitteisyys, maanmuokkauksen vähentäminen ja heikkokuntoisen peltojen ennallistaminen. 3. Hiiliviljely menetelmien hyödyntäminen. Peltojen kasvukunnon ylläpitäminen ja täsmälannoitus vähentävät päästöjä. Hiilijalan jälkilaskurilla voit laskea tuotannon hiilijalanjäljen.
Anthropogenic climate change is an urgent threat to society and the Earth. These changes are a result of an increase in atmospheric greenhouse gases (GHGs, e.g. CO2, methane and nitrous oxides) due to human activities, including agriculture. Actions to reduce global GHG emissions include carbon sequestration in agriculture, agricultural methane and nitrous oxide emissions reduction, habitat restoration and afforestation (IPCC, 2022).In the dairy sector, ~80% of emissions are generated at farm-level (Guzmán-Luna et al., 2022). Research-backed farming practices to reduce GHG emissions, e.g. methane-reducing feed additives; and sequester carbon, e.g. multi-species grasslands, can contribute to reducing the threat of climate change. Dairy farmers can implement these solutions through their farming practices and land management. Farmer groups, co-operatives, can scale out these actions to collectively reduce emissions and mitigate climate change, for farms, farm families, communities and landscapes. 1) Set a standard: implement standard practices across the cooperative, e.g. carbon footprint monitoring.2) Incentivise additional action: Cooperatives can incentivise additional, voluntary actions, e.g. a “sustainability bonus” (Murphy, 2022) .3) Encourage knowledge-sharing: Cooperatives can provide a platform for peer knowledge exchange about emissions reduction and carbon sequestration, and facilitate access to relevant training.4) Support best practice: Cooperatives can provide support for “exemplary” producers that adopt a range of best practices for emissions reduction and carbon sequestration, and can demonstrate these to their peers to promote adoption, e.g. “Farm Zero C” .
Anthropogenic climate change is an urgent threat to society and the Earth. These changes are a result of an increase in atmospheric greenhouse gases (GHGs, e.g. CO2, methane and nitrous oxides) due to human activities, including agriculture. Actions to reduce global GHG emissions include carbon sequestration in agriculture, agricultural methane and nitrous oxide emissions reduction, habitat restoration and afforestation (IPCC, 2022).In the dairy sector, ~80% of emissions are generated at farm-level (Guzmán-Luna et al., 2022). Research-backed farming practices to reduce GHG emissions, e.g. methane-reducing feed additives; and sequester carbon, e.g. multi-species grasslands, can contribute to reducing the threat of climate change. Dairy farmers can implement these solutions through their farming practices and land management. Farmer groups, co-operatives, can scale out these actions to collectively reduce emissions and mitigate climate change, for farms, farm families, communities and landscapes. 1) Set a standard: implement standard practices across the cooperative, e.g. carbon footprint monitoring.2) Incentivise additional action: Cooperatives can incentivise additional, voluntary actions, e.g. a “sustainability bonus” (Murphy, 2022) .3) Encourage knowledge-sharing: Cooperatives can provide a platform for peer knowledge exchange about emissions reduction and carbon sequestration, and facilitate access to relevant training.4) Support best practice: Cooperatives can provide support for “exemplary” producers that adopt a range of best practices for emissions reduction and carbon sequestration, and can demonstrate these to their peers to promote adoption, e.g. “Farm Zero C”
Vegetables are fundamental in human nutrition: they provide suitable nutrients for the functioning of the human body. For that reason, efficient and profitable growing methods like greenhouse production are necessary. Such greenhouse production is independant from climate changes or external weather conditions, but it also fosters favourable conditions for the appearance of pests and diseases, which trigger a dependency of chemical pesticides. The latter leads then to an increasing resistance of pests and diseases, creating a negative cycle. Moreover, the presence of pesticide residues in vegetables is a major bottleneck in the international trade of food commodities, and a cause of growing concern for the human health.A Decision Support System (DSS) based on a comprehensive evaluation of the balances and imbalances of nutrients and contaminants in greenhouse systems – which requires detailed analysis of their native contents in soils, agro-chemicals, irrigation water, and vegetables (removal). The success of the pest and disease control is determined by the regular examination of crops, the timely detection of the pests, and involves following practices:1. Place plants at optimal distance to allow effective air ventilation and reduce resources competition2. Miantain adapted plant nutrition, soil fertility and irrigation management, correct timing of sowing or planting to reduce pests3. Maintain precise daily monitoring with field/plant cameras of the economically important key pests and diseases and determine pests’ economic thresholds4. Provide timely biological and chemical (if necessary) control measures, incl. colour traps, beneficial microorganisms and/or release of natural enemies of pests.
