Contexte
Research on creating a strong, self-sufficient, circular and sustainable bioeconomy has accelerated during the last ten years and a vast amount of knowledge has been generated. However, due to the multiple sectors and complex value chains involved, a significant part of that valuable information is in danger of remaining untapped, due to insufficient communication between experts on these advances, and practitioners, i.e. the potential end-users of this knowledge, such as farmers, foresters and entrepreneurs. The practitioners are expected to supply raw materials and endorse the strengthening of a sustainable bioeconomy as a major aspect of rural development in their regions, but require improved networks such as those developed in BRANCHES, in order to facilitate knowledge exchange and uptake.
Objectives
The overall goal of BRANCHES is to foster knowledge transfer and innovation in agriculture, forestry and rural areas, enhancing the viability and competitiveness of biomass supply chains and promoting innovative technologies, rural bioeconomy solutions, and sustainable agricultural and forest management.
This will be achieved by applying a participatory, multi-actor approach which engages relevant stakeholders across the various targeted value chains, combined with a strong dissemination, exploitation and communication strategy which will share the activities and results of BRANCHES.
Objectives
See objectives in English
Activities
• Identify, summarize, share and present the existing best practices and research results;
• Increase implementation of cost-efficient new technologies by enhancing active knowledge transfer between practitioners and researchers;
• Mobilize more biomass and create new business opportunities in rural areas by improving and strengthening the connection between practice and science;
• Apply a multidisciplinary, multi-actor approach; • Offer a channel for two-way flow of information, new ideas and technologies; • Point out needs identified and entrepreneurial elements relevant for practitioners; • Promote the bioeconomy and rural development through new bio-based initiatives;
Additional information
BRANCHES project offer a channel for two-way flow of information, new ideas and technologies within European agriculture and forestry practitioners and multipliers in rural areas.BRANCHES will apply a multidisciplinary, multi-actor approach through its partnership and extended network activating practitioners to work together with project partners and each other’s in BRANCHES networks.
Project details
- Main funding source
- Horizon 2020 (EU Research and Innovation Programme)
- Horizon Project Type
- Multi-actor project - Thematic network
Emplacement
- Main geographical location
- Helsinki-Uusimaa
EUR 1999308.75
Total budget
Total contributions including EU funding.
65 Practice Abstracts
CN Nidzica is a Polish potato company. Its activity covers all stages of potato value chain beginning from plant breeding and ending with numerous potato-related products. Sustainable material and energy use is of the highest importance. The company develops close interlinks with national and foreign potato market actors by its leading role in Polish Potato Federation (PPF).
How to organize and consolidate the effective vertical and horizontal networking of different stakeholders of potato markets (production, processing, wholesale and retail trade) at local, national and international levels? The Polish potato company CN Nidzica initiated the process of networking of the potato market actors in order to generate benefits from cooperation and increasing market power and mitigate potential drawbacks such as reduction in flexibility or decreasing competitiveness. It was assumed that efficient networking could result in a win-win situation, which would enable everyone to benefit.
Currently, 117 entities are registered in PPF, including farmers (61), local action groups (2), suppliers of equipment (7), chemicals (3) and services (3), intermediary entity (2), processors (2), gastronomy ( 3), RDI (6) and NGO (1).
The focal points of networking activity were oriented on sustainable use of natural resources and considerations on trade-offs between economic, social and environmental aspects. Among the economic issues there were considered: a variety of suppliers and the business size (SME, large companies); reliability of deliveries; level of suppliers’ dependence; contract and payment terms - hedging against risk and purchase price guarantee. In the context of social aspects the following issues were taken into account: no discrimination in employment; declaration of fundamental worker rights; working and social conditions; fair remuneration; positive impact on the local social environment, including technological support, training and promotion. The main environmental aspects were as follows: minimization of GHG emission and no environmental pollution; rational use of natural resources (production means: land, water, fertilizers, energy) and no impact on biodiversity and waste management.
The activities of PPF are coordinated by 10 committees: agricultural producers, agrotechnology, potato and storage technology, plant breeding and seed production, potato packaging, processing and feed industry, science, innovation and implementation, food promotion and healthy nutrition, foreign trade, a code of rules and practices in the European potato industry (RUCIP). In 2018, FPP developed the Program for the Polish Potato adopted by the Ministry of Agriculture and Rural Development.
The average annual income of PPF from various sources, such as Polish and European rural and rural development programs, dedicated support from local and national governments, membership fees, and fees of exhibitors at the fair amount to approx. 450 thousand euro and are allocated to the organization of potato fairs and festivals, conferences, workshops, culinary shows, training, research and international cooperation.
Przedsiębiorstwo CN Nidzica jest to polska firma ziemniaczana. Jej działalność obejmuje wszystkie etapy łańcucha wartości ziemniaka począwszy od hodowli roślin, a skończywszy na produktach ziemniaczanych dostarczanych producentom ziemniaka (sadzeniak) i na rynek. W działalności firmy nadrzędne znaczenie ma zrównoważone wykorzystanie materiałów i energii. Działając jako lider Polskiej Federacji Ziemniaka (PPF, Polish Potato Federation) firma rozwija powiązania z krajowymi i zagranicznymi podmiotami rynku ziemniaczanego.
Jak zorganizować i skonsolidować efektywnie pionowy i poziomy networking różnych interesariuszy rynku ziemniaka (produkcja, przetwórstwo, handel hurtowy i detaliczny) na poziomie lokalnym, krajowym i międzynarodowym? CN Nidzica zainicjowała proces łączenia w federację aktorów rynku ziemniaczanego w Polsce w celu generowania wzajemnych korzyści ze współpracy i zwiększania siły rynkowej oraz złagodzenia potencjalnych ograniczeń, takich jak zmniejszenie elastyczności i konkurencyjności. Założono, że sprawny networking może skutkować sytuacją „win-win”, tzn. taką, która umożliwi każdemu partnerowi czerpanie korzyści. Obecnie w FPP zarejestrowanych jest 98 podmiotów, w tym hodowcy roślin (4), rolnicy (63), lokalne grupy działania (1), dostawcy sprzętu (8), chemikaliów (3), pośrednicy (2), przetwórcy (7), gastronomia (3), B+R (6) i NGO (1).
Centralne punkty działalności sieciowej były zorientowane na zrównoważone wykorzystanie zasobów naturalnych oraz pogodzenie efektów ekonomicznych ze społecznymi i środowiskowymi. Wśród kwestii ekonomicznych uwzględniono różnorodność dostawców i wielkość firmy (MŚP); niezawodność dostaw; poziom zależności od dostawców; warunki umowy i płatności - zabezpieczenie przed ryzykiem oraz gwarancja ceny zakupu. W kontekście aspektów społecznych wzięto pod uwagę następujące kwestie: brak dyskryminacji w zatrudnieniu; deklaracja podstawowych praw pracowniczych; warunki pracy i socjalne; godziwe wynagrodzenie; pozytywny wpływ na lokalne środowisko społeczne, w tym wsparcie technologiczne, szkolenia i promocja. Z kolei główne aspekty środowiskowe dotyczą minimalizacji emisji gazów cieplarnianych, braku zanieczyszczenia środowiska; racjonalnego wykorzystania zasobów naturalnych (środki produkcji: ziemia, woda, nawozy, energia), brak wpływu na bioróżnorodność i gospodarki odpadami.
Działalność PPF koordynuje 10 komitetów: producentów rolnych, agrotechniki, techniki ziemniaczanej i magazynowej, hodowli roślin i nasiennictwa, opakowań ziemniaka, przemysłu przetwórczego i paszowego, nauki, innowacji i wdrożeń, promocji żywności i zdrowego żywienia, handlu zagranicznego, kodeksu zasad i praktyk w europejskim przemyśle ziemniaczanym (RUCIP). W 2018 roku PPF opracowała Program dla Polskiego Ziemniaka przyjęty przez Ministerstwo Rolnictwa i Rozwoju Wsi.
Średnie roczne dochody PPF z różnych źródeł, takich jak polskie i europejskie programy rozwoju wsi i obszarów wiejskich, dedykowane wsparcie od samorządów lokalnych i krajowych, składki członkowskie, i składki wystawców na targach wynoszą ok. 450 tys. euro i są przeznaczane na organizację targów i festiwali ziemniaczanych, konferencje, warsztaty, pokazy kulinarne, szkolenia, badania i współpracę międzynarodową.
Przedsiębiorstwo CN Nidzica jest to polska firma ziemniaczana. Jej działalność obejmuje wszystkie etapy łańcucha wartości ziemniaka począwszy od hodowli roślin, a skończywszy na produktach ziemniaczanych dostarczanych producentom ziemniaka (sadzeniak) i na rynek. W działalności firmy nadrzędne znaczenie ma zrównoważone wykorzystanie materiałów i energii. Działając jako lider Polskiej Federacji Ziemniaka (PPF, Polish Potato Federation) firma rozwija ścisłe powiązania z krajowymi i zagranicznymi podmiotami rynku ziemniaczanego.
Jak zorganizować i skonsolidować efektywne pionowy i poziomy networking różnych interesariuszy rynków ziemniaka (produkcja, przetwórstwo, handel hurtowy i detaliczny) na poziomie lokalnym, krajowym i międzynarodowym? CN Nidzica w 2017 r. (czy tak?) zainicjowała proces łączenia w federację aktorów rynku ziemniaczanego w celu generowania wzajemnych korzyści ze współpracy i zwiększania siły rynkowej oraz złagodzenia potencjalnych ograniczeń, takich jak zmniejszenie elastyczności i konkurencyjności. Założono, że sprawny networking może skutkować sytuacją „win-win”, tzn. taką, która umożliwi każdemu partnerowi czerpanie korzyści. Obecnie w FPP zarejestrowanych jest 98 podmiotów, w tym hodowcy roślin (4), rolnicy (63), lokalne grupy działania (1), dostawcy sprzętu (8), chemikaliów (3), pośrednicy (2), przetwórcy (7), gastronomia (3), B+R (6) i NGO (1).
Centralne punkty działalności sieciowej były zorientowane na zrównoważone wykorzystanie zasobów naturalnych oraz pogodzenie efektów ekonomicznych ze społecznymi i środowiskowymi. Wśród kwestii ekonomicznych uwzględniono różnorodność dostawców i wielkość firmy (MŚP); niezawodność dostaw; poziom zależności od dostawców; warunki umowy i płatności - zabezpieczenie przed ryzykiem oraz gwarancja ceny zakupu. W kontekście aspektów społecznych wzięto pod uwagę następujące kwestie: brak dyskryminacji w zatrudnieniu; deklaracja podstawowych praw pracowniczych; warunki pracy i socjalne; godziwe wynagrodzenie; pozytywny wpływ na lokalne środowisko społeczne, w tym wsparcie technologiczne, szkolenia i promocja. Z kolei główne aspekty środowiskowe dotyczą minimalizacji emisji gazów cieplarnianych, braku zanieczyszczenia środowiska; racjonalnego wykorzystania zasobów naturalnych (środki produkcji: ziemia, woda, nawozy, energia), brak wpływu na bioróżnorodność i gospodarki odpadami.
Działalność PPF koordynuje 10 komitetów: producentów rolnych, agrotechniki, techniki ziemniaczanej i magazynowej, hodowli roślin i nasiennictwa, opakowań ziemniaka, przemysłu przetwórczego i paszowego, nauki, innowacji i wdrożeń, promocji żywności i zdrowego żywienia, handlu zagranicznego, kodeksu zasad i praktyk w europejskim przemyśle ziemniaczanym (RUCIP). W 2018 roku FPP opracowała Program dla Polskiego Ziemniaka przyjęty przez Ministerstwo Rolnictwa i Rozwoju Wsi.
Średnie roczne dochody FPP z różnych źródeł, takich jak polskie i europejskie programy rozwoju wsi i obszarów wiejskich, dedykowane wsparcie od samorządów lokalnych i krajowych, składki członkowskie, i składki wystawców na targach wynoszą ok. 450 tys. euro i są przeznaczane na organizację targów i festiwali ziemniaczanych, konferencje, warsztaty, pokazy kulinarne, szkolenia, badania i współpracę międzynarodową.
Areas, including agricultural land, where natural succession of different species of trees and shrubs has followed the abandonment of typical production of agricultural crops have recently become one of the substantial sources of woody biomass. Such plants are referred to as ‘self-sowing plants’, and the species composition on a given area (e.g. pine, birch, spruce, willow, poplar, etc.) depends on the environmental conditions, including the habitat, climate, plants growing in the surroundings, etc. Harvesting biomass from such areas plays a dual function. On the one hand, it is a source of woody biomass; on the other hand, it enables the restoration of this area for agricultural use or for other purposes, e.g. development.
In the light of the above, the company Quercus has de-veloped a technological line, a set of machines and de-vices which are dedicated to this type of harvest. The first stage employs a Westtech Woodcracker C450 or C350 hydraulic shear head mounted on a Volvo EC 250 or EW 160 excavator, which can cut trees with a diame-ter up to 500 mm. The operator simultaneously per-forms a few tasks – grabs a plant right above the ground, squeezes it and cuts off with a cutting module. Then, he uses a collector to support the cut plant while grabbing and cutting another one. When the shear head’s collec-tor is filled up, the operator deposits the biomass in regular rows. This set of machinery can cut plants from an area of 1 ha in an average of 20 working hours, and har-vest around 100 Mg of biomass on average. However, it is worth bearing in mind that each surface area has dif-ferent features, and the above values may vary widely. The outcome also depends on atmospheric conditions and the type of soil, species structure and age of plants, and the professional experience of the operator.
After harvesting the whole area, biomass is usually trans-ported to one site (heap, pile) with a forwarder or tractor with a trailer and crane, for storage and possibly air drying to increase its calorific value. During storage, depending on the season of the year, atmospheric conditions, size of the heap, and duration of the storage period, the moisture content of plants decreases from around 50-60% on harvest to around 30-40% after a few weeks, so that the calorific value of bio-mass increases from around 8 to 12 GJ/Mg. Biomass stored in heaps, depending on its amount and the distance from the company’s logistic yard, can be shredded into wooden chips with mobile Bruks 805.2 STC chippers mounted on a forwarder or on an Albach Diamant 2000. The chips are then transported to the end consumer in vehicles fitted with con-tainers or movable floors. The wooden chips produced with the above technology are a valuable solid biofuel, which is most often used in heating plants or in combined heat and power plants, both local and commercial ones.
W ostatnim czasie jednym ze znaczących źródeł biomasy drzewnej są tereny, w tym grunty rolnicze, na których wskutek zaniechania typowej produkcji roślin rolniczych nastąpiła naturalna sukcesja różnych gatunków drzew i krzewów. Rośliny takie są określane mianem „samosiewy”, a skład gatunkowy na danej powierzchni (np. sosna, brzoza, świerk, wierzba, topola i inne) jest uzależniony od warunków środowiskowych w tym: siedliskowych, klimatycznych, otaczającej dany obszar roślinności, i innych. Pozyskiwanie biomasy z tego rodzaju terenów spełnia podwójną funkcję, ponieważ z jednej strony jest to źródło biomasy drzewnej, a z drugiej strony umożliwia przywrócenie danego obszaru do użytkowania rolniczego lub innego np. inwestycyjnego.
Na terenach, na których występują samosiewy, drzewa i krzewy mogą być w różnym wieku i mogą mieć od kilku do nawet kilkudziesięciu lat, natomiast najczęściej jest to około 10 lat. Zbiór samosiewów drzew lub krzewów jest realizowany w zależności od zapotrzebowania zlecającego i praktycznie może być wykonywany w sposób ciągły, niezależnie od pory roku. Z tym, że optymalny okres to od około 15 października do 01 marca, poza okresem lęgowym ptaków wg. Rozporządzenia Ministra Środowiska z dnia 16 grudnia 2016, w sprawie ochrony gatunkowej zwierząt. W związku z tym, że teren z którego zbierane są samosiewy najczęściej jest przywracany do użytkowania rolniczego lub jest przeznaczany pod inwestycje, to wszystkie rośliny powinny być ścinane tuż przy samej glebie, aby nie pozostawiać żadnych pniaków. Ponadto dodatkowo w zależności od wieku i ilości samosiewów mogą być pozyskiwane (wyrywane) również karpy.
W związku z powyższym firma Quercus zaproponowała ciąg technologiczny, zestaw maszyn i urządzeń, które są dedykowane do tego rodzaju prac. W pierwszym etapie wykorzystywana jest hydrauliczna głowica ścinająca Westtech Woodcracker C450 lub C350 zamontowana na koparce Volvo EC 250 lub EW 160, która jest w stanie ścinać drzewa nawet do 500 mm średnicy. Operator w jednym czasie wykonuje kilka operacji - chwyta roślinę tuż nad glebą, ściska i ścina modułem nożowym. Następnie przy użyciu zbieraka podtrzymuje ściętą roślinę, a następnie chwyta i ścina kolejną. Po odpowiednim napełnieniu zbieraka głowicy operator odkłada biomasę w regularnym rzędzie. Taki zestaw technologiczny jest w stanie całkowicie wyciąć obszar 1 hektara w średnio około 20 godzin roboczych i uzyskać przy tym średnio około 100 Mg biomasy. Należy jednak mieć na uwadze, że każda powierzchnia ma inny charakter i te wartości mogą być bardzo odbiegające od siebie. Uzależnione jest to od warunków atmosferycznych i typu gruntu, struktury gatunkowej oraz wieku samosiewów, jak również doświadczenia operatora maszyny.
Po skoszeniu całej powierzchni biomasa jest najczęściej zwożona w jedno miejsce (stertę, pryzmę) za pomocą forwardera lub ciągnika z przyczepą i żurawiem, w celu jej składowania oraz ewentualnego naturalnego przesuszenia, co zwiększa jej wartość opałową. W trakcie składowania, w zależności od pory roku, warunków atmosferycznych, wielkości stery i długości tego okresu, następuje spadek wilgotności roślin z około 50-60% w okresie zbioru do około 30-40% po kilku tygodniach, dzięki czemu wzrasta wartość opałowa biomasy z około 8 do 12 GJ/Mg. Zgromadzona w stertach biomasa w zależności od jej ilości i odległości od placu logistycznego firmy, może być rozdrabniana na zrębki drzewne za pomocą mobilnych rębaków typu Bruks 805.2 STC osadzonego na forwarderze lub Albach Diamant 2000. Tak wytworzone zrębki są transportowane samochodami wyposażonymi kontenery lub ruchome podłogi do odbiorcy końcowego. Wyprodukowane w powyższej technologii zrębki drzewne są wartościowym biopaliwem stałym, które jest najczęściej wykorzystywane w ciepłowniach lub elektrociepłowniach lokalnych jak i zawodowych.
Willow harvest with a Biobaler combines cutting the stems, their compaction and pressing into bales in a single pass of the machine. A Biobaler cuts and compacts stems with the diameter between 50-80 mm and up to 7 meters long.
A Biobaler that has a flail cutting system, has a hydraulic machine lifting system, which allows the smooth adjustment of the cutting height during harvest. The lowest cutting height is around 10 cm, and the highest one is 40 cm. The Biobaler WB 55 mulcher head is designed to collect biomass and pass it to the main conveyor. The head is fitted with 50 blades, arranged spirally, which cut and move the biomass above the rotor. There is a feed rotor between the mulcher head and the wrapping chamber which is to pass the biomass evenly to the wrapping chamber. The fixed compaction chamber is 1200 mm in diameter and 1200 in width, and contains 8 pressing rollers as well as a conveyor in the back of the chamber, which rotate the biomass, which allows the formation of bales.
The average productivity is most often in the range from 15 to 20 bales per hour of operation of the set The mass of a single bale from fresh SRC stems at a moisture content of 50% varies from 400 to 500 kg. Hence, the average productivity of the system is from 6 to 10 Mg/hr.
During storage, the moisture content in bales decreases from around 50% in winter to about 20% in autumn, which leads to an increase in the calorific value of biomass from 8 to 15-16 GJ/Mg.
Zbiór wierzby za pomocą Biobalera łączy cięcie pędów, ich ubijanie i prasowanie w bele w jednym cyklu produkcyjnym przez jedną maszynę. Biobaler ścina i prasuje pędy o średnicy do 50-80 mm i wysokości do około 7 m.
Biobaler, która posiada bijakowy system tnący, ma hydrauliczny system podnoszenia maszyny, który pozwala na płynną regulację wysokości cięcia w czasie zbioru. Minimalna wysokość cięcia to ok. 10 cm a maksymalna 40 cm. Bijakowa głowica tnąca Biobalera WB 55 ma za zadanie zbieranie materiału i kierowanie biomasy do podajnika zasadniczego. Na głowicy znajduje się 50 spiralnie ułożonych ostrzy, które tną i płynnie podnoszą oraz przenoszą materiał ponad wirnik. Pomiędzy głowicą tnącą, a komorą zwijającą znajduje się wirnik podający, którego zadaniem jest równomierne podawanie biomasy do komory zwijającej. Niezmienna komora kompresyjna ma średnicę 1200 mm, oraz szerokość 1200 mm i składa się z 8 wałków prasujących i przenośnika znajdującego się z tyłu komory, które obracają biomasę umożliwiając utworzenie beli.
Średnia wydajność wynosi najczęściej zawiera się w zakresie od 15 do 20 bel w ciągu godziny pracy zestawu. Natomiast masa pojedynczego balotu ze świeżych pędów ERC przy wilgotności około 50% zawiera się w zakresie od 400 do 500 kg. Tak więc średnia wydajność zestawu może się zawierać w zakresie od 6 do 10 Mg w ciągu godziny pracy.
W trakcie składowania następuje spadek wilgotności pędów z około 50% w okresie zimowym do około 20% na jesieni, dzięki czemu wzrasta wartość opałowa biomasy z około 8 do 15-16 GJ/Mg.
The Central Union of Agricultural Producers and Forest Owners (MTK) has implemented the automation of wood market information to improve the knowledge that supports forest owner members' decision-making and create value-added. The data automation uses API (Application Programming Interface) technology, which provides the way to extract data from information systems and store it in a data warehouse. API is a set of rules and protocols that allows different software applications to communicate and interact with each other. API uses connectors to take data from servers automatically. As the volume of data grows, it is essential to improve the automation. API technology enables a more accurate, faster and more reliable and secure way to share information across information channels.
The automated data gathering process involves data extraction from various sources. Extracted data is stored in a data warehouse where transformations are applied to it. Purpose of the transformation process is to make data suitable for analysis and reporting purposes. Finally transformed data can be seamlessly shared with various tools and for different purposes. Typically data visualizations are made within BI tools. The following new data services can be seen as a result:
-Public data: Weekly, monthly and quarterly statistics on timber trade from the Natural Resource institute´s open interface.
-Own data: Statistics on wood trade tendered by the Forestry Association from the operating system.
-Purchased data: End-use product market data for the chemical, mechanical and biomass industries from the purchased interface service.
Service link: https://www.mtk.fi/puumarkkinat
Maataloustuottajien ja metsänomistajien keskusliitto (MTK) on ottanut käyttöön puumarkkinatiedon automatisoinnin parantaakseen metsänomistajajäsenten päätöksentekoa tukevaa ja arvoa lisäävää tietämystä. Tietoautomaatio käyttää rajapintatekniikkaa (API), joka mahdollistaa tiedon poimimisen tietojärjestelmistä ja tallentamisesta tietovarastoon. API-teknologia on joukko sääntöjä ja protokollia, joiden avulla eri ohjelmistosovellukset voivat kommunikoida ja olla vuorovaikutuksessa toistensa kanssa. API käyttää konnektoreita tietojen vastaanottamiseen palvelimilta automaattisesti. Tietojen määrän kasvaessa on välttämätöntä parantaa automaatiota. API-teknologia mahdollistaa tarkemman, nopeamman ja luotettavamman tavan jakaa tietoa tietokanavien välillä.
Automaattinen tiedonkeruuprosessi sisältää tiedon poimintaa eri lähteistä. Poimitut tiedot tallennetaan tietovarastoon, jossa siihen sovelletaan muunnoksia. Muunnosprosessin tarkoituksena on tehdä tiedoista analyysi- ja raportointitarkoituksiin sopivia. Lopulta muunnetut tiedot voidaan jakaa saumattomasti eri työkaluilla ja eri tarkoituksiin. Yleensä datan visualisoinnit tehdään BI(Business Intelligence) -työkaluilla. Tuloksena voidaan nähdä seuraavat uudet datapalvelut:
-Julkiset tiedot: Puukaupan viikoittainen, kuukausittainen ja neljännesvuosittainen tilasto Luonnonvarakeskuksen avoimesta rajapinnasta.
-Omat tiedot: Metsänhoitoyhdistysten kilpailuttamat puukaupan tilastot omasta käyttöjärjestelmästä.
-Ostetut tiedot: Kemiallisen-, mekaanisen metsäteollisuuden ja biomassateollisuuden lopputuotemarkkinatiedot ostetusta rajapintapalvelusta.
Linkki palveluun: https://www.mtk.fi/puumarkkinat
Centria University of Applied Sciences has developed a farm-scale biomethane liquefaction unit in an ERDF-funded “Decentralized biogas production and liquefaction in Finland (HABITUS)” project (1/2020-6/2023). The design of the unit takes into account biogas plants producing around 10-25 Nm3 of raw biogas per hour, which corresponds to the typical size of biogas plant on Finnish farms. The minimum production limits of biomethane liquefaction units currently on the market are well above this scale. The main advantage of liquefied biomethane is related to its transportation and storage capabilities. Relative to the energy content, when liquefied, biomethane requires significantly less volume for storage and transportation compared to its gaseous form.