Зеленчуците са основни в човешкото хранене: те осигуряват подходящи хранителни вещества за функционирането на човешкото тяло. Поради тази причина са необходими ефективни и печеливши методи за отглеждане като оранжерийно производство. Такова производство е независимо от климатичните промени или външните климатични условия, но и създава благоприятни условия за появата на вредители и болести, които предизвикват зависимост от химически пестициди, и до нарастваща устойчивост на вредители и болести. Наличието на остатъци от пестициди в зеленчуците е основна пречка в международната търговия с хранителни стоки и причина за нарастваща загриженост за човешкото здраве.Системата за подпомагане на вземането на решения (DSS) е базирана на цялостна оценка на балансите и дисбалансите на хранителните вещества и замърсителите в оранжерийните системи. DSS изисква подробен анализ на хран.вещества в почвите, агрохимикалите, водата за напояване и зеленчуците и следните практики:1. Редовен преглед на посевите, навременното откриване на вредителите. Поставете растенията на оптимално разстояние, за да позволите ефективна вентилация на въздуха и да намалите конкуренцията за ресурси2. Поддържайте адаптирано хранене на растенията, плодородие на почвата и управление на напояването, правилно време на сеитба или засаждане за намаляване на вредителите3. Поддържайте прецизен ежедневен мониторинг с камери на полето/в растенията на икономически важните ключови вредители и болести и определяйте икономическите прагове на вредителите4. Осигурете навременни биологични и химични (при необходимост) мерки за борба, вкл. цветни капани, полезни микроорганизми и/или освобождаване на естествени врагове на вредители.
The problem: For gardeners, weed killers and fossil mulches are very commonly offered for garden weed control. However, the use of these products is questionable especially in the home garden where children and pets play and grown food ends up directly on the plate. With straw pellets, there is a natural alternative for replacing chemical weed killers and fossil-based mulch films.
The solution: Straw pellets not only act as a natural ground cover, but also give weeds no chance to grow. The straw pellets are made of grain straw and form a natural ground cover. The pellets swell due to moisture (mist), rain and irrigation, and the moist pellets quickly decompose and form a continuous layer on the ground. 1 cm straw pellets form a layer 3 to 4 cm thick.
Benefits: Mulch cover with straw pellets prevents evaporation of the soil, which can save a lot of water. Under the mulch-cover, weed seeds do not get light and cannot germinate. The layer rots and improves the soil quality.
Recommendations: The sustainable integration of straw pellets as an
alternative weed control in horticulture and vegetable growing is a useful solution to improve the production of food of plant origin both ecologically and economically. Furthermore, a simple and clean application is possible:
1. For a good coverage about 5-6 kg of straw
pellets per m² are applied.
2. The water absorption is about 400% and the
pellets swell up to about 4 cm due to the moisture.
3. The application is well possible in vegetable
beds, tubs and trays, as well as in gardening and
landscaping.
Problem: Selbst für Heimgärtner werden Unkrautvernichtungsmitteln und fossile Mulchfolien für die Unkrautregulierung im Heimgarten sehr häufig angeboten. Jedoch ist die Verwendung dieser Produkte gerade im Heimgarten fragwürdig, wo Kinder und Haustiere spielen und angebaute Lebensmittel direkt auf dem Teller landen. Mit Strohpellets gibt es eine natürliche Alternative für den Ersatz von chemischen Unkrautmitteln und fossilbasierten Mulchfolien.
Lösung: Strohpellets fungieren nicht nur als natürliche Bodenabdeckung, sondern geben auch Unkraut keine Chance zum Wachsen. Die Pellets quellen durch Feuchtigkeit (Nebel), Regen und Bewässerung auf, und die feuchten Pellets zerfallen schnell und bilden eine durchgehende Schicht auf dem Boden. 1 cm Pellets bilden eine Schicht von 3 bis 4 cm Höhe.
Vorteile: Die Mulchbedeckung mit Strohpellets verhindert die Verdunstung des Bodens, wodurch viel Wasser gespart werden kann. Unter der Mulchdecke bekommen die Unkrautsamen kein Licht und können nicht keimen. Die Schicht verrottet und verbessert die Bodenqualität.
Empfehlungen: Das oben genannte Projektbeispiel beschäftigt sich mit der nachhaltigen Integration von Strohpellets als alternative Beikrautregulierung im Garten – und Gemüsebau und ist als Lösungsansatz dienlich, die Produktion von Lebensmitteln pflanzlicher Herkunft sowohl ökologisch als auch ökonomisch zu verbessern. Weiter ist eine einfache und saubere Anwendung möglich. Für eine gute Abdeckung werden rund 5-6 kg Strohpellets pro m² ausgebracht. Die Wasseraufnahme liegt bei rund 400 % und die Pellets quellen durch die Feuchtigkeit auf rund 4 cm auf. Die Anwendung ist in Gemüsebeeten, Kübeln und Schalen sowie im Garten- und Landschaftsbau gut möglich.
The problem: Many agricultural landscapes have specialized for e.g. grain production for pigs or grass/maize for dairy farming resulting in rather monotonous and narrow crop rotations. This can impose negative effects on the environment (in terms of pesticide use or excess fertilizer use), and consequently threated the biodiversity and wildlife of the landscape.
The solution: Hemp varieties for seed or for fibres is a crop with low input requirements and therefore suitable for organic agriculture.
The crop needs rather high temperature before sowing, leaving open fields until May. Hemp is fast growing with deep roots, and yet good for undersowing of e.g. clower species for grazing or seed crop the following year. After harvest, the stubble is very attractive for wildlife for coverage and foraging on lost seeds etc.
Benefits: Hemp fits well into the annual rhythm of the farmer: late sowing, late harvest, few operations, little fertilizer, rarely pesticides, no specialized equipment needed for seed harvest. Specialized equipment needed for fibre harvest.
Recommendations:
1. Get a contract for the seeds/fibres produced. Possibly a group of farmers is needed for larger contracts.
2. Check local, regional and national regulation for hemp. In Denmark, you will need to apply for annual permission to cultivate industrial hemp.
3. Use certified seeds (low in THC content) and cultivate a minimum of 0,3 hectares.
4. Exchange experience and seek advice from experienced farmers on the field operations, timing etc. Soils should not be too clayey, not too sandy, and not exposed to late frost. Prepare the field well, fertilize with manure/slurry.
5. Select the optimal seed variety and plant around 20 kg seeds/ha.
Mange landbrugslandskaber er specialiseret i enten korn eller græs/majsproduktion til husdyrfoder – og dermed bliver landskabsdiversiteten lav. Det kan give negative miljøeffekter (pesticider og tab af næringsstoffer) og tab af biodiversitet i landskabet.
Industrihamp til fibre eller frø er en god afgrøde i sædskiftet med lavt input og velegnet til økologisk dyrkning. Hamp har brug for lunt vejr og sås ofte først i maj. Hamp vokser hurtigt og er konkurrencestærk over for ukrudt, men samtidig god til at underså kløver, der så udvikler sig i sensommeren. Efter høst er stubben meget attraktiv for vildtet til skjul og føde.
For landmanden kan hamp indpasses i driften med sen såning, få markoperationer og sen høst. Der kræver medium gødning og sjældent pesticider og hamp kan dyrkes økologisk og kan dyrkes med alm. udstyr, dog ikke til fiberhøst.
Til dyrkning anbefales det at indgå kontrakt med salg af frø eller fibre. Find en ERFA-gruppe af landmænd med erfaring og søg rådgivning. Ansøg om årlig tilladelse til at dyrke industrihamp og anvend certificerede frø med lavt THC indhold.
Så i veltilberedt såbed på lerblandet sand/sandblandet ler med lav risiko for sen forårsfrost. Husdyrgødning anbefales, vælg den optimale sort og udså ca 20 kg/ha.
Contacts
Project coordinator
-
.
Project coordinator
Project partners
-
.
Project partner