In the liquefaction process, biomethane is cooled with liquid nitrogen to a temperature low enough to liquefy the methane. Liquid nitrogen serves as the refrigerant, which is purchased as a gas. It is important that the purity of the biomethane to be liquefied meets the end-user requirements, as the liquefaction unit does not purify or separate carbon dioxide from biomethane. The pilot tests on the liquefaction unit during the project were carried out with commercially purchased pure gas. The aim of the piloting was to verify the operation of the unit and to determine the process efficiency. The liquefaction unit operated as planned, requiring no changes to its operation principles. During the pilots, it was found that the consumption of liquid nitrogen is 3.2 kilograms per unit of liquefied biomethane at the selected pressure and temperature levels. The unit is close to commercial readiness, and further development will focus on e.g., process optimization.
Centria-ammattikorkeakoulu on kehittänyt maatilakäyttöön soveltuvan biometaanin nesteytyslaitteiston EAKR-rahoitteisessa Hajautettu biokaasun tuotanto ja nesteytys Suomessa (HABITUS) -hankekokonaisuudessa (1/2020-6/2023). Laitteiston suunnittelussa on otettu huomioon noin 10–25 Nm3 raakabiokaasua tunnissa tuottavat biokaasulaitokset, jotka vastaavat tyypillistä biokaasuntuotannon kokoluokkaa suomalaisilla maatiloilla. Kehitetty laitteisto kykenee muuttamaan biometaania nestemäiseen muotoon noin 15 m3 tunnissa. Tällä hetkellä markkinoilla olevien biometaanin nesteytysratkaisujen minimituotantorajat ovat selkeästi tätä mittaluokkaa korkeammat. Nesteytetyn biometaanin suurin etu liittyy sen kuljettamiseen ja varastointiin. Nesteytettynä biometaanin varastointi ja kuljetus tarvitsee energiamäärään suhteutettuna huomattavasti pienemmän tilavuuden kaasumaisessa olomuodossa olevaan biometaanin verrattuna.
Nesteytyslaitteistoon syötetty biometaani jäähdytetään nestemäisellä typellä niin alhaiseen lämpötilaan, että metaani nesteytyy. Laitteiston kylmäaineena käytetään nestemäistä typpeä, joka hankitaan ostokaasuna. Hankkeen aikana tehdyt pilotoinnit suoritettiin puhtaalla ostokaasulla, ja kokeissa keskityttiin varmentamaan laitteiston toiminta ja selvittämään prosessihyötysuhde. Nesteytysyksikkö toimii suunnitellusti, eikä sen perusperiaatteisiin tarvitse tehdä muutoksia. Kokeiden aikana havaittiin, että nestemäisen typen kulutus on 3.2 kiloa yhtä nesteytettyä metaanikiloa kohden valituilla paine- ja lämpötilatasoilla. Laitteisto on lähellä kaupallista laitteistoa, ja sen jatkokehitys keskittyy muun muassa laitteiston prosessioptimointiin.
Kelluu is an artificial intelligence-controlled airship solution that involves very precise and continuous remote mapping and artificial intelligence-based data analysis. It is particularly well suited for extensive forest surveys, where information about forests and the terrain can be collected simultaneously with several measuring devices.
Compared to traditional drones, the Kelluu airship does not require separate energy to stay in the air, as its name suggests, it floats in the air. The ship has propellers and control wings for movement and steering, and hydrogen serves as energy. This guarantees, depending on the weather, a flight time of 8-12 hours, long flight dis-tances and an emission-free flight mode. It is possible to install several sensors, scanners and cameras on the floating airship to collect data on the terrain, vegetation or infrastructure.
As a data collection method, Kelluu is the only land-operated technology that offers large-scale data collection and the simultaneous use of several different measuring devices and numerous vessels (e.g. 10-30). The airship itself is very quiet, which also enables sound tracking. The processor included in the ship offers high computing efficiency, and thus collected data can be processed on the ship without sending it to a cloud server via 4/5G connections for further processing. The technology is currently being used in the real-time identification and monitoring of forest damages. The measurement and monitoring method enable the collection of accurate spectral image data and time series. In one of the ongoing projects, the Kelluu airship is used to investigate the condition of forest roads and road moisture. The precision data, based on photogrammetry, reveals the profile of the road surface, individual potholes, and road ruts. The interpretation of multispectral image data also provides information on the road's moisture and thus increases the predictability of the road's condition and load-bearing capacity.
In addition, the method has already been tested in the observation of biodiversity signs and forest sapling inventories. Combined with thermal imaging, Kelluu is also a very interesting method in animal count-ing. Activities in other industries include, for example, the monitoring of the condition of power lines and rail-ways. There is also great potential in the utilization of this technology in agriculture.
Kelluu-teknologia perustuu tekoälyohjattuun ilmalaivaratkaisuun, todella tarkkaan ja jatkuvaan kaukokartoitukseen sekä tekoäly-pohjaiseen data-analyysiin. Kartoitusmenetelmä soveltuu erityisen hyvin laajoihin metsäninventointeihin, joissa voidaan kerätä samanaikaisesti useilla mittalaitteilla tietoa metsistä ja maastosta.
Perinteisiin drooneihin verrattuna Kelluu-ilmalaiva ei vaadi erikseen energiaa ilmassa pysymiseen, se nimensä mukaisesti kelluu ilmassa. Liikkumiseen ja ohjaamiseen aluksessa on potkurit ja ohjainsiivet, ja energiana toimii vety. Tämä takaa säästä riippuen 8-12 tunnin lentoajan, pitkät lentoetäisyydet ja päästöttömän lento-muodon. Kelluu-ilmalaivaan on mahdollista asentaa useita antureita, skannereita ja kameroita maaston, kasvillisuuden tai infrastruktuurin tietojen keräämiseksi.
Tiedonkeruumenetelmänä Kelluu on ainoa maasta käsin operoitava teknologia, joka tarjoaa suuren mittakaavan tiedonkeruun sekä useiden eri mittalaitteiden ja useamman (esim. 10-30 alusta) aluksen samanaikaisen käytön. Itse ilmalaiva on hyvin hiljainen, mikä mahdollistaa myös äänen seurannan. Aluksessa mukana oleva prosessori tarjoaa korkean laskentatehokkuuden, ja siten kerättyä tietoa voidaan prosessoida aluksessa ilman, että sitä lähetettäisiin 4/5G yhteyksillä pilviportaaliin jatkokäsittelyä varten. Teknologiaa käytetään parhaillaan metsätuhojen reaaliaikaisessa tunnistamisessa ja seurannassa. Menetelmä mahdollistaa tarkkojen spektrikuvadatojen ja aikasarjojen keruun ja tekoälypohjaisen mallinnuksen. Metsäkeskuksen koordinoimassa Tiesit-hankkeessa Kelluu-ilmalaivan avulla selvitetään metsäteiden kuntoa ja tien kosteutta. Fotogrammetriaan perustuva 3-d analyysi paljastaa tien pinnan profiilin, yksittäiset kuopat ja tien urautumisen. Multispektri kuva-aineiston tulkinnalla saadaan tietoa myös tien kosteudesta ja siten lisää tien kunnon ja kantavuuden ennustetavuutta.
Lisäksi menetelmää on jo testattu biodiversiteettitunnusten havainnoinnissa ja taimikon inventoinneissa. Eläinlaskennassa Kelluu ja lämpökamerakuvaus on myös hyvin kiinnostava menetelmä. Muilla toimialoilla toimintaa on muun muassa sähkölinjojen ja rautateiden kunnon seurannassa. Myös maatalouden puolella on tarjolla suuri potentiaali teknologian hyödyntämisessä.
The biorefining industry is setting new demands for the forest biomass supply chain and its effective management. Due to their high extractives content, forest industry side streams are an attractive feedstock for the biorefining industry targeting the production of extractives-based biochemicals. Current supply chain practices may result in significant losses of extractives. To minimize extractives losses, changes in the current practices are necessary. The key is to keep the delivery time of forest biomass from forest to the biorefinery short and to avoid chipping the material until immediately before further processing. Storage time of biomass should be limited, and storage at low temperatures—especially below zero degrees Celsius—should be preferred. To preserve hydrophilic compounds, contact with water should be avoided.
The main benefit of more efficient supply chain management is a significantly higher yield in biorefinery processes. The losses of bark extractives in the supply chain are remarkable, with even 60% or more of some valuable compound groups being lost within two weeks if recommendations related to material handling are not followed. This, in turn, significantly impacts the profitability of the biorefining process.
Biojalostusteollisuus asettaa uusia vaatimuksia metsäbiomassan toimitusketjulle ja sen tehokkaalle hallinnalle. Metsäteollisuuden sivuvirrat, kuten kuori ja hakkuutähteet, ovat korkean uuteainepitoisuutensa vuoksi potentiaalisia biokemikaalien raaka-aineita. Nykyisten toimitusketjujen käytännöt voivat aiheuttaa huomattavia uuteainehäviöitä. Uuteainehäviöiden minimoimiseksi tarvitaan muutoksia nykyisiin käytäntöihin. Tärkeintä on, että metsäbiomassan toimitusaika metsästä biojalostamolle lyhyt ja materiaali haketetaan pienempään palakokoon vasta ennen biojalostusprosessia. Varastointiaikaa tulee rajoittaa ja mahdollisuuksien mukaan varastoida materiaali matalissa lämpötiloissa, mielellään alle nollan asteen lämpötilassa. Hydrofiilisten, vesiliukoisten, yhdisteiden säilyttämiseksi biomassan kontaktia veden kanssa tulee välttää.
Tehokkaamman toimitusketjun suurin etu on merkittävästi korkeampi saanto biojalostusprosesseissa. Uuteaineiden häviöt toimitusketjussa ovat huomattavia, sillä joistain kuoren arvokkaista yhdisteryhmistä jopa 60 % tai enemmän menetetään kahden viikon sisällä, jos materiaalinkäsittelyyn liittyviä suosituksia ei noudateta. Tämä puolestaan vaikuttaa merkittävästi biojalostusprosessin kannattavuuteen.
Nowadays Pohjanmaan Biolämpö operates three heat stations and pro-vides solid biomass fuels for twelve other plants in Ostrobothnia. The main customers include greenhouse farmers in Närpiö county and municipal buildings and small industries in Alavus.
The nominal output of the heat plants, owned by the customers, ac-counts for 24 MW in total, for which the company provides wood fuels equivalent to 100,000 MWh, and some sod peat. Wood fuels consist of forest chips and recycled wood. Before the recent energy crisis some im-ported wood pellets were also supplied.
Fuel procurement is organized through skilled sub-contractors, encom-passing a network of about forty local operators. Most forest fuels are supplied by a local forest management association that makes supply contracts with local forest owners and organizes wood harvesting and logistics. Pohjanmaan Biolämpö owns also a fuel terminal at the Alavus heat plant. There it is more efficient to store and process wood fuels, control quality and manage fuel deliveries especially during high seasons.
Nykyään yritys pyörittää kolmea lämpölaitosta sekä toimittaa polttoaineet 12 muulle Pohjanmaan lämpökeskukselle. Suurin asiakasryhmä on Närpiön kasvihuoneviljelijät ja Alavudella kunnan kiinteistöt sekä teollisuusyritykset.
Laitosten yhteenlaskettu nimellisteho on 24 MW, joihin Pohjanmaan Bio-lämpö hankkii noin 100 000 MWh edestä puupolttoaineita, jotka koostuvat metsähakkeesta ja kierrätyspuusta. Lisäksi yritys toimittaa laitoksille jonkin verran palaturvetta ja aikaisemmin myös tuontipellettiä.
Polttoaineen hankinnassa käytetään osaavia alihankkijoita, jotka muodostavat noin neljänkymmenen toimijan verkoston. Eniten metsäpolttoainetta saadaan metsänhoitoyhdistyksen hankintapalvelun kautta eli yhdistys tekee hankintasopimukset metsänomistajien kanssa ja huolehtii puun korjuusta ja prosessoinnista. Pohjanmaan Biolämmöllä on myös oma polttoaineterminaali Alavuden lämpölaitoksen yhteydessä. Siellä puun varastointi ja haketus on tehokasta ja terminaalin avulla voidaan helpommin hallita polttoaineen laatua sekä tasaista toimitusta etenkin kulutushuippujen aikana.
Volter plants produce power through gasification. Dried wood chips are led into a high-temperature gasifier operating at approximately 1000 °C, where they are heated and gasified with very little oxygen. The produced wood gas functions as a fuel in an engine that runs a generator to produce power. Warm water is produced as a by-product, which can be used for example for floor heating or in industrial drying processes. One Walter unit generates electricity with a 50 kW output and heat with 130 kW output. The daily consumption of wood chips is 5,5 cubic meters (m3). Several units can be linked together in order to scale up the energy system.
Walter tuottaa sähköä kaasuttamalla puuhaketta: Kuivattu hake ohjataan noin 1000-asteiseen kaasuttimeen ja kuumennetaan matalassa happitasossa. Muodostuva kaasu toimii polttoaineena moottorille, joka pyörittää energiaa tuottavaa generaattoria. Prosessissa syntyy lämmintä vettä, jota voi käyttää esimerkiksi lattialämmityksessä tai teollisuuden kuivausprosesseissa. Yksi Walter-voimalaitos tuottaa sähköä 50 ja lämpöä 130 kilowattia, jolloin voimala kuluttaa 5,5 kuutiometriä puuhaketta vuorokaudessa. Yksikköjä voi yhdistää energiantuotannon skaalaamiseksi.
There are several innovations made by Palm to the packaging system and several stages in the supply chain.
Environmental phase: The GREENPALLET® respects the principles of the Circular Economy through the use of a certified chain of custody, the commitment to reducing CO2 emissions and the reuse of production waste. PEFC Chain of Custody certification provides an independently verified guarantee that the wood and tree material contained in the product originates from sustainably managed forests. In addition, PALM immediately adopted the environmental labelling 'FOR-50' in the labelling of manufactured pallets to facilitate proper recycling by partners at the end of their life cycle.
Design Phase: Through research and development and the use of packaging eco-design software, the weight and volume of products is reduced to co-design with partners the ideal packaging and pallet tailored to them. PALM benefits from PALOK load capacity (capacity) certification and B-Corp certification
Implementation Phase: Innovation for the use of chipboard blocks from machining waste, which allows products to be integrated and made even more sustainable, all things being equal.
Social Phase: Palm SpA, by purchasing timber from trees felled by the VAIA storm in 2018 at a fair price, has made a very concrete contribution to combating speculation and rebuilding forests.
Traceability of raw material is a key aspect to ensure transparency and legality in the supply chain. All stages of the product life cycle are traced: from the purchase and arrival of the raw material, to cutting, assembly, storage and final delivery to the customer. Thanks to the labels, it is possible to trace the specific production batch of the manufactured pallet and thus directly to the timber supplier and its origin. Each pallet produced is B Corp, PEFC and FOR-50 certified and can integrate the logo marking of the customer who requires it.
Sono diverse le innovazioni apportate da Palm al sistema di imballaggi e diverse le fasi della filiera.
Fase Ambientale: Il GREENPALLET® rispetta i principi dell’Economia Circolare tramite l’utilizzo di una catena di custodia certificata, l’impegno nella riduzione delle emissioni di CO2 e il riutilizzo degli scarti di produzione. La certificazione di Catena di Custodia PEFC fornisce la garanzia, verificata in maniera indipendente, che il materiale di origine legnosa e arborea contenuto nel prodotto provenga da foreste gestite in modo sostenibile. Inoltre PALM ha adottato fin da subito l’Etichettatura ambientale “FOR-50” nella marchiatura dei pallet prodotti per favorirne il corretto riciclaggio da parte dei partner alla fine del loro ciclo di vita.
Fase Progettuale: Attraverso la ricerca e sviluppo e l’utilizzo di software di ecoprogettazione dell’imballaggio, viene ridotto il peso e il volume dei prodotti per co-progettare assieme ai partner l’imballaggio e il pallet ideale e su misura per loro. PALM si avvale della certificazione della capacità di carico (portata) PALOK e Certificazione B-Corp
Fase Realizzativa: Innovazione per l’utilizzo di blocchetti di legno truciolare proveniente da scarti di lavorazione, che permette di integrare e rendere i prodotti ancor più sostenibili, a parità di condizioni.
Fase Sociale: Palm SpA con l’acquisto di legname proveniente dagli alberi abbattuti dalla tempesta VAIA nel 2018 a un prezzo equo, ha contribuito in modo molto concreto a combattere le speculazioni e alla ricostruzione dei boschi.
La tracciabilità della materia prima è un aspetto fondamentale per garantire la trasparenza e la legalità nella catena di fornitura. Tutte le fasi del ciclo di vita del prodotto sono tracciate: dall’acquisto e arrivo della materia prima, al taglio, l’assemblaggio, lo stoccaggio e la consegna finale al cliente. Grazie alle etichette è possibile risalire al lotto specifico di produzione del pallet prodotto e quindi direttamente al fornitore di legname e alla sua provenienza. Ogni pallet prodotto viene certificato B Corp, PEFC e FOR-50 e può integrare la marchiatura del logo del cliente che lo richiede.
Vannucci Piante nursery operates under a double environmental and ethics certification scheme, that is quite important for nurseries, which are intensive operations and use significant amounts of water and chemicals. Potted-plant nurseries sit on prepared soil, covered with semipermeable fabric or gravel, and the access road system further reduces the water infiltration of the once bare soil. That increases water run-off and contributes to overloading the field drainage system in case of extreme rain events. In order to minimize flood risk, all Vannucci Piante sites are fitted with ponds, which also serve as water reservoirs for irrigation, thus minimizing the drain on the water table. Vannucci Piante uses state-of-the-art irrigation systems that precisely dose water output according to daily weather and plant needs. In 2021 Vannucci Piante has launched the Vannucci Zero project on a pilot sit. The new nursery has received minimum treatment to maximize water infiltration rate during rain events. Pots are lined on bands of permeable geotextile fabric, which only cover the area right under the potted-plant lines. Access and service roads are only metaled on the two 40 cm-wide strips corresponding to the vehicle wheel tracks. These measures maintain full soil permeability to the point where no surge ponds are necessary. Moreover the plant supports are made of locally sourced chestnut posts, with a high natural durability. Microchips in chestnut are used for weed control, so herbicide use has been cut by over 50%, while creating a new market for local forest companies.
Il vivaio Vannucci Piante ha conseguito una doppia certificazione, ambientale ed etica. Questo è importante per i vivai moderni, che utilizzano importanti quantità di acqua e prodotti chimici. Nei vivai che producono piante in vaso, i vasi devono essere posti in spazi adeguatamente preparati, su teli semipermeabili o ghiaia, con capacità di infiltrazione idraulica ridotta. La viabilità interna sottrae altro terreno alla funzione idraulica. Il risultato è una riduzione dell’assorbimento di acqua da parte del suolo, con un aumento nella velocità di deflusso verso i canali di scolo. Questo crea seri rischi di allagamento, soprattutto in occasione di eventi estremi, purtroppo sempre più frequenti. Pertanto tutti i vivai di Vannucci sono dotati di bacini artificiali, che presentano anche la funzione di riserve di acqua per l’irrigazione, in modo da minimizzare lo sfruttamento della falda acquifera. Vannucci Piante utilizza sistemi di irrigazione all’avanguardia che dosano esattamente la quantità di acqua somministrata secondo le necessità di ogni pianta, tenendo conto della specie, dello sviluppo vegetativo e del meteo giornaliero. Inoltre nel 2021, Vannucci Piante ha lanciato il progetto Vannucci Zero, su un’area di 15 ettari. La sua superficie ha ricevuto un trattamento minimo per aumentare l’infiltrazione d’acqua durante le piogge. I vasi sono posizionati su un geotessuto permeabile che ricopre solo la superficie di appoggio dei vasi stessi. Le strade di accesso e di servizio sono consolidate solo su due strisce di 40 cm di larghezza in corrispondenza del passaggio delle ruote dei mezzi. Questi accorgimenti preservano la permeabilità del terreno, rendendo superflua la costruzione dei bacini di accumulo. Oltretutto iI tutori necessari a sostenere le piante sono tutti in castagno locale, che non ha bisogno di trattamenti grazie alla sua naturale durabilità. La pacciamatura utilizzata contro le erbacce è costituita da cippatino vergine di castagno che ha permesso la riduzione del 50% di uso di erbicidi, creando nel contempo un nuovo mercato per le aziende forestali locali.
Tritom is a data intermediation service for the entire food chain. The service aims to utilize data generated in primary production through automation. Today, a huge amount of data is collected on farms through various sensors and systems, but only little of it is utilized.
Tritom Essential is a service for data producers, i.e., farmers, where farmers can license their own data from tractors, milking robots, accounting systems and grain silos, for example. For service providers, such as food and industry operators, there is a separate version of the data intermediation service. The aim is to use shared and collaborative data to improve sustainability, efficiency, and profitability for all stakeholders.
Farmers can benefit from sharing data and get help, for example, to improve farm productivity. With the help of data, it is also possible to optimize and improve one's working time, different work phases, logistics and at the same time farm expenses. The sector is developing rapidly, with new opportunities constantly emerging, some of which we may not even be aware of yet.
The service will enable a data ecosystem in line with the EU data strategy, promoting a fair and transparent transition to data economy. At the same time, Tritom enables the creation of added value for materials. The data produced can also be used for environmental impact assessments, such as carbon accounting. Tritom can also be used to verify the origin of raw material down to individual farming practices and thus, add value to the product.
Tritom on datan välityspalvelu kaikille ruokaketjun toimijoille. Palvelun tarkoitus on hyödyntää alkutuotannossa tuotettua dataa automatisoinnin avulla. Dataa kerätään tiloilla nykyään valtava määrä eri antureiden ja järjestelmien kautta, jota hyödynnetään kuitenkin vain vähän.
Tritom Essential on palvelu datantuottajille, eli viljelijöille, jossa viljelijä voi luvittaa oman datansa esimerkiksi traktoreista, lypsyroboteista, kirjanpitojärjestelmistä ja siiloista. Palveluntarjoajille, kuten ruoka-alan ja teollisuuden toimijoille on erikseen oma versio datanvälityspalvelusta. Tavoitteena on jaetun ja yhteisöllisen datan avulla paran-taa kaikkien toimijoiden kestävyyttä, tehokkuutta sekä kannattavuutta.
Viljelijä voi hyötyä datan jakamisesta ja sen myötä saada apua esimerkiksi tilan tuottavuuden edistämiseen. Datan avulla voi muun muassa optimoida ja tehostaa omaa työaikaa, eri työvaiheita tai logistiikkaa ja samalla tilan kustannuksia. Ala kehittyy vauhdikkaasti, uusia mahdollisuuksia tulee esille jatkuvasti, joista osaa ei kenties vielä edes osata tiedostaa.
Palvelu mahdollistaa EU:n datastrategian mukaisen dataekosysteemin, joka edistää oikeudenmukaista ja läpinäkyvää siirtymää datatalouteen. Samalla Tritom mahdollistaa raaka-aineelle lisäarvon saamisen. Tuotettua dataa on mahdollista hyödyntää myös esimerkiksi ympäristövaikutusten arviointiin, kuten hiililaskentaan. Tritomin avulla voidaan myös todentaa raaka-aineen alkuperä aina yksittäisiä viljelytoimenpiteitä myöden ja sen ansiosta saada lisäarvoa tuotteelle.
KiertoaSuomesta.fi is a marketplace which helps sellers and buyers of biobased side streams to find each other. The main target groups are agricultural, forestry and food processing companies producing side streams, as well as industries using the raw materials, and the public sector. Biobased side streams can be manure, grass, plant waste, wetland vegetation, straws, or wood residues, for example. The aim of the service is to create new business opportunities for primary producers as easily as possible from currently unused biomass.
The digital marketplace will help to develop regional nutrient and material cycles and thus contribute to circular bioeconomy. It will also help to reduce waste and emissions, keep natural resources in use for as long as possible and add value to materials. Efficient and sustainable utilization of materials improves the profitability of production and reduces ecological impacts.
The utilization of side streams has been slowed down by challenges regarding profitability and logistics. On an individual farm, the quantities of side streams can be small and/or seasonal, and suitable buyers have not been found. KiertoaSuomesta.fi is a meeting point for sellers and buyers of materials, which can also be used to improve logistics. By combining the collection of side streams from different farms in the region, transport costs can be reduced and the income for farms increased.
The marketplace currently focuses on biobased side streams, but in the future, it could also be used for other circular economy activities, such as plastic recycling or the sale of machinery. The use of the platform is free for all users.
KiertoaSuomesta.fi on kauppapaikka, joka auttaa biopohjaisten sivuvirtojen myyjiä ja ostajia löytämään toisensa. Pääkohderyhminä ovat sivuvirtoja tuottavat maa- ja metsätalouden sekä elintarviketeollisuuden yritykset ja raaka-aineita käyttävä teollisuus sekä julkinen sektori. Biopohjainen sivuvirta voi olla esimerkiksi lantaa, nurmea, kasvijätettä, kosteikkokasvillisuutta, olkea tai hakkuutähteitä. KiertoaSuomesta.fi -palvelun tavoitteena on luoda maatiloille uudenlaisia liiketoimintamahdollisuuksia mahdollisimman sujuvasti ja helposti toistaiseksi hyödyntämättömistä biomassoista.
Digitaalinen markkinapaikka auttaa kehittämään alueellisia ravinne- ja materiaalikiertoja ja samalla edistämään biokiertotaloutta. Sen avulla vähennetään jätteitä ja päästöjä, pidetään luonnonvaroja käytössä mahdollisimman pitkään ja tuodaan lisäarvoa materiaaleille. Materiaalien tehokas ja kestävä hyödyntäminen parantavat tuotannon kannattavuutta ja samalla ympäristöystävällisyyttä.
Sivuvirtojen hyödyntämistä ovat hidastaneet kannattavuuteen ja logistiikkaan liittyvät haasteet. Yksittäisellä tilalla sivuvirtojen määrät voivat olla pieniä ja/tai kausittaisia, eikä sopivia ostajia ole löytynyt. KiertoaSuomesta.fi on kohtaamispaikka materiaalien myyjille ja ostajille, jota voidaan myös hyödyntää logistiikan tehostamiseen. Yhdistämällä sivuvirtojen keräilyä alueen eri tiloilta, kuljetuskustannuksia voidaan laskea ja tiloille saatavaa tuloa parantaa.
Kauppapaikka keskittyy nykyisin biopohjaisiin sivuvirtoihin, mutta sitä voidaan tulevaisuudessa hyödyntää myös muuhun kiertotalouteen, mm. muovinkierrätykseen tai työkoneiden myyntiin. Palvelu on ilmainen käyttäjille.
ManPas is a manure hygienizer which heat treats manure at 70 degrees Celsius by utilizing the heat generated by manure microbial decomposition. The treatment fulfils the EU manure hygienization requirement. The process removes any diseases the manure might have contained as well as germinating seeds. Hygienization with ManPas takes up to three days in total, the hygienization process itself just over an hour.
The device consists of a silo and a discharge screw. It has an automated handling process where manure is pushed forward by the screw after a sufficient time at wanted temperature is reached. Temperature sensors monitor the hygienization phase and manure is not removed, unless the temperature has risen above a set value, e.g., 75°C.
The hygienized manure can be used as soil amendment or as bedding in stables and barns. In addition, ManPas reduces the need for manure storage, because traditional storage may not be needed, rather a product warehouse. It may also be that as manure becomes hygienized, it can be transported to the point of use or to the user's warehouse, as it is no longer a risk product. Hygienized horse manure from peat-bedding has been successfully tested as a growing medium for tomatoes.
Recycling horse manure in particular has been a challenge, as there have been few receivers for the manure. Gate fees are charged for horse manure to be composted or recycled in biogas plants. ManPas saves considerable costs in manure treatment. Compared to composting, the device is remarkably fast and causes less nutrient losses. In addition to horse manure, it is also suitable for separated dry cow manure. Suitability for broiler production is currently being researched as well as potential of biochar enrichment.
The first official ManPas machine was manufactured in June 2023, with a serial number 1. In practice it still is a prototype. The capacity of this ManPas 1000 is 1-1,5m3 of hygienized manure per day, in the future larger machines will be produced as well. Previous testing has been carried out on the first prototype. As development work progresses, process documentation will be recorded for self-monitoring purposes.
ManPas on lannan hygienisointilaite, joka lämpökäsittelee lannan 70 asteessa sen mikrobien hajotustoiminnasta syntyvää lämpöä hyödyntäen. Prosessi täyttää EU:n lannan hygienisointivaatimuksen. Käsittelyn jälkeen lannassa ei ole enää tautiriskiä tai itämiskykyisiä rikkakasvien siemeniä. Koko hygienisointi kestää enimmillään 3 vrk, itse hygienisointivaihe runsaan tunnin.
Laite koostuu siilosta ja poistoruuvista. Siinä on automatisoitu käsittelyprosessi, jossa lanta työntyy ruuvin avulla eteenpäin, kun riittävä aika valitussa lämpötilassa on saavutettu. Lämpötila-anturit valvovat hygienisointivaihetta, eikä lanta poistu laitteesta, ellei lämpötila ole noussut yli asetetun arvon, esim. 75 °C.
Hygienisoitua lantaa voi hyödyntää maanparannusaineena tai kuivikkeena talleilla ja navetoissa. Samalla hygienisointilaite vähentää lannan varastointitarvetta koska perinteistä lantalaa ei välttämättä aina tarvita, pikemminkin tuotevarasto. Voi myös olla niin, että sitä mukaa kun hygienisoitua lantaa muodostuu, se voidaan kuljettaa käyttökohteeseen tai käyttäjän varastoon, koska kysymyksessä ei ole enää riskituote. Hygienisoitua turvekuivikepohjaista hevosenlantaa on myös onnistuneesti kokeiltu kasvualustana tomaatille.
Erityisesti hevosenlannan kierrätys on ollut haastavaa, sillä vastaanottajia lannalle on ollut vähän. Lannasta maksetaan porttimaksuja, jotta se saadaan kompostoitua tai kierrätettyä biokaasulaitoksilla. ManPas säästää huomattavia lannan hävittämisestä aiheutuvia kustannuksia.
Laite on kompostointiin verrattuna erittäin nopea ja siitä aiheutuu vähemmän ravinnetappioita. Hevosenlannan lisäksi se soveltuu myös separoidulle lehmänlannan kuivajakeelle. Laitteen sopivuutta broilerituotantoon tutkitaan parhaillaan, samaten kuivajakeen rikastamista biohiilellä.
Ensimmäinen virallinen ManPas-kone valmistui kesäkuussa 2023 sarjanumerolla 1. Käytännössä se on edelleen prototyyppi. Tämän ManPas 1000:n kapasiteetti on 1-1,5 m3 hygienisoitua lantaa päivässä, tulevaisuudessa tullaan valmistamaan myös suurempia koneita. Aiemmat testaukset on tehty ensimmäisellä prototyypillä. Kehitystyön edetessä prosessista tulee tallentumaan dokumentaatio omavalvontaa varten.
Prespaglia ™ is operating in the green building sector. It produces bio-bricks made from a compound of straw, clay and hydraulic lime. They can be used for both building interiors and exterior walls, in line with bio-architecture. They are environmentally sustainable, renewable and recyclable and have been tested, certified and patented.
Prespaglia managed to enhance cereal straw that represents one of the more available by-products in Southern Italy, particularly in Apulia Region. By using Cereal Straw, it has developed an eco-friendly material for the building sector and is also further contributing to reducing GHG and improving people's quality of life.
All products are certified and covered by patents and they are a new biobased products focused on the new sustainable markets with bigger opportunity to enhance one of the rural residues most representative, and improve the circular economy at the EU level. The main advantages are direct to both farmers, producers, and finally to consumers. Producing eco-sustainable bricks allows the growth of a more greener and environmentally friendly building market.
Using of straw would represent a better enhancement of rural residues as new material, with benefits towards both farmers and bio-based operators market, through the creation of a new and sustainable supply chain.
Finally, further benefits are also offered to consumers, who will live in healthier, more energy-efficient and environmentally sustainable homes. The key innovation is based on the manufacturing of ready-to-assemble modular straw brick, that can fully replace cement, bricks or expanded clay artifacts. In addition to being recognized as a sustainable product, Eco-brick is considered suitable as an earthquake-proof building material due to its lightweight. Products made by Prespaglia guarantee buildings energy performance standards that are being approved by the European Commission on the Green Building Directive.
Prespaglia ™ opera nel settore della bioedilizia. Produce bio-mattoni produzione di biomattoni realizzati con un composto brevettato testato e certificato, in paglia, argilla e calce idraulica ideali per costruire pareti interne ed esterne in linea con la bioarchitettura in quanto ecosostenibile, rinnovabile e riciclabile con ottime caratteristiche isolanti, sia dal punto di vista termico, sia acustico.
Prespaglia è riuscita a valorizzare la paglia di cereali che rappresenta uno dei sottoprodotti più disponibili nel Sud Italia, in particolare nella regione Puglia. Sfruttando la paglia di cereali, ha sviluppato un materiale eco-compatibile per il settore edilizio con un ulteriore contributo alla riduzione dei gas serra e al miglioramento della qualità della vita delle persone.
Tutti i prodotti sono certificati e coperti da brevetto e rappresentano un nuovo prodotto biobased focalizzato sui nuovi mercati sostenibili con maggiori opportunità di valorizzare uno dei residui rurali più rappresentativi e migliorare l'economia circolare a livello europeo. I principali vantaggi sono diretti sia agli agricoltori, sia ai produttori, sia infine ai consumatori. La produzione di mattoni ecosostenibili consente la crescita di un mercato edilizio più verde e rispettoso dell'ambiente.
L'utilizzo della paglia consente di valorizzare residui rurali per la creazione di nuove filiere sostenibili con benefici, sia per gli agricoltori, sia per gli operatori del mercato bio-based.
Infine, ulteriori benefici vanno ai consumatori, che hanno la garanzia di vivere in case più sane ed efficienti dal punto di vista energetico, grazie a una maggiore sostenibilità. L'innovazione chiave si basa sulla produzione di mattoni di paglia modulari pronti per l'assemblaggio, in grado di sostituire completamente i manufatti in cemento, laterizio o argilla espansa. Oltre ad essere riconosciuto come prodotto sostenibile, l'eco-mattone è considerato adatto come materiale da costruzione antisismico grazie alla sua leggerezza.
I prodotti realizzati da Prespaglia garantiscono agli immobili standard di prestazioni energetiche in via di approvazione da parte della Commissione europea sulla direttiva del Green Building.
Crop residues, and in particular cereal straw and corn stalks, are a type of biomass widely available and scarcely used for energy purposes. In fact, being mainly made up of cellulose and hemicelluloses, closely linked to a non-negligible amount of lignin, they are degraded with great difficulty - and very long times - by the microorganisms responsible for the anaerobic digestion process and are therefore generally used only in limited quantities, and mixed with other biomass, to feed biogas plants. In order to effectively use straw as a raw material for the production of biogas and biomethane, it is necessary to use innovative pre-treatment technologies that make cellulose and hemicelluloses more accessible to microbial attack and allow them to convert into methane quickly and with high yields the sugars that compose these polysaccharides. An example, unique of its kind in Italy, of technological innovation aimed at using straw as a raw material for the production of biogas and biomethane is represented by the Leona farm in Codigoro (FE), which started up in November 2020 a plant with a maximum production capacity of 600 Sm3 of biomethane (98% of CH4) to be introduced into the national natural gas distribution network. The production process makes use of various innovative technologies, starting from a pre-treatment known as "steam explosion" which consists in saturating the straw in a special reactor with steam at high temperature (170 °C) and pressure (8 bar) and then causing a very rapid decompression, thus leading to the "detachment" of the cellulose and hemicelluloses from the lignin and to a degradation of the crystalline structure of the cellulose which facilitate the subsequent action of the microorganisms. The pre-treated straw is then sent to anaerobic digestion, carried out in thermophilic conditions (about 60°C) and in reactors without moving mechanical parts, where the agitation of the fermenting biomass is ensured by a system of pumps which avoids, with continuous mixing, the formation of "crusts" and minimizes the need for maintenance. The technology used for upgrading biogas to biomethane is also highly innovative, as it is based on the chemical absorption of CO2 by a solution of potassium carbonate (non-toxic and non-polluting reagent) which is continuously regenerated and reused. All the electricity and heat necessary for the "steam explosion", the operation of the digester and the biogas upgrading come from a biogas plant, in operation at the same company since 2012, fed with more conventional biomass (residues of agri-food production, livestock manure, silage, etc.). The residual biomass of both anaerobic digestion plants (digestate) is used as a soil improver on the agricultural land of the company (3,000 ha) and neighboring ones, returning to the soil all the organic matter not used for the production of energy and biomethane with a perfect example of circular economy.
I residui colturali, e in particolar modo la paglia di cereali e gli stocchi di mais, sono una tipologia di biomassa ampiamente disponibile e scarsamente utilizzata a fini energetici. Infatti, essendo costituiti principalmente da cellulosa ed emicellulose, strettamente legate ad un non trascurabile quantitativo di lignina, vengono degradate con grande difficoltà - e tempi molto lunghi - dai microrganismi responsabili del processo di digestione anaerobica e sono quindi generalmente utilizzati solo in quantitativi limitati, e in miscela con altre biomasse, per l'alimentazione degli impianti a biogas. Per utilizzare in modo efficace la paglia come materia prima per la produzione di biogas e biometano, è necessario impiegare tecnologie innovative di pretrattamento che rendano cellulosa ed emicellulose più accessibile all'attaco microbico e consentano di convertire in metano, in tempi rapidi e con elevate rese, gli zuccheri che le compongono. Un esempio, unico nel suo genere in Italia, di innovazione tecnologica finalizzata all'impiego della paglia come materia prima per la produzione di biogas e biometano è rappresentato dall'Azienda Agricola Leona di Codigoro (FE), che ha messo in funzione nel novembre del 2020 un impianto della capacità produttiva massima di 600 Sm3 di biometano (98% di CH4) da immettere nella rete nazionale di distribuzione del gas naturale. Il processo produttivo si avvale di diverse tecnologie innovative, a partire da un pretrattamento noto come "steam explosion", che consiste nel saturare la paglia in un apposito reattore con vapore ad elevata temperatura (170 °C) e pressione (8 bar) e provocare poi una rapidissima decompressione, portando così al "distacco" della cellulosa ed emicellulose dalla lignina e ad una degradazione della struttura cristallina della cellulosa che facilitano l'azione successiva dei microrganismi. La paglia pretrattata viene quindi avviata alla digestione anaerobica, realizzata in condizioni di termofilia (circa 60 °C) e in reattori privi di parti meccaniche in movimento, dove l'agitazione della biomassa in fermentazione viene assicurata da un sistema di pompe che evita, con un rimescolamento continuo, la formazione di "croste" e riduce al minimo la necessità di interventi di manutenzione. Anche la tecnologia utilizzata per l'upgrading del biogas a biometano è fortemente innovativa, in quanto si basa sull'assorbimento chimico sella CO2 da parte di una soluzione di carbonato di potassio (reagente non tossico nè inquinante) che viene continuamente rigenerata e riutilizzata. Tutta l'energia elettrica e il calore necessari per la "steam explosion", il funzionamento del digestore e l'upgrading del biogas provengono da un impianto di biogas, in funzione presso la stessa Azienda fin dal 2012, alimentato con biomasse più convenzionali (residui di produzioni agroalimentari, reflui zootecnici, insilati ecc.). La biomassa residua di entrambe gli impianti di digestione anaerobica (digestato) viene utilizzata come ammendante dei terreni agricoli dell'azienda (3.000 ha) e limitrofi, restituendo al suolo tutta la sostanza organica non utilizzata per la produzione di energia e biometano con un perfetto esempio di economia circolare.
In 2002, the city of Frombork began the modernization of the municipal heating network, investing in biomass boilers. Currently, the city has a centralized heat energy supply system based on biomass combustion. The whole value chain takes a holistic approach that includes the plant operator, municipal authorities, farmers, public institutions and local inhabitants.
In the municipal heating plant there are 3 automatic grate boilers with a total nominal power of 6.5 MW and energy efficiency of 85%. Energy is obtained from the combustion of raw materials such as grassy energy plants (Miscanthus Giganteus) and green fodder from meadows covered by agri-environmental packages, which, due to the delayed mowing date, have no fodder properties. The input also consists in small percentage of compressed straw (cereals such as wheat, rye, oat and rape). Leoterm utilizes resources of its own approx. 100 ha plantation of Miscanthus Giganteus to collect biomass with the use of a prototype disc mower equipped with a proprietary, innovative compactor designated for hard materials such as energy plants. The collection covers 2/3 of demand. Cereal straw stems from purchase from local farmers. In return for the loss of organic matter, farmers receive storage waste (straw) mixed with ashes to be reused for fertilization purposes. The remaining waste (straw and ashes) goes to Miscanthus Giganteus plantation.
The investment project also included the construction of a straw storage, the installation of 67 district heating substations with regulated supply for water and central heating, and the construction of a 5.98 km long network. 423 recipients were connected to the new heating plant, including 18 new ones (2 institutions and 16 households), without raising heating fees. Currently, the company supplies heat to 80% of residential buildings and 90% of public institutions. A gas emissions research was carried out already after the first operation year and showed a substantial reduction of SO2 and CO2, NO and dust emissions compared to previously applied fossil-based solutions. Total project cost amounted to PLN 10.51 million. The heat energy sales increased to approx. 9,000 GJ/year.
Miasto Frombork w 2002 r. przystąpiło do modernizacji miejskiej sieci grzewczej, inwestując w kotły na biomasę. Obecnie miasto posiada scentralizowany system dostawy energii cieplnej oparty na spalaniu biomasy. Cały łańcuch dostaw stosuje podejście holistyczne, angażujące operatora kotłowni, władze lokalne, rolników, instytucje publiczne oraz lokalnych mieszkańców.
W kotłowni miejskiej znajdują się 3 automatyczne kotły rusztowe o łącznej mocy nominalnej 6,5 MW i sprawności energetycznej 85%. Energia pozyskiwana jest ze spalania surowców takich jak trawiaste rośliny energetyczne (Miskant Olbrzymi) oraz sprasowane zielonki pochodzące z łąk objętych pakietami rolno-środowiskowo-klimatycznymi, które ze względu na wymóg opóźnionego terminu koszenia, nie mają wartości paszowych. W niewielkim procencie wykorzystywana jest również słoma (zbóż takich jak pszenica, żyto, owies czy rzepaku). Firma Leoterm wykorzystuje przede wszystkim zasoby własnej ponad 100 ha plantacji Miskanta Olbrzymiego, na której do zbioru biomasy wykorzystywany jest prototyp kosiarki dyskowej z autorskim, innowacyjnym zgniataczem przystosowanym do twardych materiałów takich właśnie jak rośliny energetyczne. Zbiór pokrywa 2/3 zapotrzebowania. Słoma zbożowa pochodzi z zakupu od lokalnych rolników. W zamian za stratę materii organicznej, rolnicy otrzymują odpad magazynowy (słoma) wymieszany z popiołem, który wykorzystywany jest jako nawóz. Pozostały odpad (słoma i popiół) trafia na plantację Miskanta Olbrzymiego.
Przedsięwzięcie inwestycyjne obejmowało również budowę magazynu słomy, zainstalowanie 67 węzłów ciepłowniczych z regulacją dostaw na podgrzanie wody oraz centralne ogrzewanie i wykonanie sieci o długości 5,98 km. Do nowej kotłowni podłączono 423 odbiorców, w tym 18 nowych (2 instytucje i 16 gospodarstw domowych), bez podnoszenia stawek opłat za ciepło. Obecnie firma zaopatruje w ciepło 80% budynków mieszkalnych oraz 90% instytucji pożytku publicznego. Już po pierwszym roku stosowania biomasy, przeprowadzono badania dotyczące emisji gazów i stwierdzono bardzo dużą redukcję emisji SO2 i CO2, NO oraz pyłów. Całkowity koszt projektu wyniósł 10,51 mln zł. Wzrost sprzedaży energii cieplnej wyniósł ok. 9 tys. GJ/rok.
The Green Fuel Nordic fast pyrolysis bio-oil production process comprises multiple parts, working together to form a functioning bio-oil refinery. The heart of the fast-pyrolysis focused bio-oil refinery is the pyrolysis unit, where pre-treated biomass is turned into fast pyrolysis bio-oil. Biomass is pre-treated to the correct particle size and moisture level is fed to the reactor together with hot (approximately 500 °C) sand, causing the biomass to vaporise. Vaporisation occurs in nearly oxygen-free conditions to prevent combustion. The resulting gas is directed into a cyclone, where sand and carbon residue are mechanically separated from the gas flow. The gas passes through the cyclone into a condenser, where it cools down and condenses into fast pyrolysis bio-oil. Finally, the resulting fast pyrolysis bio-oil is filtered before it exits the pyrolysis unit. The energy for the production comes from carbon residuals from the vaporisation, separated with the circulating sand and burnt in the combustion chamber.
Raw material for fast pyrolysis consists only of forest biomass, acquired from local sawmills and biomass supply companies.
Pikapyrolyysiin perustuvan bioöljyjalostamon sydän on pyrolyysiyksikkö, jos-sa esikäsitelty biomassa muutetaan bioöljyksi. Palakoon ja kosteuden osalta esikäsitelty biomassa syötetään reaktoriin yhdessä kuuman, noin 500 astei-sen, hiekan kanssa, jolloin biomassa kaasuuntuu. Kaasuuntuminen tapahtuu lähes hapettomissa olosuhteissa, jolloin palamista ei tapahdu. Muodostunut kaasu johdetaan sykloniin, jossa mekaanisesti erotetaan kaasuvirrasta hiekka ja hiiltojäännös. Syklonista kaasu jatkaa matkaa lauhduttimeen, jossa se jääh-tyy, lauhtuu ja tiivistyy bioöljyksi. Lopulta pikapyrolyysibioöljy vielä suodate-taan ennen kuin se poistuu pyrolyysiyksiköstä.
Tuotanto saa energiansa kaasuuntumatta jäävästä hiillosjäännöksestä, joka erotetaan kiertävän hiekan mukana ja poltetaan polttokammiossa. Pikapyro-lyysibioöljyn raaka-aineena käytetään metsäbiomassaa, jota hankitaan lähi-alueen sahoilta sekä metsäbiomassaa tuottavilta ja välittäviltä yhtiöiltä. Bio-massan kuivaus tapahtuu hihnakuivurissa, jonka lämpöenergia saadaan pro-sessihöyrystä.
Fiber sludge is generated as a sidestream in the forest industry, and it can be processed into soil improvement fibers. Low-nutrient zero-fibers are ideal for field parcels that have high soil test phosphorus classes. The more nutrient-rich nutrient fibers have been treated by composting or lime stabilization and can be used to replace mineral fertilizers. Soil improvement fibers are used to improve the structure and water retention capacity of the soil, and to increase the amount of organic matter. Fibers are also utilized in water conservation. In experiments by the Natural Resources Institute Finland, soil improvement fibers added to the soil (50 t/ha) halved the concentrations of suspended solids and particulate phosphorus in runoff water. The soil improvement fibers are suitable for various soil types and catchment areas, but most benefits are obtained in mineral soils with low organic matter content. A good time for spreading is in the autumn after early harvests or when terminating the grass vegetation. Spreading volumes are high at 20-50 t/ha. Fibers can be spread using, for example, dry manure spreading equipment, or the spreading can be queried from a fiber supplier. The fiber is prepared in the soil surface layer within one day of application. The fiber treatment can be renewed after a few years. Soil improvement fibers are rich in carbon. While microbes decompose carbon, nitrogen is bound to microbial mass. The product description contains a recommendation on the amount of application and when it is possible to renew the fiber treatment. The spreading amount of fiber may be limited by the cadmium content in the fiber. Over the five-year period considered, no more than 7.5 grams of cadmium per hectare in the soil may be accumulated.
Metsäteollisuuden sivuvirtana syntyy kuitulietteitä, joista voidaan jalostaa maanparannuskuituja. Vähäravinteinen nollakuitu sopii korkeiden fosforipitoisuuksien maille. Ravinteikkaammat ravinnekuidut on käsitelty kompostoimalla tai kalkkistabiloimalla, ja niillä voi korvata mineraalilannoitteita. Maanparannuskuiduilla pyritään parantamaan maan rakennetta ja vedenpidätyskykyä sekä lisäämään maan orgaanisen aineksen määrää. Kuituja hyödynnetään myös vesiensuojelussa. Luonnonvarakeskuksen kokeissa maahan lisätyt maanparannuskuidut (50 tn/ha) puolittivat kiintoaineksen ja partikkelifosforin pitoisuudet valumavedessä. Maanparannuskuidut sopivat erilaisille maalajeille ja valuma-alueille, mutta paras hyöty niistä saadaan vähämultaisilla kivennäismailla. Hyvä levitysajankohta on syksyllä aikaisten puintien jälkeen tai nurmikasvuston lopetuksen yhteydessä. Levitysmäärät ovat suuria 20–50 tn/ha. Levitys onnistuu kuivalannan levityskalustolla tai sitä voi tiedustella kuidun toimittajalta. Kuitu mullataan kevyesti vuorokauden kuluessa levityksestä. Käsittelyn voi uusia muutaman vuoden kuluttua. Maanparannuskuiduissa on runsaasti hiiltä. Samalla kun mikrobit hajottavat hiiltä, mikrobimassaan sitoutuu typpeä. Tuoteselosteessa on suositus levitysmäärästä sekä milloin käsittely on mahdollista uusia. Kuidun sisältämä kadmium voi rajoittaa käyttömääriä. Viiden vuoden tarkastelujaksolla kadmiumia saa kertyä korkeintaan 7,5 grammaa hehtaarille.
Drone technologies provide tools for improving processes in agriculture and horticulture. Drones document phenomenons on fields and provide general information and special data for precision farming actions. Drones can provide relative information about variation for example of biomass, and absolute information of for example of disease infestation, and do works like reseeding. The first two are based on imaging and the third applies to specific tools developed for the drone. The drone imaging is based on passive remote sensing from the studied area reflected solar radiation captured by camera or multi- or hyperspectral instruments. The imaging data is processed to orthomosaic of the area and then classified to relative classes that can be converted to absolute values by traditional sampling results. Results are such as a yield map, a nutrient status map, soil moisture map, vegetation density or crop loss map, a weeds location map. Machine learning is used for the classification. The detected variation can be processed by decision support systems for work action plans. The working drones are integrated systems, but they will not replace heavy machinery. Currently drones do pollination, fertilizer application, spraying and reseeding. The aviation rules regulate these operations. Utilization of drones have potential for reducing chemical usage and nutrient leaching as drones can working repeatedly on demand as the drones do not harm the cultivated vegetation. The result of imaging depends on the imaging conditions: the weather, and the growth stage and conditions of the vegetation. The consumer level tools provide sufficient data for certain applications but due to nature of passive imaging, the results are highly case dependent.
Droonit tuottavat tietoa täsmäviljelyyn, dokumentoivat ilmiöitä ja tuottavat yleistä tietoa pelloilta. Droonit tarjoavat suhteellista tietoa vaihteluista esimerkiksi biomassan määrästä, absoluuttista tietoa tautitilasta tai tuholaisten esiintymisestä sekä tekevät viljelytoimenpiteitä kuten täydennyskylvöä. Työdroonit ovat integroituja järjestelmiä, joiden hyötykuorma voi olla kymmeniä kiloja, mutta ne eivät korvaa raskaita työkoneita. Kuvantamistiedot käsitellään georeferoiduksi ortomosaiikkikuviksi ja luokitellaan sitten suhteellisiin luokkiin, jotka voidaan muuntaa absoluuttisiksi arvoiksi perinteisillä mittaustuloksillla. Päätöksenteon tukiohjelmistoilla voidaan esimerkiksi typpipitoisuuden vaihtelutiedoista tuottaa lannoitteiden levityssuunnitelma. Droonit eivät vahingoita viljelykasveja, joten ne voivat työskennellä tarpeen mukaan. Ilmailusäännöt säätelevät lentotoimintaa. Mahdollisuus kohdentaa drooneilla torjunta-aineiden ja lannoitteiden käyttö tarpeen mukaiseksi vähentää niiden käyttöä ja riskiä ravinteiden huuhtoutumiseen. Droonikuvantaminen perustuu passiiviseen kaukokartoitukseen eli kasvillisuudesta heijastuvan auringon säteilyn mittaamiseen. Anturit mittaavat säteilyn heijastumista eri aallonpituuksilla. Spektritietojen perusteella tulkitaan kohteen ominaisuuksia. Anturieita ovat normaalit kamerat ja multi-ja hyperspektrikamerat. Kuvantamisen tulos riippuu kuvantamisolosuhteista: säästä, auringon säteilyoloista ja kasvillisuuden kasvuvaiheesta. Kuluttajatason työkalut tarjoavat tietoa tietyistä sovelluksista, mutta passiivisen kuvantamisen vuoksi, tulokset ovat hyvin tapauskohtaisia.
The generation of energy from periodically accessible renewable resources, such as wind or solar energy, is fraught with a major disadvantage, such as the unpredictable unavailability of energy from these resources. A solution may consist in the implementation of systems for storing energy over time to be released when needed, even when its source cannot supply it. In practice, there are electrical, thermal and mechanical energy storage systems.
A thermal energy storage system achieved higher efficiency when its active medium is characterised by higher capacity. Thus, the design of such an appliance should allow the use of materials that change the physical state in the range of temperatures in the system. Another functional aspect relates to the possibility of supplying heat from the outside of the storage system by connecting the device to an external heat and/or electricity source circuit.
The designed device can be coupled with any source of thermal or electric power, which is converted to heat via electric heaters placed in the storage tank. Thus, the electricity needed to be supplied to the device can be a power grid, am electric current generator driven by a wind turbine, a water turbine, or being an element of a cogeneration system.
Technical parameters:
Range of operating temperatures– 10 - 95°C
Power of the heaters – 0.5 + 0.85 + 1.0 kW (maximum total power 2.35 kW)
Capacity of the tank – 1.1 m3
The process of charging and discharging the storage tank is monitored and controlled remotely on the operator’s desktop (also accessible online), where the current operating parameters are displayed.
Storage of energy with the use of change phase agents requires adjustment of the operating temperature to the melting and solidifying temperatures of the agent. The choice of an agent depends on the use of the installation in which the storage tank is located (e.g. the melting temperature of paraffins varied from 45 to 65oC, which will be suitable in a utility water installation). The heat capacity of such an energy storage tank when using water alone is about 4.5 MJ at a temperature increment of 1oC.
Such parameters as the capacity of a storage tank, range of temperatures, number of elements serving to receive and to transmit the energy into the storage tank are selected in dependence on the intended use of the installation and available energy resources.
The generation of energy from periodically accessible renewable resources, such as wind or solar energy, is fraught with a major disadvantage, such as the unpredictable unavailability of energy from these resources. A solution may consist in the implementation of systems for storing energy over time to be released when needed, even when its source cannot supply it. In practice, there are electrical, thermal and mechanical energy storage systems.
A thermal energy storage system achieved higher efficiency when its active medium is characterised by higher capacity. Thus, the design of such an appliance should allow the use of materials that change the physical state in the range of temperatures in the system. Another functional aspect relates to the possibility of supplying heat from the outside of the storage system by connecting the device to an external heat and/or electricity source circuit.
The designed device can be coupled with any source of thermal or electric power, which is converted to heat via electric heaters placed in the storage tank. Thus, the electricity needed to be supplied to the device can be a power grid, am electric current generator driven by a wind turbine, a water turbine, or being an element of a cogeneration system.
Technical parameters:
Range of operating temperatures– 10 - 95°C
Power of the heaters – 0.5 + 0.85 + 1.0 kW (maximum total power 2.35 kW)
Capacity of the tank – 1.1 m3
The process of charging and discharging the storage tank is monitored and controlled remotely on the operator’s desktop (also accessible online), where the current operating parameters are displayed.
Storage of energy with the use of change phase agents requires adjustment of the operating temperature to the melting and solidifying temperatures of the agent. The choice of an agent depends on the use of the installation in which the storage tank is located (e.g. the melting temperature of paraffins varied from 45 to 65oC, which will be suitable in a utility water installation). The heat capacity of such an energy storage tank when using water alone is about 4.5 MJ at a temperature increment of 1oC.
Such parameters as the capacity of a storage tank, range of temperatures, number of elements serving to receive and to transmit the energy into the storage tank are selected in dependence on the intended use of the installation and available energy resources.
The soil heated by the heat coming from the compost (and the air from the ground) in the inspection will accelerate the vegetation of plants - in spring and possibly extend the vegetation time of plants in autumn. Which will make it possible to plant the plants for the inspection earlier compared to the classic structure of the inspection, or to cultivate plants for a longer period in the fall.
By the way, the composting of agricultural plant waste is a way of managing it, obtaining free heat to heat the substrate in frames and a source of wholesome fertilizer - humus, which can later be used as an organic fertilizer – according to the figure 1.
In this installation, 70 kg of biological waste composted inside the hotbed generated 98.7 MJ of heat in the course of 41 days. Heat generation inside the hotbed accelerated radish yields by 5 days relative to the cold frame and by 12 days relative to the garden treatment.
The chemical composition of the obtained compost was consistent with the Polish Standards for organic fertilizers. The produced compost can be effectively used for gardening purposes.
The solution is addressed to farms with a horticultural profile with a large amount of waste biomass. At the same time - additional heating of production in the form of greenhouses, frames - which affects the profitability of production
Gleba ogrzana ciepłem pochodzącym z kompostu (oraz powietrze w inspekcie ogrzane ciepłem gruntu) w badaniu przyspiesza wegetację roślin wiosną i umożliwia wydłużenie czasu wegetacji roślin jesienią. Pozwala to na wcześniejsze sadzenie roślin do inspektów w porównaniu z klasycznym inspektem, czy też uprawę roślin przez dłuższy okres jesienią.
Kompostowanie odpadów roślinnych z produkcji roślinnej (oraz innych bioodpadów zielonych) to sposób na ich zagospodarowanie, pozyskanie darmowego ciepła do podgrzania podłoża w sekcjach inspektu oraz źródło pełnowartościowego nawozu – humusu, który można później wykorzystać jako nawóz organiczny. Schemat inspektu pokazano na rys. 1. W tej instalacji 70 kg odpadów biologicznych kompostowanych wewnątrz złoża wytworzyło 98,7 MJ ciepła w ciągu 41 dni. Wytwarzanie ciepła w ciepłym inspekcie i przyspieszyło plony rzodkiewki o 5 dni w stosunku do zimnego inspektu oraz o 12 dni w stosunku do roślin rosnących w gruncie.
Skład chemiczny otrzymanego kompostu był zgodny z Polskimi Normami dla nawozów organicznych. Wytworzony kompost można z powodzeniem wykorzystać do celów ogrodniczych.
Rozwiązanie jest skierowane do gospodarstw o profilu ogrodniczym z dużą ilością biomasy odpadowej. Jednocześnie - dogrzewanie produkcji w postaci ciepłych inspektów lub specjalnych ramek z kompostem w szklarni wpływa na opłacalność produkcji.
Natural Scots pine heartwood is a valuable resource because of extractives, which make it moisture and decay resistant. The older and larger the tree gets, the more heartwood it contains. Most of the sawmills are unable to saw oversized logs rich in heartwood and thus the fate of the valuable logs would be in energy production as wood chips.
Since 1994 the family owned business Finnstamm Oy has been specialized to saw extra large knot-less butt logs of Scots pine. According to the Scandinavian standards those logs are oversized for other sawmills. The logs come from PeFC-certified sources and are sawn to high quality heartwood timber for the woodworking and furniture industry. Dimensionally stable solid heartwood material without any adhesive layers is especially suitable for window and door frames.
For the sawing, the butt logs with high heartwood proportion are selected and then guided through metal detector. The butt end is reduced and debarked and got through an extra large horizontal saw and circular saw. The saw may be used to radial cutting, which makes the timber more weatherproof and increases the durability.
A customer specifies the drying method, which can be performed in a three-chamber hot air drying kiln or in open-air. The dry timber is guided to cut-off line and planing, if needed. After packaking the product is ready to be dispatched to the customer.
Use of durable wood in constructions increases the storage time of carbon and provides foundation for the recovery of wooden building materials. Now that the era of hazardous super-effective wood preservatives is over, more benign solutions are searched for to attain optimal durability. Durability related characteristics of Scots pine heartwood have been studied in Natural Resources Institute Finland (Luke).
Favourable properties of Scots pine heartwood:
• durability against decay and moulding
• moisture resistance
• dimensional stability
• aesthetic appearance
• antibacterial properties
Applications in buildings and constructions:
• claddings, patios, and furniture prone to rain and moisture
• window and door frames
• massive log houses
• engineered building elements (beams, plywood, LVL, CLT)
• utility poles (only sapwood layer needs impregnation)
Männyn sydänpuu on raaka-aine, joka ei helposti vety eikä lahoa. Mitä vanhempi ja kookkaampi puu on, sitä enemmän siinä on sydänpuuta. Sahalaitos kykenevät harvoin hyödyntämään ylijäreitä mäntytukkeja ja ne tuhlataan energiantuotantoon. Perheyritys Finnstamm on vuodesta 1994 erikoistunut sahaamaan ylijäreitä oksattomia mäntytukkeja. Tukit ovat peräisin PeFC-sertifioiduista kohteista ja niistä saatuja saheita hyödynnetään mm. puutuote- ja huonekaluteollisuudessa. Sydänpuu sopii erityisen hyvin ikkunoiden ja ovien puitteisiin. Sahauslinjastossa tyvitukit ajetaan metallinpaljastimen läpi, minkä jälkeen tyvi sievistetään ja kuoritaan. Vaakavannesahauksen jälkeen läpisaheet ohjataan pyörösahalle, joka erottaa sydänpuun pintapuusta ja nuorpuusta. Sydänpuutavara rimoitetaan asiakkaan toivomuksesta joko kamarikuivaukseen tai ulkokuivaukseen. Kuiva sahatavara katkotaan asiakkaan toivomiin mittoihin ja höylätään tilattuun profiiliin. Paketoinnin jälkeen tuote on valmis lähtemään asiakkaalle. Kestävän puumateriaalin käytöllä pidennetään puurakenteisiin sitoutuneen hiilen varastoitumisaikaa ja luodaan pohja puisten rakennusmateriaalien kierrätykselle. Supertehokkaiden puunkyllästysaineiden käytön loputtua niille etsitään ympäristöystävällisempiä vaihtoehtoja. Tavoitteena on käyttää kussakin käyttökohteessa siihen parhaiten soveltuvaa puumateriaalia. Luonnonvarakeskuksessa (Luke) on tutkittu männyn sydänpuun luontaiseen lahonkestävyyteen vaikuttavia tekijöitä. Männyn sydänpuun hyvät ominaisuudet: lahon- ja homeenkestävyys, kosteudenkestävyys, muotopysyvyys, esteettisyys, antibakteerisuus.
Käyttökohteet rakennuksissa ja rakenteissa: vuoraukset, terassit ja kosteudelle altistuvat ulkokalusteet, ikkunoiden ja ovien puitteet, massiivihirsirakennukset, tekniset puutuotteet kuten liimapuupalkit, vaneri, LVL, CLT, sähköpylväät (vain pintapuu vaatii kyllästyksen).
In improving the decision-making process for industrial end-users of wood biomass, it is important to understand the end-users’ perceptions of biomass properties in relation to their conversion processes and supply preferences.
The aim of an expert analysis was to get an insight into end-users’ views on preferred wood biomass feedstock characteristics. The features investigated included facility location, its size, biomass storage, handling, and procurement for different wood-based industrial services. The results can support product development and secure new roles in alternative business environments by existing and future terminals or so-called biohubs.
From an industrial biomass end-user’s perspective, a pre-defined biomass assortment is a vital aspect when deciding on feedstock procurement at a bioenergy facility. The key decision-making attribute seemed to be the type of biomass assortment. Sawdust was the most preferred type (35%), followed by stem wood chips (20%) and energy wood (15%) of a total of seven biomass assortment sub-categories.
Most facilities had a good understanding of generally defined assortments, but their views on specific biomass properties (e.g. ash content levels, particle size, and moisture content) were rather unclear and weakly defined. The accepted range of biomass moisture content was very wide, even though most facilities received their feedstock within 10% of their estimated optimum. The procurement of wood biomass feedstock for production was a key part of the daily operations by each facility. The length of procurement contracts were part of the supply risk evaluation and price optimisation process. The most common contract periods were for up to 1 or 3 years. Most common reported problems related to biomass storage: a lack of space (most common), biomass loss, self-ignition, and environmental restrictions.
A possible solution to the most common issue: to mitigate some of the problems related to storing biomass at their own facilities, 75% of the Finnish respondents were willing to rent out extra storage with a 24/7 access. Nevertheless, facilities were less willing to move some of their storage volumes to the supplier’s side (25% of Finnish respondents), e.g. to share the risks associated with storage. Most preferred to rent extra storage to address their space restrictions instead of delegating suppliers to handle the biomass on their behalf.
Jotta puubiomassasta energiaa tuottavien laitosten raakaaineen valintaa voitaisiin helpottaa, on ymmärrettävä, mitä raaka-aineita ja toimitusketjuja ne hyödyntävät prosesseissaan. Asiantuntija-analyysin avulla tutkittiin, minkälaisia puubiomassan ominaisuuksia bioenergialaitokset suosivat. Yritysten luokitteluperusteita olivat laitoksen sijainti ja sen koko, biomassan varastointi ja käsittely sekä erilaisten puuraakaaineen käsittelyyn liittyvien teollisten palvelujen hankinta. Tuloksia voidaan hyödyntää tuotekehityksessä ja luoda uusia liiketoimintaympäristöjä olemassa oleville ja tuleville terminaaleille tai niin sanotuissa biohubeissa. Ennalta määritelty biomassavalikoima helpottaa huomattavasti bioenergialaitoksen raaka-aineen hankintaan liittyvää päätöksentekoa. Kyselyn mukaan biomassa valittiin ensisijaisesti tyypinsä perusteella. Tarjolla oli seitsemän vaihtoehtoa: runkopuuhake, sahanpuru, hakkuutähteet, kuitupuu, kuori, maatalouden sivuvirrat sekä energiapuu/huonolaatuiset tukit. Sahanpuru oli suosituin (35 %) ja seuraavaksi suosituimmat olivat runkopuuhake (20 %) ja energiapuu (15 %). Useimmat laitokset tunnistivat kyselyssä määritellyt biomassatyypit, mutta käsitys esimerkiksi biomassan tuhkapitoisuudesta, palakoosta ja kosteudesta oli melko epäselvä ja jäsentymätön. Biomassalle hyväksyttiin hyvin laaja kosteuspitoisuus, vaikka todellisuudessa useimpiin laitoksiin tulevan raaka-aineen kosteus poikkesi korkeintaan 10 % arvioidusta optimiarvosta. Biomassan varastointiin liittyviä yleisimpiä ongelmia olivat: tilan puute (yleisin), biomassan kuiva-ainetappiot, itsesyttyminen ja ympäristönsuojeluun liittyvät rajoitukset. Mahdollinen ratkaisu varastointitilan puutteeseen olisi laitoksen ulkopuolisen tilan vuokraaminen. Suomalaisista vastaajista 75 % haluaisikin vuokrata ympärivuorokautista säilytystilaa lieventääkseen biomassan säilytykseen liittyviä
ongelmia. Neljäsosa suomalaisista laitoksista oli kuitenkin haluttomia valtuuttamaan biomassan toimittajia
käsittelemään sitä puolestaan ja jakamaan varastointiin liittyviä riskejä.
Few years ago, the two Italian companies Pellet drive and DAB started with the construction of pellet vending machines. Selling directly to the end-user is the Holy Grail of rural producers, and vending machines have already become popular with farmers for selling directly their food products. While both machine types accomplish autonomously the whole vending process such as storing and advertising the product, receiving the payment and releasing the desired product, they follow slightly different systems: Pellet drive sells discrete units, e.g. 15 kg bags. The user communicates with the box via an App for the payment as well as for getting alerted when his credit is exhausted. DAB is designed to sell loose products. The customer can bring and fill his own bag, paying cash or with credit card.
For Pellet drive most of the cost is in the software, and the company can multiply her selling points at the small incremental cost of the simple hardware. DAB facilitates customers by dispensing any amounts of their choosing, and aims at minimizing the packaging.
The principle of direct sales allows for saving the costs of intermediation and retailing. This way, the producer earns more, and the user pays less: a real win-win. In addition, many units have been installed at shopping centres, gas stations, car washes and other strategically located sites. This allows the customer to make the purchase within the scope of every day´s business, which contributes to environmental issues. Pellet Drive currently has 15 machines in operation, 9 distributed between the south and the Islands of the country, 5 in the north and 1 abroad in Belgium. As for the DAB company, the machines amount to 50: 5 in northern Italy while the rest are located between the center and south and it also plans to extend abroad to Switzerland and Belgium.
Pochi anni fa, le due aziende italiane Pellet drive e DAB hanno iniziato con la costruzione di distributori automatici di pellet. La vendita diretta all'utente finale è il Santo Graal dei produttori rurali e i distributori automatici sono già diventati popolari tra gli agricoltori per la vendita diretta dei loro prodotti alimentari. Sebbene entrambi i tipi di macchine svolgano autonomamente l'intero processo di vendita, come lo stoccaggio e la pubblicità del prodotto, la ricezione del pagamento e il rilascio del prodotto desiderato, seguono sistemi leggermente diversi: Pellet drive vende unità discrete, ad es. sacchi da 15 kg. L'utente comunica con la casella tramite un'App per il pagamento e per essere avvisato quando il suo credito è esaurito. DAB è progettato per vendere prodotti sfusi. Il cliente può portare e riempire il proprio bagaglio, pagando in contanti o con carta di credito.
Per Pellet drive, la maggior parte del costo è nel software e l'azienda può moltiplicare i suoi punti vendita al piccolo costo incrementale del semplice hardware. DAB facilita i clienti erogando qualsiasi quantità di loro scelta e mira a ridurre al minimo l'imballaggio.
Il principio della vendita diretta consente di risparmiare sui costi di intermediazione e vendita al dettaglio. In questo modo il produttore guadagna di più e l'utente paga di meno: un vero vantaggio per tutti. Inoltre, molte unità sono state installate presso centri commerciali, distributori di benzina, autolavaggi e altri siti strategicamente posizionati. Ciò consente al cliente di effettuare l'acquisto nell'ambito dell'attività quotidiana, che contribuisce a questioni ambientali.
Pellerei is a farming company based in Cossato near Biella, in northwestern Italy. The traditional activity fields comprise cattle and dairy farming, corn and cereals, and a subsidiary logging business. Pellerei is an impressive example how to constantly add value to the supply chain along with the cascading usage of wood products and connected activities.
First, the decision was taken to develop the traditional logging business into the specialized production of woodchips to meet the growing demand for this new product. Since profits accrued from selling raw fuel turned out to be small compared with those obtained from selling energy directly to the final user, second, a wood-fed conversion plant for the electricity production was built. The waste heat of the plant that initially was dissipated by cooling towers, triggered the third remarkable step of expansion: To make industrial use of the heat, the farming was scaled-up to industrial level, by acquiring a 1500 m² large high-tech greenhouse for the production of horticultural crops with a focus on local varieties of vegetables.
All this visionary entrepreneurship culminated in numerous benefits: an increase of employment, the reduction of transport routes, a horticultural production at minimal chemical inputs, just to name some of them…
Pellerei è un'azienda agricola con sede a Cossato in provincia di Biella, nel nord-ovest dell'Italia. I campi di attività tradizionali comprendono l'allevamento di bovini e latticini, mais e cereali ed un'attività sussidiaria di disboscamento. Pellerei è un esempio impressionante di come aggiungere costantemente valore alla catena di approvvigionamento insieme all'utilizzo a cascata di prodotti in legno e attività connesse.
In primo luogo, è stata presa la decisione di trasformare la tradizionale attività di disboscamento nella produzione specializzata di trucioli di legno per soddisfare la crescente domanda di questo nuovo prodotto. Poiché i profitti derivanti dalla vendita di combustibili grezzi si sono rivelati modesti rispetto a quelli ottenuti dalla vendita di energia direttamente all'utente finale, in secondo luogo, è stato realizzato un impianto di conversione alimentato a legna per la produzione di energia elettrica. Il calore disperso dell'impianto, inizialmente dissipato dalle torri di raffreddamento, ha innescato il terzo notevole passo di espansione: per sfruttare a livello industriale il calore, l'agricoltura è stata portata a livello industriale, acquisendo una grande serra high-tech di 1500 m² per la produzione di colture orticole con particolare attenzione alle varietà locali di ortaggi.
In Rasen / South Tyrol in the year 1994 a district heating system was constructed, as the very first of its kind in the entire province of Bolzano - Italy. The decision was courageous and far-sighted since it had to integrate a range of social activity fields being of high relevance in that region, the forestry sector, tourism, environmental aspects… First, the heating plant should offer a sustainable use for the large quantity of wood residue (considered as waste back then and carried over hundreds of km for recycling) produced by a large adjacent sawmill. Second, the rapidly expanding hotel industry was limited by the technical efforts to integrate individual heating systems into the hotel complex. Third, harmful emissions from individual users, especially an adjacent plant for timber industry, were damaging the landscape as well touristic aspirations.
The long history of the installation teaches us how to adequately respond to the constant new challenges in technical, political-societal as well as climatic regard. In 2008, a new power generation module (an ORC turbine) was inaugurated. By activating both modules, the old and/or the new one, the plant operates with maximum efficiency throughout the year. Changing public aid has been compensated by the steady increase of energy prices, and reductions in the energy consumption due to climate warming as well as improved energy efficiency of buildings, have been balanced by constant efforts to acquire new users.
Nowadays, the plant guarantees a preferential price of 42 € m-3 for the forest residue. This way the many small-scaled forest owners accrue some income from the countless bark beetle-infected trees, which is a motivation to do the necessary but costly sanitary cuts.
A Rasen / Alto Adige nell'anno 1994 è stato costruito un sistema di teleriscaldamento, il primo del suo genere in tutta la provincia di Bolzano - Italia. La decisione è stata coraggiosa e lungimirante in quanto doveva integrare una serie di settori di attività sociali di grande rilevanza in quella regione, il settore forestale, il turismo, gli aspetti ambientali… In primo luogo, la centrale termica dovrebbe offrire un uso sostenibile per la grande quantità di residuo legnoso (considerato allora rifiuto e trasportato per centinaia di km per il riciclo) prodotto da una grande segheria adiacente. In secondo luogo, il settore alberghiero in rapida espansione è stato limitato dagli sforzi tecnici per integrare i singoli sistemi di riscaldamento nel complesso alberghiero. In terzo luogo, le emissioni nocive dei singoli utenti, in particolare un impianto adiacente per l'industria del legno, stavano danneggiando il paesaggio e le aspirazioni turistiche.
La lunga storia dell'installazione ci insegna come rispondere adeguatamente alle continue nuove sfide dal punto di vista tecnico, politico-sociale e climatico. Nel 2008 è stato inaugurato un nuovo modulo di generazione di energia (una turbina ORC). Attivando entrambi i moduli, il vecchio e/o il nuovo, l'impianto funziona con la massima efficienza durante tutto l'anno. La variazione degli aiuti pubblici è stata compensata dal costante aumento dei prezzi dell'energia e la riduzione del consumo energetico dovuto al riscaldamento climatico, nonché il miglioramento dell'efficienza energetica degli edifici, sono stati bilanciati da continui sforzi per acquisire nuovi utenti.
Oggi l'impianto garantisce un prezzo preferenziale di 42 € m-3 per il residuo forestale. In questo modo i molti piccoli proprietari di foreste guadagnano un po' di reddito dagli innumerevoli alberi infettati dal bostrico, il che è una motivazione per fare i necessari ma costosi tagli sanitari.
Biomass Atlas is an open service that collects location-specific data about biomass potentials under a single user interface (https://projects.luke.fi/biomassa-atlas/en). The service enables users to calculate the amount of bio-mass in a given geographical area, as well as examining the opportunities to utilise the biomass and restrictions on its use. The area can be freely outlined on the map or select-ed based on administrative boundaries. It is also possible to set a point of interest and define the area around it – ei-ther by giving the radius of a circle or the road transport distance.
The map user interface allows user to search, analyse and report on biomass from forestry, agriculture, and biode-gradable waste from communities and industry. There are approximately 300 map layers of different biomass types or land use categories in the map user interface. It is not necessary to register and log in, but if you do so, you will enable some extra features like saving your biomass search and analysis.
The goals of making the biomass data available include supporting investment decisions and sustainable use of natural resources, as well as helping decision-makers to create sustainable energy policies. Biomass Atlas is availa-ble in Finnish, Swedish and English.
A service extending to Sweden and the Baltic countries was developed based on the good experiences of Biomass Atlas (https://forest-energy-atlas.luke.fi). Forest Energy Atlas has similar functionalities but is constrained on forest biomasses. This service is available in English, Finnish, Swedish, Estonian, Latvian and Lithuanian. Although the above-presented services concentrate on energy-use of biomass, there are numerous other possible applications, i.e., example green building, compost, textile.
Biomassa-atlas on avoin palvelu, joka kokoaa paikkatietoa biomassapotentiaalista yhden käyttöliittymän alle (https://projects.luke.fi/biomassa-atlas). Palvelun avulla käyttäjät voivat laskea biomassan määrän tietyllä maantieteellisellä alueella sekä tarkastella biomassan hyödyntämismahdollisuuksia ja sen käytön rajoituksia. Alue voidaan rajata vapaasti kartalle tai valita hallinnollisten rajojen perusteella. On myös mahdollista laskea biomassan saatavuus kiinnostavan kohteen ympärillä. Alueen voi määritellä joko ympyrän säteen tai tieverkkoa pitkin laskettavan etäisyyden avulla.
Karttakäyttöliittymän avulla käyttäjä voi etsiä tietoja metsä-, ja maatalouden biomassoista sekä kuntien ja teollisuuden biohajoavasta jätteestä, ja analysoida ja raportoida tiedot. Karttakäyttöliittymässä on noin 300 karttatasoa eri biomassatyypeistä tai maankäyttöluokista.
Palvelun tavoitteena on tarjota tietoa investointipäätösten ja luonnonvarojen kestävän käytön tueksi sekä päättäjien avuksi kestävän energiapolitiikan luomisessa. Biomassa Atlas on saatavilla suomeksi, ruotsiksi ja englanniksi.
Ruotsiin ja Baltian maihin ulottuva palvelu kehitettiin Biomassa-atlaksen hyvien kokemusten pohjalta (https://forest-energy-atlas.luke.fi). Forest Energy Atlaksessa on samanlaiset toiminnot, mutta vain metsäbiomassalle. Palvelu on saatavilla englanniksi, suomeksi, ruotsiksi, viroksi, latviaksi ja liettuaksi. Vaikka edellä esitetyt palvelut keskittyvät biomassan energiakäyttöön, muita mahdollisia tiedon käyttökohteita ovat esim. tekstiilikuidut, viherrakentaminen tai ravinteiden kierrätys.
The Carbofex de-carboniser is a continuously operating intermediate pyrolysis unit. The technology is based on an indirectly heated (allothermal) screw reactor. The unit converts biomass into biochar, pyrolysis oil and gas. The gases are used to energise the reactor and other applications such as dryers and hot water boilers.
With the de-carboniser it is possible to produce high quality biochar with low PAH levels. Flue gas emissions are very low, and a considerable amount of CO2 is bound into biochar. This removed CO2 equivalent can be traded internationally through compensation services. Carbofex's demo plant in Hiedanranta, Tampere can produce 700 tons of biochar and 600 tons of oil per year. Hiedanranta runs a 1 MW district heating plant as part of a municipal heating network. Excess heat, not needed for drying biomass or the pyrolysis process, is thus sold to the local district heating company. The demo plant uses wood chips from small diameter stem wood as feedstock but it may also include other biomass such as olive pits, olive cake, pecans, walnuts, hazels, pistachios, straw, hulls, waste wood, date pits, palm kernels and coconut shells. Wood fuel comes from private forest owners, supplied by a local forest management association. Wood is chipped and dryed at Hiedanranta premises.
Carbofexin jatkuvatoimisen pyrolysaattorin perustana on epäsuorasti kuumennettu ruuvireaktori, jossa biomassa pyrolysoidaan biohiileksi sekä pyrolyysiöljyksi ja -kaasuksi. Pyrolyysikaasut hyödynnetään reaktorin, biomassan kuivauksen ja lämpökattilan lämmönlähteeksi. Pyrolysaattorilla on mahdollista tuottaa korkealaatuista biohiiltä matalalla PAH tasolla. Savukaasupäästöt ovat hyvin pieniä. Merkittävä määrä bioperäistä hiilidioksidia sidotaan prosessissa biohiileen. Biohiilen valmistusta ja käyttöä voidaan hyödyntää niin kotimaisissa kuin kansainvälisissä hiilidioksidin kompensaatiopalveluissa. Carbofexin demolaitos Tampereen Hiedanrannassa voi tuottaa 700 tonnia biohiiltä ja 600 tonnia pyrolyysiöljyä vuodessa. Lämmöntuotantoa varten pyrolysaattorin yhteyteen on asenettu 1 MW lämpökattila. Kattilassa tuotettu ylimääräinen lämpö myydään suoraan Tampereen Sähkölaitoksen kaukolämpöverkkoon. Demolaitoksessa käytetään syötteenä rankahaketta, mutta on mahdollista pyrolysoida myös muita biomassoja ja tähteitä kuten oliivin kiviä, oliivikakkuja, pekaanin, pistaasin ja saksanpähkinän kuoria, olkea, viljankuoria, öljypalmun puristetähdettä ja kookospähkinän kuoria. Käytettävä polttoranka ostetaan yksityismetsänomistajilta paikallisen metsänhoitoyhdistyksen kautta. Haketus ja kuivaus tehdään itse.
According to Hakevuori Ltd’s CEO Reijo Wuorio, the main function for their terminals is to secure the supply of wood chips to heat and power plants, especially when direct supply from roadsides is not possible during frost-heave and bad road seasons in spring and autumn. “In addition, chip supply is solely executed from terminals during weekends, and as a balancing supply at times with a simultaneous occurrence of high fuel demand and failures of chippers.”
While the share of small sized whole trees and delimbed stemwood has risen, the need of terminals for storage and terminal chipping has increased. “The supply costs of delimbed stemwood chips are lower via terminals due to high payloads of timber trucks and nearly two times higher chipping productivity compared to chipping at roadside storages.” Wuorio highlighted that many heat and power plants have limited storage capacity to only a few days’ buffer at fuel yards, which again increases the importance of terminals for securing the uninterrupted supply to plants.
Large terminals with big heaps and piles of fuel feedstock, snow removal, and asphalt pavement will improve the quality of forest chips. Smaller terminals with no pavement are also essential to store un-comminuted wood transported from the roads with low trafficability and expensive road care (e.g. snow ploughing) in winter during high fuel demand.
Hakevuori Oy:n toimitusjohtajan Reijo Wuorion mukaan heidän terminaaliensa päätehtävänä on turvata hakkeen saanti lämpö- ja voimalaitoksille, varsinkin kun suora toimitus tienvarsivarastoilta ei ole mahdollista kevään ja syksyn kelirikkojen aikana. "Haketoimitukset suoritetaan terminaaleista viikonloppuisin ja aina tilanteissa, kun polttoaineen kysyntä on kova ja osa hakkureista ei ole käytössä."
Pienkokoisen kokopuun ja karsitun runkopuun osuus on kasvanut, mikä on lisännyt terminaalien tarvetta ja terminaalihaketusta. "Karsitun runkohakkeen toimituskustannukset ovat terminaalien kautta pienemmät tienvarsihaketukseen nähden. Tämä johtuu puuautojen suuresta hyötykuormasta ja lähes kaksi kertaa suuremmasta haketustuottavuudesta tienvarsihaketukseen nähden." Wuorio korosti, että monissa lämpö- ja energialaitoksissa varastointikapasiteetti vastaa noin parin päivän puskuria, mikä taas lisää terminaalien merkitystä laitosten keskeytymättömän metsähakkeen syötössä.
Suurissa terminaaleissa lumenpoisto hakekasoista ja asfalttipäällyste parantavat metsähakkeen laatua. Pienemmät päällystämättömät terminaalit ovat myös tarpeen, jotta puuta voidaan varastoida hakettamattomana hyvien tieyhteyksien varsille.
The biogas plant BIO-NIK ELEKTRA Sp. z o.o. in Kisielice, with the capacity of 0.999 MWe and 1.1 MWth, launched in 2014, is an integral part of an agricultural farm (1,800 ha).
The feedstock used in this biogas plant is maize silage in an amount of 17.5 thousand tons and slurry in an amount of 7,000 m3 obtained from own arable land and piggery. The biogas plant is a classical installation with sections of harvest, ensiling and storage of maize silage, and the transport of slurry, a fermentation digester and secondary digester, digestate tank, and a cogeneration system with the capacity of 1.2 MW. The average annual production of biogas is 4,300 million m3, including 8,400 MWh of electricity and 29,733 GJ of heat. The biogas plant has a potential for further improvement of energy efficiency.
The biogas plant, while generating revenue from electric power sold to an electrical grid, is also a part of the organic matter circulation. In addition, some of the heat generated at the plant is used internally on the farm while part of it is sold to the municipal district heating system. Therefore, the biogas plant has a positive impact on the local community as well.
The added value of the biogas plant operating on the farm has an economic dimension, i.e., the price for sold kilowatt of electric power, own costs of operating the biogas plant plus price for blue certificates, an environmental dimension i.e., digestate mass supplied to the farm’s fields and a social dimension, i.e., quantity and price of heat power sold to the district heating system in Kisielice municipality.
Biogazownia rolnicza BIO-NIK ELEKTRA Sp. z o.o. w Kisielicach o mocy 0.999 MW i 1.1 MW uruchomiona w 2014 r. jest integralną częścią działalności gospodarstwa rolniczego (1800 ha).
Substrat biogazowni jest kiszonka kukurydzy (17,5 tys. ton) oraz gnojowica (7000 m3) pozyskiwane z własnych gruntów ornych i fermy trzody chlewnej. Biogazownia jest klasyczną instalacją z sekcjami zbioru, kiszenia i magazynowania kiszonki kukurydzy oraz transportu gnojowicy, komory fermentacji i wtórnej komory fermentacji, zbiornika na poferment oraz układu kogeneracyjnego (moc 1.2 MW). Średnioroczna produkcja biogazu wynosi 4.300 mln m3 (energii elektrycznej 8400 MWh i cieplnej 29.733 GJ). Biogazownia ma potencjał poprawy efektywności energetycznej.
Zgodnie z dobrą praktyką rolniczą poferment biogazowni wykorzystuje się do nawożenia własnych gruntów. Według aktualnych analiz glebowych systematyczne wzbogacanie gleby w materię organiczną pofermentu korzystnie wpływa na koncentrację C org. w glebie na poziomie 2.2%, co wskazuje na istotnie większą zawartość materii organicznej w glebie w porównaniu z wartościami 1-2% dla 56% gruntów ornych w Polsce. Biogazownia, generując przychody z energii elektrycznej, stanowi jednocześnie finalny etap cyrkulacji materii organicznej i części energii cieplnej w obrębie gospodarstwa i pozytywnie oddziałuje na lokalną społeczność będąc elementem gminnego systemu ciepłowniczego. Wartość dodana biogazowni w gospodarstwie ma wymiar ekonomiczny (cena za sprzedany kW energii elektrycznej, koszty własne funkcjonowania, cena za błękitne certyfikaty), środowiskowy (poferment, który trafia na pola gospodarstwa) oraz społeczny (ilość i cena energii cieplnej sprzedawanej do sieci).
The district heating system in the municipality of Kisielice was the starting element in building the municipality’s energy independence based on renewable energy sources. Low-efficiency and high-emission local boilers were started to be replaced in 2004, when two biomass boilers, with the capacity of 1 and 2 MW, were installed. Next, by 2007, the heating plant had been expanded by installing another boiler, with the capacity of 3 MW, and a 100 kW photovoltaic power plant.
The source of biomass is cereal straw. The heating plant, having 40-60 contract agreements with local farmers, gathers straw directly after cereal harvest. The cost of buying straw from a farmer is €11/t. The total cost incurred to the heat plant, covering the purchase, transport, preparation of straw for storage, is €21/t. The heating plant can easily acquire sufficient quantities of straw. At the average efficiency of the broilers, reaching 90%, the annual average consumption of straw is 3 500 tons. The ash obtained in the process is collected by local farmers for free and applied as a fertilizer on their fields. The potential use of ash suitable for being managed is even greater than today.
Transforming low-cost straw into high-value heating energy is a locally generated added value. First, straw is cheaper than fossil fuels and biomass from dedicated production. Second, straw is a by-product that does not need an advanced processing. Third, the low-cost heating is based on local resources and contributes to the farmer’s profitability and overall well-being of local and general society by reducing household’s energy costs. And last, a part of straw yield harvested by the municipal company for energy purposes is partly compensated by returning minerals (ash) to the arable land.
System ciepłowniczy w gminie Kisielice był elementem wyjściowym budowania niezależności energetycznej gminy w oparciu o odnawialne źródła energii. Wymianę niskosprawnych i wysokoemisyjnych kotłowni lokalnych rozpoczęto w 2004 r. budując pierwsze dwa kotły na biomasę o mocach 1 i 2 MW a następnie od 2007 r. rozbudowę ciepłowni o kolejny kocioł o mocy 3 MW i elektrownię fotowoltaiczną o mocy 100 kW. Źródłem biomasy jest słoma zbożowa. Ciepłownia, w ramach 40-60 umów kontraktowych z lokalnymi rolnikami, zbiera słomę bezpośrednio z pokosów. Koszt zakupu słomy od rolnika to 11 €/t. Całkowity koszt poniesiony na ciepłownię, obejmujący zakup, transport, przygotowanie słomy do przechowywania to 21 €/t. Ciepłownia może z łatwością pozyskać wystarczającą ilość słomy. Przy średniej wydajności kotłów, sięgającej 90%, średnie roczne zużycie słomy wynosi 3500 ton. Powstały popiół jest w całości odbierany przez okolicznych rolników za darmo i aplikowany na polach. Potencjał możliwego do zagospodarowania popiołu jest nawet większy niż obecnie. Przekształcenie taniej słomy w wysokowartościową energię cieplną jest lokalnie generowaną wartością dodaną. Po pierwsze, słoma jest tańsza niż paliwa kopalne i biomasa z dedykowanej produkcji. Po drugie, słoma jest produktem ubocznym, który nie wymaga zaawansowanego przetwarzania. Po trzecie, tanie ogrzewanie opiera się na lokalnych zasobach i przyczynia się do wzrostu dochorów rolnika oraz ogólnego dobrobytu lokalnego i społeczeństwa lokalnego poprzez zmniejszenie kosztów energii w gospodarstwach domowych. Dodatkowo, część plonu słomy zebranej przez komunalne przedsiębiorstwo na cele energetyczne jest rekompensowana przez zwrot minerałów (popiołu) na grunty orne.
A rural Polish municipality Barciany has a relatively low population density rate and is dominated by farmland (83% of all land). Practically, all the municipality’s area is covered by the Natura 2000 environmental protection programme, which limits the possibility of constructing large wind and photovoltaic farms.
The municipality has been steadily developing its energy independence based on renewable energy resources in a system consisting of energy producers and consumers (prosumers). In 2009, two municipal biomass-fed district heating plants with the capacity of 1.3 MW and 0.3 MW were created through the natural conversion of fossil fuel powered municipal boiler plants used until then. The heating plants are fueled with wooden chips from trimming roadside shrubs and from other sources of waste lignocellulosic biomass such as forest and garden residues. The boilers operate during the heating season and supply heat to households and public buildings in the municipality. In 2013, a total of five geothermal heat pumps powered by electricity from the grid were installed to two municipal schools reducing the total heating costs by 70%. In 2017, a small photovoltaic farm with a capacity of 29 kW was installed on the premises of the Municipal Office and the municipality’s office. Also, a workshop building was fitted with a geothermal heat pump and a photovoltaic installation with the capacity of 8.5 kW. The generated electricity is sold to an electricity distributor and the profits added to the municipality’s revenues. The future goal of the municipality is to further develop the municipal district heating system to other households and public buildings that currently use coal as heating fuel.
Polska gmina wiejska Barciany ma niski wskaźnik gęstości zaludnienia a w strukturze gruntów dominują użytki rolne (83% wszystkich gruntów). Praktycznie cały obszar gminy objęty jest programem ochrony przyrody Natura 2000 limitując możliwość budowy dużych farm wiatrowych i fotowoltaicznych. Gmina rozwija niezależność energetyczną w oparciu o OZE w systemie składającym się z producentów energii i konsumentów (prosumentów). W 2009 roku powstały 2 ciepłownie miejskie o mocy 1,3 MW i 0,3 MW zasilane biomasą w efekcie przekształcenia dotychczas użytkowanych kotłowni na paliwa kopalne. Ciepłownie zasilane są zrębkami drzewnymi z przycinania przydrożnych krzewów oraz innych źródeł odpadowej biomasy lignocelulozowej. Kotły w sezonie grzewczym dostarczają ciepło do gospodarstw domowych i budynków użyteczności publicznej na terenie gminy. W 2013 roku w 2 szkołach miejskich zainstalowano łącznie 5 geotermalnych pomp ciepła zasilanych energią elektryczną z sieci, co obniżyło koszty ogrzewania o 70%. W 2017 roku na terenie Urzędu Gminy zainstalowano małą farmę fotowoltaiczną o mocy 29 kW. Dodatkowo budynek warsztatowy został wyposażony w geotermalną pompę ciepła oraz instalację fotowoltaiczną o mocy 8,5 kW. Wytworzona energia elektryczna jest sprzedawana dystrybutorowi energii, a zyski zasilają budżet gminy. Rozwój miejskiego systemu ciepłowniczego zakłada jego rozszerzenie o inne gospodarstwa domowe i budynki użyteczności publicznej, które obecnie wykorzystują węgiel jako paliwo grzewcze.
The company Qmilch use a new technology producing synthetic fibers, microbeads, biopolymers, and thousands of other materials that are biodegradable made of the milk protein called casein. The casein, which is the main resource of the products is produced from raw milk that isn’t tradable and in accordance to legal regulations not be used as food. Although the milk is not suitable for consumption, the milk still contains valuable ingredients like casein, that offers a big potential for technical purposes. Furthermore, it is a raw material, which is inevitably accrued and thus only extend its product life cycle is used.
With over 3000 recipes, the company offers a wide range of modifications of thermoplastic elastomeric, but also properties of thermosets for different purposes. By customizable cross linking the material leads to a good mechanical strength and chemical resistance for various technical areas of interest.
Because of the eco-efficient production technology and special recipe, new standards in fibre production were set, implying cost-reduction, minimum of waste and maximizes renewal. For example, for the production of 1 kg of fibre only 5 minutes and max. 2 liters of water are needed. This implies a particular level of cost efficiency and ensures a minimum of CO2 emissions. Qmilch fibre is biodegradable, without chemical additives and naturally antibacterial. For its characteristics, it brings a lot of advantages for end-users. The new value chains can support dairy farmers of using the residues of raw milk an turning waste milk into a resource.
The company has the potential to be a sustainable replacement for petroleum based synthetic fibers, and certain types of plastic food packaging as well as numerous other applications that have yet to be fully explored.
Das Unternehmen Qmilch verwendet eine neuartige Technologie zur Herstellung von synthetischen Fasern, Mikroperlen, Biopolymeren und anderen biologisch abbaubaren Materialien, die aus dem Milchprotein Kasein erzeugt werden. Das Kasein wird aus Rohmilch gewonnen, die nicht im Handel erhältlich ist und nach den gesetzlichen Bestimmungen nicht als Lebensmittel verwendet werden darf. Die Milch ist zwar nicht zum Verzehr geeignet, enthält aber dennoch wertvolle Inhaltsstoffe wie Kasein, die ein großes Potenzial für technische Zwecke bieten. Außerdem handelt es sich um einen Rohstoff, der unweigerlich in der Milchproduktion anfällt und somit nur zur Verlängerung des Produktlebenszyklus verwendet wird.
Mit über 3000 Rezepturen bietet das Unternehmen eine breite Palette an Abwandlungen von thermoplastische Elastomeren, aber auch Eigenschaften von Duroplasten für unterschiedliche Einsatzzwecke als Kunststoffe. Durch anpassungsfähige Vernetzungen führt das Material zu einer sehr guten mechanischen Festigkeit und chemischen Beständigkeit für verschiedenste technische Anwendungsbereiche.
Im Bereich der Faserproduktion wird eine umweltschonende Produktionstechnologie eingesetzt, die zu Kostensenkungen und einer Minimierung des Abfalls führt. Zum Beispiel werden für die Herstellung von 1 kg Fasern nur 5 Minuten und max. 2 Liter Wasser benötigt. Dies bedeutet ein besonderes Maß an Kosteneffizienz und gewährleistet ein Minimum an CO2-Emissionen. Die Qmilch-Faser ist biologisch abbaubar, ohne chemische Zusätze und von Natur aus antibakteriell. Aufgrund ihrer Eigenschaften bringt sie viele Vorteile für die Endverbraucher. Die neuen Wertschöpfungsketten können die Milchbauern dabei unterstützen, die Reste der Rohmilch zu verwerten und die Milchabfälle in eine Ressource zu verwandeln.
Das Unternehmen bietet Potenzial, synthetische Fasern auf Erdölbasis und bestimmte Arten von Lebensmittelverpackungen aus Kunststoff nachhaltig zu ersetzen, sowie zahlreiche andere Anwendungen, die noch nicht vollständig erforscht sind.
The Qvidja organic farm is a pilot farm that follows the innovative principle, taking into account both nutrient recycling and carbon sequestration. The aim of the farm is to mitigate climate change and to increase biodiversity. In addition, emissions to Baltic Sea are minimized. Cows, horses and sheep graze on the farm. All the fields (180 hectares) are on grassland, which aims to improve the structure of the land. The farm is gradually switching into a crop rotation with the emphasis on native species and nitrogen-binding plants. In addition to food production, the farm has a biogas plant, a biomethane filling station and a wood gasification plant. In the gasification unit, the gas is utilized in electricity and heat production. The farm also has a wood chip heating plant, and a solar power plant. Grass and manure from the farm are used as a feed for the biogas plant. The produced biogas is upgraded, after which biomethane can be used as a vehicle fuel. There are three methane-powered vehicles on the farm. Instead of releasing carbon dioxide from biogas to the atmosphere, in Qvidja the carbon dioxide is fed to QPower’s biological methanation pilot plant, which utilizes microbes to produce methane from carbon dioxide and hydrogen. Hydrogen for the pilot plant is obtained from electrolysis and from the wood gasification unit. Plant’s efficiency is 82%, which doubles the methane production. Digestate from biogas plant is used as fertilizer on the farm. By improving the soil structure and using recycled fertilizers according to plant needs, nutrient leaching can be minimized and carbon sequestration in the fields can be increased. All work is done for the climate and the Baltic Sea, biodiversity being the foundation for all actions.
Qvidjan luomutila on uudistavaa periaatetta noudattava kokeilutila, jossa huomioidaan niin ravinteiden kierrätys kuin hiilensidonta. Tavoitteena on ilmastonmuutoksen hillintä ja luonnon monimuotoisuuden kasvaminen. Lisäksi päästöt Itämereen minimoidaan. Tilalla laiduntaa nautoja, hevosia ja lampaita. Pelloilla pyritään maaperän hiilivarastoa kartuttavaan, biologiseen viljelyyn. Kaikki pellot (180 ha) ovat nurmella, jolla tavoitellaan maan rakenteen parantamista. Vähitellen tilalla siirrytään viljelykiertoon, jossa korostetaan kotoperäisiä lajeja ja typensitojakasveja. Ruoantuotannon lisäksi tilalla on biokaasulaitos ja puukaasulaitos, jonka kaasu hyödynnetään sähkön ja lämmöntuotannossa, hakelämpölaitos sekä aurinkovoimalaitos. Biokaasulaitoksessa hyödynnetään nurmia ja lantoja. Tuotettu biokaasu puhdistetaan, jonka jälkeen biometaania voidaan käyttää ajoneuvojen polttoaineena. Tilalla on kolme metaanikäyttöistä ajoneuvoa.Biokaasu tuottaa aina noin 40 % hiilidioksidia. Sen sijaan että se päästettäisiin ilmaan, Qvidjassa se syötetään QPowerin biologisen metanoinnin reaktoriin, joka tekee vedystä ja hiilidioksidista metaania mikrobien avulla. Vetyä saadaan elektolyysilaitteistolla sekä puukaasulaitoksesta. Metanointilaitos toimii 82 % hyötysuhteella. Biokaasulaitoksen mädäte hyödynnetään tilalla lannoitteena. Maaperän rakennetta parantamalla ja käyttämällä kierrätyslannoitteita kasvien tarpeen mukaisesti, pyritään vähentämään ravinteiden huuhtoutumista ja lisäämään hiilen sidontaa pelloilla. Kaikki tilan toiminta perustuu Itämeri-ystävälliselle ja ravinteita kierrättävälle ruoantuotannolle, ja biodiversiteetti on kaiken perustana.
Many companies heed a lot of hot water (in the food industry for cleaning for example) and at the same time have a lot of one use pallets, which they normally have to dispose. The idea of this system is to use the pallets to heat up the water which is needed. It consists of a Heizomat pallet chipper, a wood chips deposit and a Heizomat woodchips boiler, all monted inside a 40" container. The system contributes to reducing the company's energy costs (the recovery of 13 pallets replaces 100 litres of diesel), significantly reducing the space required for pallet storage and eliminating the transport costs associated with moving the pallets to the disposal or treatment site, which also leads to a reduction in greenhouse gas emissions associated with this transport, thereby contributing both to reducing climate change and to the circular economy.
This is a 100 kW system that can produce around 250,000 kWh of heat per year (equivalent to 25,000 litres of diesel with an associated cost of around €20,000/year depending on the cost of diesel, which is on an upward trend). Considering a conservative scenario, it is estimated that the system would pay for itself in approximately 5 years (for the 200 kW boiler the payback period is considerably shorter). In addition, there are further savings associated with the avoided payment for the collection of the pallets or the sale of certificates for the avoided CO2 emissions.
Numerosas empresas por un lado emplean palets de un solo uso y por otro necesitan calor en su proceso productivo. Con el objetivo de posibilitar aprovechar esa casuística Heizomat ha desarrollado un sistema que permite valorizar la energía de los palets, produciendo calor. El sistema consiste en una astilladora de palets, un silo para almacenamiento de las astillas y una caldera para su combustión, todo integrado en un contenedor.
El sistema contribuye a reducir el coste energético de la empresa (la valorización de 13 palets permite sustituir 100 litros de gasoil), reducir significativamente el espacio necesario para el almacenamiento de palets y eliminar los costes de transporte asociados al traslado de los palets al lugar de vertido o tratamiento lo que conlleva además una reducción de la emisión de gases de efecto invernadoro asociada a este transporte contribuyendo con ello tanto a la reducción del cambio climático como a la economía circular.
Se trata de un sistema de 100 kW que puede producir alrededor de 250.000 kWh de calor al año (equivalente a 25.000 litros de gasoil con un coste asociado alrededor de 20.000€/año en función del coste del gasoil que presenta una tendencia creciente). Considerando un escenario conservador, se estima que el sistema estaría amortizado en aproximadamente 5 años (para la caldera de 200 kW el periodo de amortización es considerablemente más corto). Además, se incurren en otros ahorros asociados al pago que se evita por la recogida de los palets o la venta de certificados por las emisiones de CO2 evitadas.
Boiler fouling and corrosion are two of the most challenging draw-backs when operating a boiler with solid biofuels such as the olive cake or poultry manure presenting a high LHV which makes them quite attractive to valorise them with energy purposes. However, the high content of unburned and chemical components leads to the generation of deposits on the heat exchangers. The consequences associated to these phenomena include the decrease of the boiler performance, clogging and corrosion occurrence. Traditional cleaning system operating in continuous mode do not guarantee a stable performance during operation neither the avoidance of deposits formation in the heat exchanger surfaces which implies the need to schedule regular shutdowns for maintenance. This new boiler concept developed and patented by SUGIMAT, is based on a rotatory boiler and an automatic cleaning system that avoid clogging and keeps the system clean. This boiler can be developed for power ranges up to 12 MW and it can adapt to different combustion systems. One of the main advantages derives from its capacity to operate with materials that contain a high percentage of ash and dust without affecting its performance due to clogging phenomenons and savings associated to the compressor for blower cleaning. It is also worth highlighting its installation versatility since the heater allows different locations with respect to the combustion chamber.
El ensuciamiento y la corrosión en caldera son dos de los principales problemas a la hora de valorizar biocombustibles sólidos como el orujillo o la gallinaza. Tienen un alto poder calorífico, lo que los hace
atractivos, pero contienen altas tasas de inquemables y compuestos químicos que provocan
depósitos sobre los intercambiadores de calor. Esto conlleva un menor rendimiento de los
equipos, la obstrucción de pasos de humos y corrosión. Los sistemas de limpieza en continuo tradicionales no
garantizan un rendimiento estable del equipo durante el tiempo de operación, ni evitan la formación de
depósitos en los cuerpos de intercambio, forzando paradas para la limpieza.
Este nuevo concepto de caldera desarrollado y patentado por SUGIMAT, se basa en una caldera rotativa con sistema de autolimpieza que combate de forma eficaz el ensuciamiento y la formación de depósitos en su interior. La caldera se fabrica en rangos de hasta 12 MW de potencia y puede adaptarse a distintos sistemas de combustión.
Las principales ventajas de esta caldera incluyen su capacidad de operar de forma eficiente con combustibles con altísimos porcentajes de inquemables sin problemas de obstrucción de paso ni disminución de rendimiento, el ahorro del consumo eléctrico que precisa la limpieza por aire comprimido, consigue un rendimiento estable durante el tiempo de operación, evita tener que realizar paradas programadas para limpieza, su versatilidad de montaje y la eficiencia global de la instalación.
Sectorial stakeholders have shown an increasing interest, leading Secaderos de la Loma to develop a modular cleaning system for olive stones for different power ratings which allow to obtain a better quality (reduce the amount of dust and peels) and dryer biofuel by means of the cleaning of the olive stone. In turn, the increased quality of the biofuel will contribute to achieve a better boiler performance and reduce the maintenance required. This equipment can operate with dry material but also with olive stones with a moisture content up to 20 % in automatic mode. It is also able to work with different input flow rates, achieving a production that can fluctuate from 2 tonnes per hour up to 14 tonnes per hour of dry product reaching almost 100 % efficiency even when the input flow is maximum. The investment payback time can be reached in around 3 years and requires an investment of 45,000 euros. The equipment is already operating in 3 companies located in the south of Spain.
The installation of this equipment as part of the production line implies diverse benefits such as the possibility to certify the olive stones production according to the BIOMASUD certification scheme, it contributes to the local circular economy of the company increasing the waste valorisation and raise awareness in the municipality in this regard, helping to reduce the employment seasonality during the olive campaign and allowing the valorisation of one of the subproducts obtained during the processing with the resulting economic benefit.
El creciente interés por parte de los agentes del sector ha llevado a la empresa Secaderos de la Loma a desarrollar este tipo de limpiadoras modulares para distintas potencias que permiten la limpieza de hueso y por ende la obtención de un biocombustible de mayor calidad sin humedad, polvo o pellejo, lo que repercute sobre la operación y mantenimiento de los equipos de combustión en los que se valoriza. El equipo permite la limpieza del hueso de aceituna tanto seco como con una humedad de hasta el 20% de forma automática y es capaz de operar con flujos de entrada muy dispares, por lo que la producción puede variar entre 2 y 14 toneladas/hora de producto seco rozando una eficienncia del 100 %, incluso cuando la entrada del hueso es masiva. Desde el punto de vista de la amortización, el equipo se amortiza en un periodo de alrededor de 3 años y require una inversión de 45.000 euros. Se han instalado 3 equipos en empresas ubicadas en el sur de España.
La implantación de este equipo como parte del proceso productivo tiene asociado numerosos beneficios como son el certificar la producción de hueso bajo el certificado BIOMASUD, contribuir a generar una economía
circular en la empresa a través de la valorización del sub-producto y generar una concienciación en torno a este tema en la localidad, ayudando a reducir la temporalidad de los contratos de la campaña de la aceituna y permitiendo valorizar uno de los subproductos del proceso, con el consiguiente beneficio económico.
A cattle farm located in Poland keeps dairy and meat cattle in a close circuit system, including the full production cycle from birth to dairy or meat production. On average, the farm rears 120 calves, 150 dairy cows and 130 meat cattle and the farm covers 430 ha of arable land. Cattle slurry is the only feedstock supplied to an on-farm biogas plant, which is technologically and functionally integrated with the dairy cows’ shed. During the technological process, slurry is transported to a mesophilic digester. The biogas produced there (60% CH4 and 40% CO2), passing through an air lock, electric valve and carbon filter, feeds two electric engines, each with the power of 11 kW. The heat generated in the engine, water-cooled exhaust manifold and combustion gas heat exchanger are used to heat the digester and produce hot water for the internal on-farm use. Digestate is collected in a tank and used for fertilization of the farm’s fields.
The on-farm micro biogas plant with the range of electric power from 10-50 kWe has several benefits. The solution promotes prosumerism where the energy consumer also produces energy increasing energy self-sufficiency and mitigating the need to purchase energy. The solution also promotes ecofriendly activities related to on-farm utilization of generated waste. The micro biogas plant is also an integral part of agricultural production (livestock in this case) securing internal circulation of nutrients in the farm and mitigating emission effect.
Farma bydła zlokalizowana w Polsce utrzymuje bydło mleczne i mięsne w systemie zamkniętym, obejmującym pełny cykl produkcyjny od rozrodu do produkcji mlecznej i mięsnej. Średniorocznie, w gospodarstwie prowadzi się odchów 120 sztuk cieląt, 150 sztuk krów mlecznych i 130 sztuk bydła opasowego. a gospodarstwo dysponuje areałem gruntów ornych o powierzchni 430 ha.
Gnojowica bydlęca jest jedynym substratem biogazowni zintegrowanej technologicznie i funkcjonalnie z obiektem obory krów mlecznych. W procesie technologicznym gnojowica jest transportowana do reaktora fermentacji mezofilowej. Wytworzony biogaz (60% CH4 i 40% CO2) poprzez śluzę powietrzną, elektrozawór i filtr węglowy zasila dwa silniki elektryczne o mocy 11 kW każdy. Energia cieplna wywarzana w silniku, kolektorze wydechowym chłodzonym wodą i wymienniku ciepła gazów spalinowych jest wykorzystywana do ogrzewania reaktora i produkcji ciepłej wody. Poferment jest gromadzony w zbiorniku i wykorzystywany do nawożenia własnych gruntów.
Zakładowa mikrobiogazownia o zakresie mocy elektrycznej od 10-50 kWe ma kilka zalet. Rozwiązanie promuje prosumeryzm, w którym odbiorca energii również wytwarza energię zwiększając samowystarczalność energetyczną i zmniejszając potrzebę zakupu energii. Rozwiązanie promuje również proekologiczne działania związane z utylizacją w gospodarstwach wytworzonych odpadów. Mikrobiogazownia jest również integralną częścią produkcji rolniczej (w tym przypadku hodowlanej) zabezpieczając wewnętrzny obieg składników pokarmowych w gospodarstwie i ograniczając efekt emisyjny.
In Finland, berries and mushrooms are commonly used non-timber forest products (NTFPs). There is a wide variety of other NTFPs that are used increasingly in the food sector, cosmetics, and health-promoting products. Still, NTFPs are a minor forest product in terms of their direct monetary value compared to timber, despite their potential use in products with high added value. Thus, boosting NTFPs value chains is needed in the Finnish rural bioeconomy.
The production of NTFPs not covered by everyman’s right can create significant additional income for forest owners compared to timber production alone.
In large-scale sap tapping, where thousands of birches are tapped, requires investments in equipment and labor costs in installing and maintenance. Also considering the possible decrease in timber quality and value due to taphole wounds, sap tapping is profitable for forest owners. Despite its huge potential, there are only a few local companies buying sap collected by forest owners mainly as a family activity.
Specialty mushroom cultivation has recently been introduced to Finnish forestry. Living birch trees (Betula spp.) are inoculated with pakuri (Inonotus obliquus) by drilling holes in trunk and installing inoculation plugs in the holes. Cultivating pakuri in set-aside birch stands, there is no conflict with timber production. Specialty wood-decay mushrooms can be cultivated on stumps without any effect on timber production. For example, reishi (Ganoderma lucidum) could be cultivated in connection with harvesting operation like spreading the control agents in stump treatment against root rot. Both mushroom species are collected from forests naturally grown but the cultivation will increase the quantity supplied to the market.
Marjojen ja sienten lisäksi metsät tuottavat myös muita luonnontuotteita, joita käytetään raaka-aineena elintarvikkeissa, kosmetiikassa ja luontaistuotteissa. Kasvavasta raaka-ainekysynnästä ja korkean arvon lopputuotteista huolimatta luonnontuotteiden arvo on vain murto-osa puun myyntituloista. Metsäsektorin kaikkien toimijoiden – niin metsänomistajien kuin metsäalan ammattilaisten – tulisi nähdä luonnontuotteet aitona mahdollisuutena biotaloudessa.
Luonnontuotealan haasteena on saada lisättyä metsien luomukeruualan määrää.
Luonnontuotteista, joita ei voi kerätä jokamiehenoikeuksin, saatavat lisätulot voivat olla merkittäviä metsänomistajille. Koivikoissamme virtaa keväisin suuret määrät mahlaa. Laajamittaisessa, jopa tuhansista koivuista tehtävässä mahlan valutuksessa käytetään putkiverkostoa. Välinekustannuksista ja valutusreikien mahdollisesti aiheuttamasta puuraaka-aineen laadun alentumasta huolimatta mahlan valutus on kannattavaa metsänomistajille. Tuotannon lisäämiseen on hyvät mahdollisuudet, mutta mahlayrityksiä on vain muutama ja ne ostavat mahlaa paikallisesti.
Ns. erikoissienten viljelyyn on kehitetty menetelmiä. Pakuria viljellään eläviin koivuihin, joiden runkoihin porattuihin reikiin työnnetään sienirihmastolla ympättyjä tappeja. Puuta lahottavien erikoissienten viljely onnistuu myös hakkuukannoilla. Esimerkiksi lakkakäävän viljely voidaan yhdistää kesäaikaiseen, koneelliseen hakkuuseen. Hakkuun yhteydessä lakkakäävän sienivalmistetta levitetään kannoille samalla tavalla kuin kantokäsittelyaine levitetään juurikäävän torjumiseksi. Pakurin ja viljeltyjen sienten poiminta ei kuulu jokamiehenoikeuksien piiriin.
This PA is still waiting for the final approval and will be added thereafter.
This PA is still waiting for the final approval and will be added thereafter.
Biochar production by slow pyrolysis represents an opportunity for forestry companies to diversify their income and to create new and stable business opportunities compared to typical decentralised biomass energy production. Small farms, typical of southern European countries, are generally not prepared to manage biomass energy generation systems. Biochar has multiple uses: domestic fuel, feed additive, as a filter element in water treatment plants (activated carbon); food additive, use in pharmaceuticals. In recent years, interest has been focused on agricultural use. The main agronomic advantages of spreading biochar in the field concern increasing soil fertility by improving its physical, chemical and biological properties, such as: Mechanical structure; Density and texture; Porosity and aeration; Water retention capacity; Increased pH in acidic soils; Cationic and anionic exchange capacity; Nutrient supply and decreased leaching of nutrients; Increased efficiency of the nitrogen cycle; Carbon supply of organic matrix, recalcitrant and ideal habitat for the development of microorganisms. Biochar is produced through a slow pyrolysis process from forestry waste and by-products, with an investment cost and operating complexity that ensure its sustainability under market conditions. The plant can also be operated by non-highly qualified personnel and allows biochar to be produced in a sustainable way, using local raw materials with limited polluting emissions.
La produzione del biochar tramite pirolisi lenta rappresenta un’occasione per le aziende forestali per diversificare i loro introiti e per creare nuove e stabili opportunità di business rispetto alla tipica produzione decentralizzata di energia da biomassa. Le piccole aziende agricole, tipiche dei paesi dell’Europa del sud, non sono generalmente preparate alla gestione di sistemi di generazione di energia da biomassa. Il biochar ha molteplici usi: combustibile domestico, additivo per mangimi, come elemento filtrante negli impianti di trattamento acque (carboni attivi); additivo alimentare, utilizzo in farmaceutica. Negli ultimi anni si è concentarto l'interesse verso l’uso agricolo. I principali vantaggi agronomici dello spargimento di biochar in campo riguardano l’incremento della fertilità del suolo tramite il miglioramento delle sue proprietà fisiche, chimiche e biologiche, quali: struttura meccanica; densità e tessitura; Porosità ed areazione; Capacità di ritenzione idrica; Aumento del pH nei suoli acidi; Capacità di scambio cationica ed anionica; Apporto di nutrienti e diminuzione della lisciviazione degli stessi; Maggior efficienza del ciclo dell’azoto; Apporto di carbonio di matrice organica, recalcitrante e per l'Habitat ideale per lo sviluppo di microrganismi. - Delineare le indicazioni sull'attrezzatura necessaria, i costi di funzionamento e la fattibilità della soluzione nell'ambiente operativo valutato". Il biochar viene prodotto attraverso un processo di pirolisi lenta a partire da scarti e sottoprodotti della filiera forestale, con un costo di investimento e complessità di esercizio che garantiscono la sua sostenibilità sulle condizioni di mercato. L’impianto, inoltre, può essere operato anche da personale non altamente qualificato e permette di produrre biochar in modo sostenibile, usando materie prime locali limitate emissioni inquinanti.
The COBRAF project - 'Co-products from BioRAFineries' - proposed and implemented a concrete model of bio-economy, based on products derived from 4 oil crops: camelina, hemp, safflower and flax, all characterised by high nutritional and health properties such as polyunsaturated fatty acids and many other metabolites. In the case of hemp (Canapa sativa L.), the project has shown that small-scale cultivation provides environmentally and economically sustainable products and sub-products that include flowers, seeds, hemp and fibre. The upper part of the plant contains more than 600 different chemical compounds, all of which are used in the pharmaceutical sector. The seeds can be used in animal feed, human nutrition, as supplements, and in the nutraceutical sector. Canapulus is destined for the green building market, the automotive industry, packaging and bio-based plastic composites. The fibre, on the other hand, is destined for the green building market for the production of heat-insulating and sound-absorbing mats and panels and, through innovative microbiological maceration processes, it is possible to produce macerated hemp fibre, particularly suitable for the textile and paper markets. In the last five years, the world hemp market has changed radically, partly as a result of the confirmation of the health and therapeutic value of the cannabinoids contained in hemp inflorescences, such as cannabidiol (CBD). Many of the products derived from hemp, particularly those intended for pharmaceutical and food use, can have an economic knock-on effect on supply chains.
Il progetto COBRAF – “Co-prodotti da BioRAFfinerie” - ha proposto e realizzato un modello concreto di bioeconomia, basato su prodotti derivanti da 4 colture oleaginose: camelina, canapa, cartamo e lino, tutte caratterizzate da elevate proprietà nutrizionali e salutistiche come acidi grassi polinsaturi e molti altri metaboliti. Nel caso della canapa (Canapa sativa L), il progetto ha dimostrato che la coltivazione su piccola scala fornisce prodotti e sotto prodotti ambientalmente ed economicamente sostenibili che includono fiori, semi, canapulo e fibra. I fiori contengono più di 600 composti chimici diversi, tutti utilizzati nel settore farmaceutico. I semi, possono essere utilizzati nell'alimentazione animale, nel settore dell’alimentazione umana, come integratori, e nel settore nutraceutico. Il canapulo è destinato al mercato della bioedilizia, all'industria automobilistica, agli imballaggi e ai compositi plastici a base biologica. La fibra invece interessa il mercato della bioedilizia per la produzione di stuoie e pannelli termoisolanti e fonoassorbenti e, attraverso innovativi processi di macerazione microbiologica è possibile produrre fibra di canapa macerata, particolarmente adatta al mercato tessile e cartario. Negli ultimi 5 anni il mercato mondiale della canapa ha cambiato radicalmente volto anche in seguito alla conferma del valore salutistico e terapeutico dei cannabinoidi contenuti nelle infiorescenze della canapa come il cannabidiolo (CBD). Molti dei prodotti derivati dalla canapa, in particolare quelli destinati all’uso farmaceutico e alimentare, possono avere un effetto economico trainante sulle filiere.
SunCoal is using the hydrothermal carbonization process (HTC) to produce the high quality biocoal that is comparable to brown coal. The HTC works with pressure and heat in order to replicate the natural carbonisation process of biomass. The biocoal has a energetic value that is 70% higher than that of the starting materials. SunCoal can utilize the local green waste for biocoal and biochemicals production with low waste disposal costs. In CarboRen plant, 100 kgCO2/GJ output can be avoided at a production capacity of 17250 tonnes biocoal. Biocoals can be produced in various forms (dust, pellets, granulate). Market price for biocoals produced with HTC obtains 230€ per tonne dry matter. In a CarboREN plant, around 17,250 tonnes biocoal, equivalent to 345,000 GJ energy can be gained from 50,000 tonnes/year green waste, and 33,000 tonnes CO2 can be avoided. Due the advantage of the high feedstock flexibility from residues farmes and foresters can deliver their agricultural residues and wood waste to process them to biocoal. Fermentation for biogas and other chemicals production is possible as competitive usage. Green wastes can also be used for composting. The CarboREN process makes the use of biomass more efficient and itself is environmentally friendly, there are no harmful by-products. Technical implenentation and upscaling is challenging to realize, legal framework for the utilization of green waste is missing.
SunCoal setzt das hydrothermale Karbonisierungsverfahren (HTC) ein, um hochwertige Biokohle zu produzieren, die mit Braunkohle vergleichbar ist. Die HTC arbeitet mit erhöhten Druck und Hitze, bei dem Biomasse in Biokohle überführt wird. SunCoal kann die lokalen Grünabfälle für die Produktion von Biokohle und Biochemikalien mit geringen Entsorgungskosten nutzen. Hierbei hat die Biokohle 70 % höheren Energiewert als die Ausgangsstoffe und kann in verschiedenen Formen hergestellt werden (Staub, Pellets, Granulat). Die CarboRen-Anlage können 100 kgCO2/GJ bei einer Produktionskapazität von 17250 Tonnen Biokohle einsparen. Aus 50.000 Tonnen Grünabfällen pro Jahr können etwa 17.250 Tonnen Biokohle gewonnen werden, was 345.000 GJ Energie entspricht und somit eine Einsparung von 33.000 Tonnen CO2. Der Marktpreis für HTC- Kohle liegt bei 230 € pro Tonne Trockenmasse. Durch die hohen Rohstoffflexibilität für die Anlagen, können Land- und Forstwirte verschiedene landwirtschaftlichen Reststoffe anliefern, die zu Biokohle verarbeiten werden. Effektive Nutzung ist gegeben durch einerseits der Vergärung zur Produktion von Biogas und Chemikalien und andererseits durch Grünabfälle, die zur Kompostierung verwendet werden können. Das CarboREN-Verfahren ist zudem umweltfreundlich, da keine zusätzlichen schädlichen Nebenprodukte entstehen. Die technische Umsetzung und Hochskalierung der Produktion insgesamt können schwierig realisierbar sein und es fehlt der rechtliche Rahmen für Grünabfällen.
The company Biowert process meadow grass from the region as a raw material into innovative materials by a biorefinery process and green electricity by an affiliated biogas plant. It has developed fibre-reinforced thermoplastic AgriPlast for injection moulding and extrusion, which input material (granules) contain up to 75% cellulose. Digestate from the biogas plant is further processed to a biofertilizer used by local farmers. The grass fibre for the biobased-products can be fully recycled without generating waste products or waste water in an efficient closed-loop process. The facility has an annual throughput of about 2,000 t dry matter (equivalent to 8,000 t grass per year). The integrated biogas plant produces c. 1,340,000 m3 of biogas annually which is used in combined heat and power facilities, which produced 5.2 GWhel of electricity (in 2012).
Instead of depending on changing market prices of the crops, regional farmers can benefit of the increasing profits from the sale of meadow grass and provide them a secure income. The output of the cultivation of meadow grass is high because of its low input of labour, machines, fertiliser and serveral harvests per year. However, it doesn’t lead to a depletion of soils like other crops, as biomass residues from the production process are returned to the field as fertiliser.
The benefit for bio-based industry is opening new market sectors in the bioeconomy with the severals characteristics of the innovative product AgriPlast. The product is light, resistant to abrasion, suitable for injection moulding and extrusion and nontoxic. The cellulose is embedded in a thermoplastic matrix that can be made out of PP, recyclates, or out of biodegradable plastics.
Towards to closed-loop manufacturing process, the company produce bio-based products that avoid waste water and high amount of resources. The meadow gras supplied by local farmers ensures resource-efficient logistic and in total the production itself has a low ecological footprint. The applied technology needs a good network between the actors to sustain the supply chain of the biobased products. Via cooperation with local farmers that produce the biomass, partner companies to realise new products and (inter-) national companies distribute the end products to the end-users. Colloboration with other processing industries that uses AgriPlast products as raw material may help to produce a wider range of bio-based plastic products.
The self-sufficient grass factory substitute conventional thermoplastic based on crude oil and its product may lead to a lower dependency of oil.
Die Firma Biowert verarbeitet Wiesengras aus der Region über das Bioraffinerieverfahren zu innovativen Materialien, die unter anderem in der angeschlossenen Biogasanlage zu grünem Strom produziert. Die Grasfabrik hat den grasfaserverstärkten thermoplastischen Kunststoff AgriPlast für Spritzguss und Extrusion entwickelt, dessen Ausgangsmaterial (Granulat) bis zu 75% Zellulose enthält. Die Gärreste aus der Biogasanlage werden zu einem Biodünger weiterverarbeitet, der von den Landwirten vor Ort verwendet wird. Die Grasfasern für die biobasierten Produkte können in einem effizienten Kreislaufprozess vollständig recycelt werden, ohne dass Abfallprodukte oder Abwässer entstehen. Die Anlage hat einen jährlichen Durchsatz von etwa 2.000 t Trockenmasse (entspricht 8.000 t Gras pro Jahr). Die integrierte Biogasanlage produziert jährlich ca. 1.340.000 m3 Biogas, das in Kraft-Wärme-Kopplungsanlagen genutzt wird, die 5,2 GWhel Strom produzieren (im Jahr 2012).
Die regionalen Landwirte können von den steigenden Gewinnen aus dem Verkauf von Wiesengras profitieren und sich ein sicheres Einkommen sichern, anstatt von den schwankenden Marktpreisen anderer Feldfrüchte abhängig zu sein. Der Output aus dem Anbau von Wiesengras ist hoch, weil der Einsatz von Arbeitskräften, Maschinen und Dünger gering ist und mehrere Ernten pro Jahr anfallen können. Zudem führt das Gras nicht wie andere Kulturpfalnzen zu der Auszehrung der Böden. Biomassereste aus dem Produktionsprozess des Grases kann als Biodünger auf das Feld zurückgeführt werden.
Neuen Marktbranchen der biobasierten Industrie können durch die Eigenschaften des Produkts AgriPlast erschlossen werden. Denn das Produkt ist leicht, abriebfest, für Spritzguss und Extrusion geeignet und ungiftig. Die Zellulose ist in eine thermoplastische Matrix eingebettet, die aus PP, Recyclaten oder biologisch abbaubaren Kunststoffen hergestellt werden kann.
Das gelieferte, lokale Wiesengras hat kurze Transportwege und der Ressourcenverbrauch der kreislaufbasierten Produktion ist niedrig. Insgesamt hat die Wertschöpfungskette einen geringen ökologischen Fußabdruck. Die angewandte Technologie benötigt ein gutes Netzwerk zwischen den Akteuren, um die Lieferkette der biobasierten Produkte aufrechtzuerhalten. Über Kooperationen mit lokalen Landwirten, die die Biomasse produzieren, Partnerunternehmen, die an neuen Produkten arbeiten und (inter-)nationalen Unternehmen, die die Endprodukte an die Endverbraucher vertreiben. Mit der Zusammenarbeit mit anderen verarbeitenden Industrien, die AgriPlast-Produkte als Rohmaterial nutzen, kann der Markt mit biobasierten Kunststoffprodukten wachsen und die Abhängigkeit von Erdöl kann verringert werden.
VTT’s proof-of-concept biomass hybrid dryer combines solar collectors and a heat pump in an efficient and flexible way. Various drying modes, such as solar alone, pump alone or solar and pump together, can be applied, depending on the availability of solar irradiation and electricity price. The biomass hybrid dryer is economically viable especially, when the electricity is cheap. Solar energy can always be utilized to boost the drying process. The control system allows flexibility between different operating modes.
In the biomass hybrid dryer, solar collectors (24 m2) and a heat pump (25 kW max output), integrated into an air supply unit, are placed in a freight container. A parallel container serves as a drying chamber for the biomass. The pump is primarily used to remove moisture from the drying air and to provide initial heat if necessary. The dryer can be run on a solar or pump mode or on both of them. Algorithms follow the electricity price and determine which is the most economical mode to operate. If the electricity price fluctuates during the day, drying can be halted and continued when economical again. Cheap energy, whether solar or power, can be stored in dried biomass. The whole system is movable and scalable in modules.
The flexible up-take of electricity and irradiation enables cost-effective drying and storage of energy in dry biomass. The dryer effectively utilizes fluctuations in electricity prices and also enables to store intermittent solar energy into biomass. The concept suits best for rural areas such as farms and small enterprises, close to dispersed biomass sources. Fossil fuel is most often used for drying small batches of biomass. With this concept, all of the fossil fuel can be substituted with renewable alternatives.
VTT:n pilottivaiheen hybridikuivurissa hyödynnetään ilmanvaihtokoneeseen integroitua ilmalämpöpumppua ja aurinkokeräimiä, joko samanaikaisesti tai valitun kuivaustavan mukaisesti erikseen, riippuen auringonsäteilyn määrästä, sähkön hinnasta ja kuivausolosuhteista. Lämpöpumppukuivaus mahdollistaa kuivauksen yöllä ja edullisen sähkönhinnan aikaan. Ohjausalgoritmeilla kuivausta voidaan ohjata joustavasti eri kuivaustapojen välillä. Kuivurin lämmöntuotanto- ja kuivausyksikön muodostavat 24 m2 aurinkokeräimet ja 25 kW (max antoteho) ilmalämpöpumppu, jotka on sijoitettu rahtikonttiin. Viereinen kontti toimii kuivauskamarina, jossa biomassa kuivataan. Lämpöpumppua käytetään pääasiassa kuivausilman kosteuden poistoon, mutta ulkoyksiköllä voidaan myös tuottaa tarvittava alkulämpö kuivausprosessiin. Algoritmeilla seurataan sähkön hintaa ja ohjataan kulloinkin edullisin kuivaustapa. Kuivaus voidaan myös pysäyttää, mikäli se ei ole taloudellisesti kannattavaa tiettyinä jaksoina. Edullinen energia, joko aurinko tai sähkö, voidaan varastoida biomassaan. Koko systeemi on skaalattavissa moduuleissa ja se voidaan siirtää helposti toiseen paikkaan. Joustava sähkön ja aurinkoenergian hyödyntäminen mahdollistaa siis kustannustehokkaan energian siirron ja varastoinnin biomassaan. Konsepti sopii parhaiten maaseudun hajautettuun kuivaukseen ja energian varastointiin lähellä raaka-ainelähdettä. Biomassan hybridikuivurin avulla maatiloilla kuivauksessa usein käytetty fossiilinen polttoaine voidaan korvata uusiutuvilla vaihtoehdoilla.
Biogal was founded in 2012 and currently employs over 40 people. The company obtains raw materials such as manure and self-grown corn from its own pig farm and from other local farmers to produce biogas. In addition, Biogal also processes agrifood industry waste products such as post-distillery brew, fruit and vegetable residues and overdue food.
Biogal’s activity is beneficial especially for the pig producers who do not have enough agricultural area to meet the Nitrates Directive requirements. Biogal deals with energy production from a combination of renewable sources, waste food products processing, organic fertilizer production (productized with the name Naturgal) as well as obtaining of wind and solar energy. The company is currently implementing several wind energy investments for local villages and towns.
The agricultural biogas is produced in the natural manure methane fermentation process. Naturgal is produced in the mesophilic fermentation process, and it is recommended for vegetable crops, ornamental plants, fruit trees, shrubs as well as field crops and affects both the natural beneficial development and high quality of crops. Obtained electricity and heat constitute an effective element of infrastructure development, allowing for electricity supply for Biogal’s own needs, for other local farmers, residents and for public sector institutions. The heat supply is provided for 2 local factories, 3 schools, 2 churches and 350 single-family houses – the company supplies energy to 4 nearby villages and built a 27 km long heat pipeline. The constructed heating network is routed to the construction and housing elements manufacturing plant and serves for precast concrete products drying.
Biogal powstał w 2012 r. i obecnie zatrudnia ponad 40 pracowników. Spółka pozyskuje surowce do produkcji biogazu, tj. obornik i kukurydzę, z własnej fermy trzody chlewnej oraz od innych lokalnych producentów rolnych. Ponadto, w instalacji przetwarzane są odpady przemysłu rolno-spożywczego, tj.: wywar pogorzelniany, pozostałości owoców i warzyw oraz przeterminowana żywność.
Działalność Biogal jest korzystna zwłaszcza dla producentów trzody chlewnej nieposiadających wystarczającej powierzchni upraw, aby spełnić wymagania Dyrektywy Azotanowej. Biogal zajmuje się produkcją energii w skojarzeniu OZE, przetwarzaniem odpadów spożywczych, produkcją nawozu organicznego (Naturgal) oraz pozyskiwaniem energii wiatrowej i słonecznej. Spółka jest obecnie w trakcie realizacji inwestycji w energię wiatrową dla lokalnych wsi i miasteczek.
Biogaz rolniczy Naturgal powstaje w procesie mezofilnej, naturalnej fermentacji metanowej obornika, polecany jest do upraw warzyw, roślin ozdobnych, drzew owocowych, krzewów oraz upraw polowych i wpływa zarówno na korzystny, naturalny rozwój, jak i na wysoką jakość plonów. Pozyskiwana energia elektryczna i ciepło stanowią efektywny element rozwoju infrastruktury, pozwalający
na dostawy energii elektrycznej na własne potrzeby Biogal, zapotrzebowanie innych lokalnych producentów rolnych, mieszkańców oraz instytucji sektora publicznego. Spółka zaopatruje w ciepło 2 lokalne fabryki, 3 szkoły, 2 kościoły i 350 domów jednorodzinnych – dostarcza energię do 4 pobliskich wsi i wybudowała 27 km rurociąg ciepłowniczy. Biogal wybudował sieć ciepłowniczą, która doprowadzona została do fabryki elementów budowlanych i mieszkaniowych i służy do suszenia prefabrykatów betonowych.
A partnership between the Theuma municiple government and the Theuma agricultural cooperative creates a supply chain of processing locally sourced agricultural residues into biogas. The biogas is utilized in combined-heat-and-power (CHP) units that sell power to the public electrical grid and provide heat to Theuma's heating grid system (approx. 115 households, public buildings, and several small businesses).
The Theuma agricultural cooperative operates on approximately 1970 ha. and produces both livestock manure and crop silage that is collected in fermentation tanks, where bacterial decomposition allows for the collection of biogas (containing approx. 55% methane). The biogas is then burned according to demand either within the biogas plant or two satellite CHP units. The remaining organic and mineral waste material after biogas production is reutilized as an agricultural fertilizer.
Technology Disadvantages:
- Sustainability advantages of biogas plants are not rewarded in electricity and heat markets
- Large investment and maintenance costs
- Requires trained personnel for operations and maintenance
Technology Advantages:
- Storable energy (supply security)
- Base-load capable (no fluctuations in energy generation)
- Demand driven
- CO2 neutral
- Independent energy source (not susceptible to outside influences)
- Decentralized and expandable utilization through satellite CHP units
Eine Partnerschaft zwischen der Gemeindeverwaltung von Theuma und der landwirtschaftlichen Genossenschaft von Theuma schafft eine Versorgungskette für die Verarbeitung örtlicher landwirtschaftlicher Reststoffe zu Biogas. Das Biogas wird in Blockheizkraftwerken (BHWKs) genutzt, die Strom an das öffentliche Stromnetz verkaufen und Wärme für das Heizungssystem von Theuma (ca. 115 Haushalte, öffentliche Gebäude und mehrere kleine Unternehmen) liefern.
Die landwirtschaftliche Genossenschaft von Theuma bewirtschaftet ca. 1970 ha und produziert sowohl Viehdung als auch Getreidesilage, die in Gärbehältern gesammelt werden, wo durch bakterielle Zersetzung Biogas (mit einem Methangehalt von ca. 55 %) gewonnen wird. Das Biogas wird dann je nach Bedarf entweder in der Biogasanlage oder in zwei Satelliten-BHKWs verbrannt. Die nach der Biogaserzeugung verbleibenden organischen und mineralischen Reststoffe werden als landwirtschaftlicher Dünger verwertet.
Nachteile der Technologie:
- Die Nachhaltigkeitsvorteile von Biogasanlagen werden auf dem Strom- und Wärmemarkt nicht honoriert
- Hohe Investitions- und Wartungskosten
- Erfordert geschultes Personal für Betrieb und Wartung
Vorteile der Technologie:
- Speicherbare Energie (Versorgungssicherheit)
- Grundlastfähig (keine Schwankungen in der Energieerzeugung)
- Bedarfsgesteuert
- CO2-neutral
- Unabhängige Energiequelle (unempfindlich gegenüber äußeren Einflüssen)
- Dezentraler und erweiterbarer Einsatz durch Satelliten-BHKWs
Krone Premos 5000 is a mobile pellet harvester that produces pellets as it collects the stalks from the swath or other agriculture residues to be used as fodder, bedding and fuel in a biomass boiler or biogas production.
During the pelleting temperatures around 95-100°C and pressures of up to 2,000 bar are reached allowing to produce long lasting pellets. Pellets obtained have a bulk density around 650-700kg/m³ similar to woody pellets and a moisture content around 8 %.
Premos 5000 has a hopper capacity of 5,000 kg and can reach a yield up to 5,000 kg/h. Once produced, the pellets are then conveyed by a belt to a trailer which hauls them directly to the retail customers or to Premium Pellet Spain plant as supplier of these type of pellets.
Premos is able to produce pellets according to individual requirements simply by modifying the amounts of water or vegetable oil added. Aditionally, there are further options to control the size of pellets by adjusting the scraper to obtain pellets 2-6 cm long. Nevertheless, the diamter is fixed, 16 mm, twice the usual since no milling process takes place previous to the pelletizing.
It is a biofuel that can significantly contribute to increase the energy savings in rural areas. Additionally, this innovative system allows to avoid energy-intensive pre-treatments (bailing, bales transport, feeding, milling, drying). In fact, the energy demand is just half the demand required by a stationary pelleting system. In summary, the mobile pellet harvester developed could contribute to simplify the value chain.
La Krone Premos 5000 es una empacadora de paja, forraje y otros residuos agrícolas que los convierte directamente en pellets para su uso como cama de ganado, pienso o como combustible en calderas de biomasa o producción de biogás.
Durante el peletizado se alcanzan temperaturas cercanas a 95-100ºC y presiones de hasta 2.000 bares lo que permite que el material forme pellets duraderos. La densidad aparente de los gránulos se encuentra entre 650 y 700 kg/m³ similar a la del pélet madera y una humedad en torno al 8 %.
Premos 5000 dispone de una tolva con un capacidad de hasta 5.000 kg y alcanza un rendimiento de hasta 5.000 kg/h. Una vez producidos, los pelets se cargan a través de una cinta transportadora en el trailer que los distribuye al cliente final o los lleva a las instalaciones de Premium Pellets Spain como distribuidor de estos pellets.
Premos es capaz de producir pellets acorde a las necesidades individuales modificando la cantidad de agua o aceite vegetal que se añaden. Además cuenta con sistemas adicionales de control para adaptar la longitud del pellet, ajustando el sistema de corte entre 2-6 cm. Sin embargo el diámetro es fijo, 16 mm, casi el doble del habitual debido a que no se realiza un proceso previo de molienda.
Se trata de un material que puede suponer un ahorro energético muy importante para su uso en zonas rurales. Además, este innovador sistema permite ahorrar el gasto energético asociado a la etapa de pretratamiento (empacado, transporte de las pacas, alimentación, molienda, secado). De hecho, la demanda de energía es la mitad de la que requiere un sistema estacionario de peletizado. En definitiva, se trata de una maquina que puede contribuir a simplificar la cadena de valor.
The main constraint to use the vineyard pruning for energy purposes is the high ash content (around 20 %), which is highly dependent of the equipment performing the pruning and collecting since during these operations a high percentage of impurities such as sandstones, metals, stones, plastics are incorporated. The equipment developed by ATHISA (patent ES2606774) allows to reduce the ash content up to 3 %. It is therefore an equipment that would allow vineyard cooperatives and wineries to use pruning for energy purposes but also agricultural services companies and biomass supplier could benefit from it.
The equipment operation is based on a density in wet conditions separation process in two phases using as input the vineyard pruning chipped. It is a cleaning and washing continuous process consisting of two units in-line. The high-density separation and decanting unit is equipped with a water filtration system, as well as a tilting system to discharge impurities. Furthermore, the sandstone and soil cleaning system, is a rinsing system equipped with a membrane filter.
The equipment is able to process 50000 tonnes of raw vineyard pruning with an averagea yield of 14 t/h, obtaining 40000 tonnes of vineyard pruning with a heating value around 19.12 GJ/t and ash content lower than 3 %.
The investment required ranges from 300000-500000 € and operation cost imply between 3 to 10 €/t.
The vineyard pruning can be used as industrial pellet (10 mm) or baled chip in thermal and electricity companies located at significant distances (even to export) and bulk chips for the thermal and electricity companies located in the surrounding area.
El principal condicionante para el aprovechamiento del sarmiento de vid con fines energéticos es su elevado contenido en cenizas (≈20 %), que viene en gran medida determinado por las prácticas de poda y recogida realizadas con el sarmentador al incorporar areniscas, piedras, metales y plásticos. El equipo desarrollado por ATHISA (patente ES2606774) permite reducir el contenido de cenizas por debajo del 3 %. Se trata por tanto de un equipo que permitiría a cooperativas vitivinícolas y bodegas aprovechar la poda de las vides pero también a empresas de servicios agrícolas que gestionan podas y arranques y gestores de biomasa.
El funcionamiento del equipo se basa en el principio de separación por densidad en medio húmedo en dos fases partiendo del sarmiento bruto astillado. Se trata de un proceso continuo de limpieza y enjuague, compuesto por dos unidades en línea. La unidad de separación de elementos de alta densidad está dotada de un sistema de filtración de aguas y decantación, así como de un sistema basculante de descarga de impropios. Por otro lado, la unidad de limpieza de areniscas y tierras adheridas, se trata de un sistema de enjuague dotado de un filtro de membranas.
Este equipo es capaz de procesar 50.000 toneladas de sarmiento bruto con un rendimiento medio de 14 t/h, obteniendo 40.000t de sarmiento valorizado con un Poder Calorífico de 19,12 GJ/t y unas cenizas inferiores al 3 %.
La inversión en función del modelo oscila entre 300000-500000 € y unos costes de operación de 3-10 €/t. Esta biomasa valorizada de sarmiento puede utilizarse como pellet industrial (10 mm), como astilla alpacada para industria térmica y eléctrica a grandes distancias (incluso en exportación) y como astilla a granel para la industria térmica y eléctrica de proximidad.
CENER has developed a technology to produce reliable and competitive solid biofuels from cheap residual biomass (agricultural residues, forest residues, etc.) with high chlorine and potassium contents. The product is focused on the decarbonization of industrial sectors with intensive thermal energy consumption. The technology combines torrefaction of residual biomass with processes seeking to remove unwanted inorganic elements and the use of additives to improve the high temperature behavior of the mineral fraction. The result is a solid biofuel with high calorific value, very high energy density, low energy demand to perform the milling therefore generating a very low particle size distribution, low level of emissions (aerosols) and a high ash melting temperature. Production cost is in the range of 27-30 €/MWh.
Through the integrated combination of different technologies, the following results have been achieved with wheat straw residues:
• Reduction of 67 %, >95% and 57% in the content of Potassium, Chlorine and Sulphur, respectively (perecnt based on the energy content of the fuel; that is, in mg/kWh).
• 20% increase in the energy content of the product, in terms of net calorific value (up to 20 MJ/kg). If the energy density of the product (MWh/m3) is also considered, then the increase reaches by 700 % reaching approximately 3.9 MWh/m3 which has a very positive impact on logistics costs.
• The fusibility of the bottom ash from the boiler increases by + 300ºC until it reaches values above 1,100ºC, thus matching the behavior of woody biomass.
• Reduction of 70% in the volatilization of KCl.
CENER ha desarrollado una tecnología para producir biocombustibles sólidos fiables y competitivos a partir de biomasa residual barata (residuos agrícolas y forestales, etc.) con alto contenido de cloro y potasio. El producto está enfocado a la descarbonización de sectores industriales intensivos en consumo de energía térmica. La tecnología combina la torrefacción de biomasa residual con procesos para la eliminación de elementos inorgánicos no deseados y el uso de aditivos que mejoran el comportamiento a alta temperatura de la fracción mineral. El resultado es un biocombustible sólido con alto poder calorífico, muy alta densidad energética, con baja demanda energética para la molienda generando una distribución de tamaño de partícula muy baja, bajo nivel de emisiones (aerosoles) y una alta temperatura de fusión de cenizas. Los costes de producción están en el rango de 27-30 € / MWh.
Mediante la combinación integrada de diferentes tecnologías, se han obtenido los siguientes resultados con los residuos de paja de trigo:
• Reducción del 67% del contenido de potasio (basado en el contenido energético del combustible; es decir, en mg / kWh),> 95% en el caso del cloro y 57% en el caso del azufre.
• Incremento del contenido energético del producto, en términos de poder calorífico neto del 20 % hasta 20 MJ / kg. Si también se considera la densidad energética del producto (MWh / m3), aumenta en un 700 % hasta aproximadamente 3,9 MWh / m3. En consecuencia reflejando un impacto muy positivo en los costos logísticos.
• La fusibilidad de las cenizas de fondo de la caldera aumenta en + 300ºC hasta alcanzar valores superiores a los 1.100ºC, igualando así el comportamiento de la biomasa leñosa.
• Se han obtenido reducciones del 70% en la volatilización de KCl.
Ingelia is a company dedicated to the commercialization of a hydrothermal carbonization (HTC) technology, equipment and installations to treat biomass and organic residues at an industrial scale. In 2010, they built an HTC plant in Valencia to process organic residues in a continuous operation mode to demonstrate the feasibility of the technology. In 2015, a second reactor was installed.
The technology allows to concentrate the energy content of the input biomass into a solid biofuel (around 24 MJ/kg) and to produce fertilized water. The input can be almost any type of wet organic residue, such as the organic fractions of urban residues, sewage sludge, agro-forestry residues, agri-food residues or prunings.
During the HTC process, the wet biomass is carbonized into biocoal. The product is then refined to remove impurities such as metals, stones or glass, and then dried. Finally, a powered biocoal that can undergo pelletizing or briquetting is obtained. The process also allows to extract biochemical compounds from some of the biomass/residues.
The reactors are modular, with a processing capacity between 5000 and 10000 t/year each, and the number of reactors can the adapted according to the project needs.
The biocoal obtained has many advantages such as a competitive market price, homogeneity regardless of the input biomass and a heating value increased by 30 % when compared to conventional pellets. The product is also hydrophobic, and easy to transport and store. Therefore, it is a renewable product that can substitute fossil-based coal in different applications (e.g., thermal and metallurgy) while contributing to decrease GHG emissions. The liquid fraction produced can be used for irrigation purposes (parks, gardening or agriculture).
Ingelia es una empresa dedicada al suministro de tecnología, equipos e instalaciones de Carbonización Hidrotermal (HTC) de biomasa y residuos orgánicos a escala industrial. El año 2010 construyó en Valencia una planta de HTC capaz de procesar residuos orgánicos en continuo, demostrando así la viabilidad de la aplicación industrial de esta tecnología. El año 2015 instaló un segundo reactor.
El proceso permite concentrar el poder energético de la biomasa de origen en un biocombustible sólido (alrededor de 24 MJ/kg) y generar un agua con efecto fertilizante. La materia prima puede ser casi cualquier tipo de residuo orgánico húmedo (FORSU, lodos, residuos agroforestales o agroalimentarios, podas, etc.). Durante el proceso HTC, la biomasa húmeda se carboniza transformándose en biocarbón. El producto se refina (eliminando impropios tales como metales, piedras, cristales, etc.) y se seca. Al final del proceso se obtiene un biocarbón en polvo que se puede pelletizar o briquetear. El proceso también permite extraer compuestos bioquímicos de algunas biomasas/residuos. Los reactores HTC son modulares, con una capacidad de tratamiento de entre 5.000 y 10.000 ton/año por reactor y el número de reactores se ajusta para cada proyecto.
El biocarbón obtenido presenta un precio de mercado competitivo, es relativamente homogéneo, tiene un 30% más de poder calorífico que los pellets convencionales, es hidrófobo, fácilmente transportable y almacenable. Es un producto renovable, que puede sustituir al carbón mineral en diversas aplicaciones (térmica, alternativa al coke para el sector metalúrgico, etc.) y no contribuye a las emisiones de GEI. El efluente líquido es un producto que puede ser reutilizado para riego de parques, jardines, agricultura, etc.
Organic residues from agriculture are processed by larvae of the soldier fly; proteins and other products are obtained from the larvae.
Regional cycles are created, as organic residues do not have to be transported far. Insects make it easier to separate organic from non-organic waste. Farmers can partially cover their animal feed needs with the proteins produced by the process, instead of having to import them.
Such a production facility is independent of location and climate, has a modular structure (container system) and initially requires a relatively small investment. The use of globally available shipping containers means that the production facility always has the same basic dimensions.
It is easy to integrate decentralised production facilities into an ongoing agricultural operation. The technical equipment (e.g. forklift trucks) and the requirements for staff are partly the same as those of an agricultural operation. Any vacancies in rural areas can be successfully re-used. Production is possible at various levels of automation, adapted to local conditions.
The production facility requires hot water as an energy source and can be operated synergistically with waste heat, e.g. from a biogas plant.
Organische Reststoffe der Landwirtschaft werden von Larven der Soldatenfliege verarbeitet, aus den Larven werden Proteine und weitere Produkte gewonnen.
Es entstehen regionale Kreisläufe, da organische Reststoffe nicht weit transportiert werden müssen. Insekten ermöglichen die bessere Trennung von Abfällen in Organik von Nicht-Organik. Die Landwirt:innen können mit den produzierten Proteinen ihren Futtermittelbedarf teilweise decken anstatt diesen durch Importe gewährleisten zu müssen.
Eine solche Produktionsstätte ist standort- und klimaunabhängig, modular aufgebaut (Containersystem) und bedarf anfänglich einer relativ geringen Investition. Die Verwendung von weltweit verfügbaren Schiffscontainern gestaltet die Produktionsstätte in immer gleichen Grundmaßen.
Es ist leicht, dezentrale Produktionsstätten in einen laufenden landwirtschaftlichen Betrieb zu integrieren. Die technische Ausstattung (z.B. Gabelstapler) und die Anforderungen an das Personal entsprechen teilweise denen eines landwirtschaftlichen Betriebs. Eventueller Leerstand in ländlichen Gebieten kann erfolgreich nachgenutzt werden. Die Produktion ist in verschiedenen standortangepassten Automatisierungsstufen möglich.
Die Produktionsstätte benötigt Warmwasser als Energieträger und kann synergetisch mit der Abwärme z.B. von einer Biogasanlage betrieben werden.
Boom corridor thinning (BCT) is a harvester’s working method for young stands. In
BCT, trees are harvested in corridors from the strip road, with a length
corresponding to the reach of the harvester crane (about 10 m) and a width
and density depending on the stand structure. In the
Nordic countries, forests are usually thinned using selective thinning from below
(ST), which consist in selectively removing trees that lack in size, quality or health.
Compared to the ST, the advantage of BCT is that the harvester work is faster and smoother, and has a larger potential for automation. In contrast, ST requires constant care to avoid release trees surroundid the individual target trees, which greatly slows down all crane movements. In Sweden, in actual test cuttings
of dense small-diameter first thinning, the productivity of BCT was 15% higher than
in ST. In Finland, in pulp wood first thinnings with bigger stem volume
of removal, BCT reached its best productivity levels with a productivity increase of 44% compared with ST.
After BCT, the number of stems per hectare is higher and the stand structur is not as even as with ST; however, the number of future crop trees is the same.
According to the latest study by Nuutinen et al. (2021) the saw log volume per hectare
is the same for BCT and ST, provided that the intermediate thinnings are
made with selection criteria. That is: the intermediate thinning will smooth out the spatial grouping of BCT stands.
BCT is primarily suitable for dense unmanaged young stands where traditional ST
is not profitable. Moreover, BCT can be conducted without cost-intensive preclearing
of the undergrowth (about 300 € per hectare) and creates stands with
higher biodiversity, enabling the management of continuous cover forestry.
Väyläharvennus on pienipuustoisen nuoren metsän koneellinen hoito- ja puunkorjuumenetelmä, jossa puut kaadetaan ajourilta käsin työskentelyväyliltä jättäen väylien väliset alueet käsittelemättä.
Väyläharvennuksen etu perinteiseen valikoivaan harvennustapaan on väylässä, jossa hakkuulaite pystyy liikkumaan sujuvammin ja ripeämmin, koska kasvamaan jätettäviä puita ei tarvitse varoa läheskään yhtä paljon. Käytännön testihakkuissa ensiharvennuksissa pienipuustoisen energiapuumetsikön väyläharvennuksessa
tuottavuus oli 15 % suurempi kuin valikoivan harvennuksen. Vastaavasti järeämpipuustoisissa ainespuumetsissä päästiin suurimmillaan 44 %:n tuottavuushyppyyn. Väyläharvennus onnistuu tehokkaasti hoitamattomissa ylitiheissä nuorissa metsissä
ilman ennakkoraivausta, mikäli ainespuun rinnalla kerätään joukkokäsittelevällä hakkuulaitteella myös pieniläpimittainen energiapuu. Tällöin sopivalla kohteella väyläharvennus tarjoaa haluttaessa hyvän lähtökohdan jatkuvalle kasvatukselle ja
samalla säästetään ennakkoraivauksen kustannus (noin 300 €/ha).
Väyläharvennuksen jälkeen metsä on tiheämpi ja erirakenteisempi, mutta kasvatettavien valtapuiden tiheys on silti samalla tasolla kuin valikoivassa harvennuksessa.
Väyläharvennettujen puustojen ryhmittäisyys tasoittuu ja metsikön tukkipuusaanto pysyy samalla tasolla valikoivan harvennuksen kanssa, mikäli seuraavat harvennukset tehdään valikoivalla harvennuksella.
The technology developed by Bioliza shows a great potential for the olive and pomace oil sector. More concretely, gasification technology allows to use the fatty dried pomace in order to obtain heat that can be used in the oil extraction process, as well as electricity and other by-products such as biochar. This innovative practice has already been implemented in a pilot plant at Aceites Guadalentín, located in Jaém (Spain).
The technology can be used in a wide range of agro-industries that manage biomass and consume heat and electricity, due to its modularity. The system is suitable for industries with an installed power lower than 1 MWe, operating around 10 to 11 months per year. This plant can reach high efficiency levels (> 75 %) because it recovers thermal energy from the engine cooling and exhaust systems. The plant can manage 7,500 tonnes of residue per year. The outputs are: heat, syngas (burned for electricity) and a blend of ash and biochar that can be used as soil improver.
The main components of the plant include a feeding system, a gasifier, a gas cleaning, cooling and treatment system, an endothermal engine and an alternator. Operational cost is 0.01 €/kWh for the engines and around 45.000 €/year for the gasification system. Regarding the personnel needed, just one operator per shift is needed.
Such project requires a total investment of around 2.5 M€, but the payback period should be reached in 5 to 7 years with an IRR of 10-12 %. The initiative profitability will be highly affected by the total investment, the supply characteristics, the biomass cost, the operation and maintenance costs, the electric energy savings, the taxes and the income obtained from the electricity sale.
Esta tecnología tiene un gran potencial para industrias del sector del aceite de oliva y de orujo. En concreto la tecnología de gasificación permite utilizar el orujo graso seco, y obtener calor para la almazara, electricidad y subproductos como el biochar. Esta práctica innovadora ya cuenta con un piloto en marcha, en Aceites Guadalentín, Jaén (España).
Este sistema es apto para una gran variedad de agroindustrias generadoras de biomasa y consumidoras de energía térmica y eléctrica debido a su modularidad, como es el caso de instalaciones con una potencia instalada inferior a 1 MWe funcionandol alrededor de 10-11 meses al año. Este tipo de planta puede alcanzar una elevada eficiencia energética (>75 %) al aprovechar la energía térmica residual procedente de la refrigeración y el escape de los motores. La planta de Aceites Guadalentín puede gestionar 7.500 t anuales, y a la salida se obtiene syngas y una mezcla de cenizas y biocharcuyo destino puede ser la mejora de los suelos.
Los principales elementos de la planta incluyen un sistema de alimentación, un gasificador, un sistema de limpieza y tratamiento del gas y un grupo.
Los costes de operación son de 0,01 €/kWh para los motores y del orden de 45.000 €/a para el sistema de gasificación. En cuanto a personal, una persona por turno sería suficiente. Para un proyecto con estas características la inversión total puede rondar los 2,5 M€, la rentabilidad económica debería alcanzarse en un periodo de 5 a 7 años con un TIR del 10-12 %. Los principales parámetros que condicionan dicha rentabilidad en almazaras son: inversión total, características del suministro, el coste de la biomasa, costes de operación y mantenimiento, peajes, ahorro de energía eléctrica alcanzado e ingresos por venta de energía eléctrica.
Currently, vineyard pruning residue is burned in the field or chipped and integrated into the soil. The prototype developed aims to trigger a change on the pre-pruning operational mode by means of the innovation based on a new system which integrates the pre-pruning system and the collection of the biomass produced, a higher size reduction and storage in a container or trailer that will allow to recover and valorize this resource. The final prototype has been developed based on previous prototypes that have been improved.
Based on the results achieved on the field trials carried out, in which the prototype was attached to the vineyard pruning machine, the quantity of material collected after the pre-pruning reached 75 % therefore only 25 % of the material is left in the field. The average operating rate is around 1.15 ha/h. The product obtained has a moisture content of 45 % and a bulk density around 205 kg/m3(wb).
The equipment selling price is approximately around 20.000-30.000€.
Considering the average productivity and taking into account the cost, service companies could sell the product at around 36€/t. If only the new equipment depreciation is taken into account (not the vineyard pruning machinery) the selling price could range around 11€/t.
The new equipment developed can significantly contribute to increase the sustainability and profitability of vineyard management.
En la actualidad, en términos generales, el sarmiento generado en la prepoda y poda se quema o se adiciona al campo. El prototipo desarrollado pretende generar un cambio en la práctica agronómica de la prepoda a través de la innovación con un sistema que integra al sistema de prepoda un sistema de recogida de la misma, un mayor triturado y almacenado en un contenedor/remolque lo que permitirá su valorización con fines energéticos.
El prototipo final se ha desarrollado a partir de las variacio-nes y mejoras efectuadas sobre anteriores prototipos diseñados. Las pruebas de campo realizadas con el prototipo acoplado a la vendimiadora han permitido cuantificar la recogida del material resultante de la prepoda que asciende a un 75 % de forma que solamente queda rechazado entre los alambres y el suelo el 25 % y la velocidad media de operación es de 1,15ha/h. El producto obtenido tiene una humedad en torno al 45 % humedad y una densidad alrededor de 205 kg/m3 (b.h.). El precio de venta del equipo rondaría aproximadamente los 20.000-30.000€.
Teniendo en cuenta las productividades promedio y considerando todas las amortizaciones, las empresas de servicio podrían vender el material a 36€/t aproximadamente. Si únicamente se tiene en cuenta la amortización del prototipo (y no la vendimiadora), el precio de venta podría oscilar en torno a 11€/t.
Con este prototipo de prepodadora se conseguirá una mejora de la sostenibilidad y rentabilidad en el manejo agronómico de la vid.
Orchard termination residues (stems and rootstocks) are used by the Mombracco Energy Ltd 1 MWe biomass-fed power station based on the ORC technology (Turboden system). The company devised a cost-effective solution to move the resource to the plant, which requires four specific actions: cutting the above-ground tree portion; chipping it and taking the chips to the plant; digging up the rootstocks; cleaning and grinding them. and taking the resulting ground product to the plant. A dedicated technology has been developed for each of those actions, which are fully mechanized, with much benefit in terms of productivity, efficiency and operator safety. The machine (developed by Pezzolato Inc.) used for grinding the rootstocks is an innovative tub crusher specifically designed for orchard work. It is light, cheap and designed for connecting to a powerful farm tractor. It features important technical innovations, such as: a high-torque shredder and an integral star screen. The complete operation consists of the crusher and the tractor, a mini-excavator to feed the crusher and two tractors with their respective 8-t bin trailers, plus the four operators. Overall, the orchard residue recovery operation set up by the company is remarkably efficient and allows cleaning the fields at a profit, rather than a cost.
Mombracco Energy Srl gestisce una centrale elettrica a biomassa da 1 MWe basata sulla tecnologia ORC (sistema Turboden) che utilizza efficientemente gli scarti delle potature e degli espianti dei frutteti. La sfida principale era trovare una soluzione economicamente vantaggiosa per trasportare tale biomassa all'impianto, che richiede quattro fasi specifiche: taglio del tronco della pianta; cippatura e trasporto; estrarre le radici; pulirle, triturarle e trasportarle all’impianto. Per ciascuna fase è stata sviluppata una tecnologia dedicata, completamente meccanizzata, con grandi vantaggi in termini di produttività, efficienza e sicurezza. La macchina (sviluppata da Pezzolato Inc.) utilizzata per la triturazione delle radici è innovativa e appositamente studiata per questo tipo di materiale. È leggera, economica, progettata per essere collegato a un potente trattore agricolo e presenta importanti innovazioni tecniche: possiede una potente azione di taglio e incorpora un vaglio a stella integrato. Il sistema di lavoro è composto dal trituratore con la sua motrice, un miniescavatore per alimentare il trituratore e due trattori con i rispettivi rimorchi per insilato da 8 t, più quattro operatori. Nel complesso, l'operazione di recupero dei residui di frutteto messa in atto dall'azienda è notevolmente efficiente e consente di trasformare il materiale di scarto in profitto, piuttosto che con un costo.
Cip Calor Ltd is a small forest company (with 4 employees) based near Lake Como in the Central Italian Alps. In 2010 the company created a Biomass Trade Center, where the owners of wood stoves, fireplaces and chip-fed heating plants could find all the fuel they needed. Confronted with the need of producing a variety of wood fuels, Cip Calor decided to get into biomass quality sorting and improvement. An essential element of this new strategy has been the wood gasifier, commissioned in 2013 (a classic German-built Spanner plant) and funded with dedicated state incentives. This consists of two 45 kWe modules (gasifier + endothermal engine and generator), plus the drying and screening unit. Cip Calor has decided to build and manage this plant, in order to capture a larger share of the added value in forest fuels, while finding a viable outlet for the less valuable component of their annual harvest.
After more than 7 years in operation, Cip Calor are happy with their decision, which has accrued >20% ROI (return on investment). In fact, this is just one example for the growing a number of logging contractors who have integrated their business vertically into the value chain, so as to capture a larger proportion of the transformation benefits. Many more have joined Cip Calor, each devising their own creative way to make the most of the opportunity offered by diffused microgeneration.
Cip Calor Srl è una piccola azienda forestale (con 4 dipendenti) con sede vicino al Lago di Como che nel 2010 ha creato una Piattaforma di Biomasse, dove i proprietari di stufe a legna, caminetti e cippato potevano trovare il combustibile che cercavano. Di fronte alla necessità di produrre diverso tipo di materiale, Cip Calor ha deciso di dedicarsi a migliorare la qualità della biomassa. Per far ciò è stato costruito un gassificatore a legna, commissionato nel 2013 (un classico impianto Spanner di costruzione tedesca), e finanziato grazie a appositi incentivi statali. Si compone di due moduli da 45 kWe (gassificatore + motore endotermico e generatore), più l'unità di essiccazione e vagliatura. E’ stato possibile realizzare questo impianto anche grazie a incentivi statali dedicati. Cip Calor ha deciso di costruire e gestire questo impianto al fine di dare un valore aggiunto al materiale combustibile, trovando allo stesso tempo uno sbocco per la componente meno pregiata del proprio raccolto di legna annuale. Dopo più di 7 anni di attività, l’azienda è soddisfatta: ha accumulato un ROI (ritorno sull'investimento) >20%. In realtà, questo è solo un esempio per il crescente numero di aziende di legname che hanno integrato la propria attività verticalmente, in modo da ricavare una percentuale maggiore grazie ai benefici della trasformazione. Molti altri hanno seguito Cip Calor, ognuno ideando il proprio modo creativo per sfruttare al meglio le opportunità offerte dalla microgenerazione.
Valio is a Finnish dairy and food manufacturer owned by 4,700 milk producers around Finland. Valio aims to achieve carbon neutral milk production by 2035. One solution to reduce the carbon footprint of milk is biomethane production from cow manure generated in the dairy farms. The produced biomethane can substitute fossil-based fuels in Valio’s logistic chain, such as in milk trucks. Vuorenmaa dairy farm located in Haapavesi, Finland, produces milk for a local cheese factory owned by Valio. For over a decade, Vuorenmaa farm has been producing biogas from cow manure to generate the electricity and heat needed by the farm. As for 2021, Vuorenmaa farm is the first dairy farm of Valio, where biogas is also converted to compressed biomethane and can also be used as a transportation fuel.
The annual biogas yield of the farm is around 1,200 MWh of which approximately half is refined to biomethane. A milk truck in Valio’s logistic chain has committed to buy biomethane produced at the farm. The truck fills up its tank while it collects the milk. A guaranteed demand and market is essential for the cost-effective production of biomethane. Private passenger cars are also able to buy biomethane from the Vuorenmaa farm.
The dairy farm can benefit from biogas and biomethane production in several ways. The electricity and heat produced from biogas increase the energy self-sufficiency of the farm, while biomethane production creates new business opportunities. Biogas production also reduces the need for purchased chemical fertilizers. During the biogas process, the manure nutrients are transformed into a more soluble form in comparison to ordinary manure and are hence applicable as recycled fertilizers in the fields.
Valio on suomalainen meijeri ja ruokatalo, jonka omistaa 4 700 maidon tuottajaa ympäri maata. Valio tähtää hiilineutraaliin maidontuotantoon vuoteen 2035 mennessä. Yhtenä ratkaisuna maidontuotannon hiilijalanjäljen laskemiseksi on Valion maitotilojen lehmien lannasta tuotettu biometaani, joka korvaa fossiilista dieseliä yhtiön logistiikkaketjussa, kuten maitoautoissa. Haapavedellä sijaitseva Vuorenmaan tila tuottaa maitoa Valion juustolaan. Vuorenmaan tilalla lehmien lannasta on tuotettu biokaasua maatilan omaksi sähkö- ja lämpöenergiaksi yli vuosikymmenen ajan. Vuonna 2021, Vuorenmaan tila on Valion ensimmäinen maitotila, jossa biokaasusta tuotetaan myös liikennekäyttöön soveltuvaa paineistettua biometaania. Tila tuottaa biokaasua noin 1 200 MWh vuodessa, josta noin puolet jalostetaan biometaaniksi. Valion logistiikkaketjussa toimiva maitoauto on sitoutunut tankkaamaan tilalla tuotettua biometaania. Tankkaus onnistuu samalla, kun maitoauto hakee tilalta maitoa. Taattu kysyntä ja markkinat tuotetulle biometaanille ovat erittäin tärkeitä biometaanin tuotannon kannattavuudelle. Myös yksityisautot voivat tankata biometaania Vuorenmaan tilan julkiselta tankkausasemalta.
Maatilat voivat hyötyä biokaasun ja biometaanin tuotannosta usein eri tavoin. Biokaasusta tuotettu sähkö- ja lämpöenergia lisäävät tilan energiaomavaraisuutta, ja myytävä liikennekaasu mahdollistaa tilalle uuden tulovirran. Biokaasun tuotantoprosessin yhteydessä lannan sisältämät ravinteet saadaan myös muutettua pelloille paremmin liukenevaan muotoon. Näin lannan sisältämät ravinteet saadaan kiertolannoitteena paremmin talteen ja väkilannoitteiden ostotarve vähenee.
The berry farm "Sinikasvis LP" located in Sukeva, Finland, has invested into a hybrid renewable energy solution consisting of a solar photo-voltaic (PV) installation (30 kW) and a wood gasification unit (110 kW) for combined heat (80 kW) and power (30 kW) production from wood chips.
The hybrid solution takes into account the seasonal variations in the energy consumption of the berry farm. The solar PV-system produces electricity for the freezers during spring and summer time, when the gasification unit is out of use. The operation of the gasification unit starts in the late summer when the berry season reaches its peak, thus increasing the power and heat demand for freezing and drying the berries. Heat is also used for drying the wood chips, which are used as a fuel for the gasification unit. The chips must have a moisture content below 10% for optimal operation of the gasification process. The gasification unit operates annually approximately eight months, as it also supplies heat for the buildings of the farm during the winter time.
The wood chips for the gasification unit are obtained from the own forests of the farmer. The farmer has calculated that the economical value of the wood is higher when applied for own energy production in the farm when compared to selling the wood to the domestic pulp and paper industry. An important driver for the purchase was also the investment grant obtained from the Centre for Economic Development, Transport and the Environment in Finland.
Sukevalla sijaitseva marjantuotantoon ja -jalostukseen keskittynyt Sinikasvis Ky on investoinut uusiutuvan energian hybridiratkaisuun, joka koostuu aurinkopaneelijärjestelmästä (30 kW) sekä puukaasutustekniikkaa hyödyntävästä CHP-laitoksesta (110 kW), joka tuottaa sähköä (30 kW) ja lämpöä (80 kW) korkealla hyötysuhteella puuhakkeesta.
Hybridiratkaisussa on otettu huomioon tilan vuodenajoista riippuva energiankulutuksen vaihtelu. Aurinkopaneeleilla tuotetaan mm. marjojen pakastukseen tarvittavien kylmälaitteiden kuluttamaa sähköä keväällä ja kesällä, kun CHP-laitos on poissa käytöstä. Puukaasulaitos käynnistetään kesän lopulla marjasesongin kiihtyessä, kun sähkön- ja lämmöntarve marjojen pakastusta ja kuivausta varten lisääntyy. Laitoksen tuottamaa lämpöä käytetään myös puuhakkeen kuivauksessa, sillä hakkeen kosteuden tulee olla alle kymmenen prosenttia kaasutuslaitoksen optimaalista toimintaa varten. Puukaasulaitosta pidetään käynnissä noin kahdeksan kuukauden ajan, jolloin sen tuottamaa energiaa hyödynnetään myös talviaikaan tilan rakennusten lämmittämisessä. Puukaasulaitoksessa käytetty puuhake saadaan yrittäjän omasta metsästä. Sinikasviksella on laskettu, että omalle puulle saadaan luotua parempi taloudellinen arvo, kun se hyödynnetään omassa energiantuotannossa verrattuna siihen, että se myytäisiin kotimaassa eteenpäin esimerkiksi kuitupuuna tai rankahakkeena. Puukaasulaitosinvestoinnissa tärkeänä tekijänä oli myös ELY-keskukselta saatu investointituki.
The central union of agricultural producers and forest owners (MTK) is responsible for the forest owners benefits in Finland. Further, forest owners have regionally and operationally organized through the 59 individual forestry associations. There are 202 000 forest owner members, which is about 60% of the total number of forest-owning farms in Finland. The large number of members enables the common organized developing of forestry at the regional, national and international level.
Energy wood is an important component of the wood market nowadays in Finland. The aim is to introduce the market of energy wood supply chains organized by forest owners. The following data was collected from individual forestry associations (chief managers, 6/2021) and from using the statistical information.
Results and conclusions:
•According to the average results of forestry associations, the most important source of energy wood is delimbed energy wood. -> Conclusion: It would be important to develop energy wood harvesting methods for young stands.
•Forestry associations have a main role in energy wood supply, since they organize marketing for the forest owners (89%) and harvesting to the roadside (89%). The level of organizing energy wood storages at terminal (59%) and chipping (51%) was little bit lower. -> Conclusion: Forestry associations role is stronger at the beginning of supply chain: selling and harvesting.
•The most common way of organizing energy wood supply by the forestry associations is to use of harvesting services (76%), whereas the own company based model (14%) or the co-operation model (8%) was not used as much. -> Conclusion: The own harvesting services are important part of forest owners services especially for energy wood.
•The harvesting cost of energy wood from young stands is a main obstacle to meeting the set energy wood goals. Sustainability was not seen as significant from several options. -> It would be the most important to develop cost-effective harvesting methods for young stands.
•The need for energy wood will increase due to the changes in the energy market. The decreasing use of peat by power plants is most likely to result in a plarallel increase of energy wood demand.
Maa- ja metsätaloustuottjain Keskusliitto (MTK) on vastuussa metsänomistajien edunvalvonnasta Suomessa. Alueellisesti ja operatiivisesti metsänomistajia palvelee 59 metsänhoitoyhdistystä. Näissä on yhteensä 202 000 metsänomistajajäsentä, jotka edustavat suurinta osaa suomalaisesta yksityismetsäomaisuudesta. Organisoitu metsänomistajien yhteinen edunvalvonta mahdollistaa alueellisen, kansallisen ja kansainvälisen kehittämisen.
Energiapuu on tärkeä osa puumarkkinoita Suomessa. Tavoitteena on esitellä metsänomistajalähtöisen energiapuun toimitusketjua Suomessa. Aineisto kerättiin kyselyllä metsänhoitoyhdistyksille (6/2021) ja hyödyntäen tilastoaineistoja.
Tulokset:
•Rankapuu arvioitiin tärkeimmäksi energiapuulajiksi
•Metsänhoitoyhdistyksien energiapuun toimitusketjun tärkeimmiksi osiksi arvioitiin markkinoinnin organisointi metsänomistajille (89%) ja korjuu tienvarteen (89%). Energiapuun organisointi terminaalivarastoihin (59%) ja haketuksen organisointi (51%) arvioitiin pienemmäksi osaksi metsänhoitoyhdistyksien energiapuun toimitusketjua
•Yleisin energiapuun organisoinnin toimintamalli metsänhoitoyhdistyksissä on oman korjuupalvelun hyödyntäminen (76%), kun taas yhtiöpohjainen toimintamalli (14%) tai yhteistyömalli (8%) eivät olleet niin yleisiä
•Energiapuun korjuun kustannukset nuorissa metsissä arvioitiin olevan suurin syy, joka estää saavuttamaan energiapuun toimituksien tavoitemääriä
•Energiapuun tarpeen arvioitiin kasvavan johtuen muutoksista energiamarkkinoilla. Tämä vuonna turpeen käytön vähentämisen arvioitiin lisäävän energiapuun käyttöä.
Johtopäätökset:
•Energiapuun kustannustehokkaiden korjuumenetelmien kehittäminen oleellista nuorissa metsissä
•Metsänhoitoyhdistyksien rooli on ollut enemmän energiapuun toimitusketjujen alkupäässä
•Metsänhoitoyhdistyksien oma korjuupalvelu on tärkeä osa metsänomistajalähtöisiä palveluita erityisesti energiapuuhankinnassa
The main problem with the utilisation of untended stands is that small-diameter trees are expensive to harvest and, on the other hand, not all forest owners can afford to tend their sprawling stands into production conditions. Tree volume governs the productivity in small tree harvesting and for each situation one must identify the minimum tree volume that makes harvesting economic: below such a size, productivity does not reach the required level, and the value of the harvest fails to compensate the machine’s operating cost. Until now, the equation has appeared difficult to solve, but a wood harvesting innovation – the Risupeto harvesting head - that works on a continuous basis can provide a solution to the problem of untended young stands, as at least part of the costs can be covered by revenue from energy wood sales. It is estimated that the device is most effective in the selective tending of dense 5–8-metre seedling stands and young forests. Maximum productivity is achieved when stems to be removed can be harvested at their full length without having to cut them into shorter pieces. With a robust harvester head capable for continuous cutting and accumulating during crane movement, it is possible to improve the felling-bunching productivity compared to multi-tree handling with conventional accumulating felling heads, equipped with saw bar or shear blade cutting elements. Risupeto (www.reformet.fi/risupeto/) prototype felling head cuts standing trees with two parallel disk sawblades and accumulates trees in an upright position into the collecting chamber using rotating collecting arms. The collecting arms are attached to the two vertical cylinders, which rotate at the same speed as the disk sawblades. When the collecting chamber of the felling head is full, the accumulated tree bunch is moved to the pile and dropped out. The accumulating felling head is attached to the boom tip of the medium-sized tracked excavator. The advantages of mass-produced excavators include a purchase price lower than that of conventional forest machines such as harvesters and forwarders and, outside the harvesting season, the option of removing the harvesting equipment and using the base machine in the work for which it was originally designed.
Hoitorästien hyödyntämisen suurin ongelma on se, että pienet puut ovat kalliita korjata energiakäyttöön eikä kaikilla metsäomistajilla toisaalta ole varaa hoitaa karanneita taimikoitaan tuottokuntoon raivaussahatyönä. Tähän asti yhtälö on vaikuttanut vaikealta ratkaistavaksi mutta jatkuvatoimisuuden periaatteella toimiva iittiläinen hakkuulaite innovaatio – Risupeto – voi tarjota ratkaisun nuorten tiheiköiden hoitorästien purkuun, kun ainakin osa kustannuksista voidaan kattaa suoraan energiapuusta saatavilla myyntituloilla. Aiemmin korjuun esteeksi tai hidasteeksi koettu riukupuu ja alikasvos saadaan koottua hakkuulaitteella hyötykäyttöön, samalla kun metsän parhaat puuyksilöt saavat kasvutilaa, ja vältytään työläältä ennakkoraivaukselta.
Arvioiden mukaan kone on tehokkaimmillaan nykyisiin menetelmiin nähden tiheiden 5-8 -metristen varttuneiden taimikoiden ja nuorten metsien hoidossa. Tuottavuus on parhaimmillaan, kun poistettavat rungot voidaan kerätä kokopitkinä eikä koneelta kulu aikaa niiden katkomiseen. Perinteisesti energiapuuta on korjattu giljotiini- ja harvesterikourilla, joiden tuottavuutta on parannettu joukkokäsittelylaitteiden avulla. Joukkokäsittelyominaisuutta hyödynnetään myös Risupedossa mutta sen ohella sekä katkaisu että keruu tapahtuvat jatkuvatoimisesti.Risupeto (www.reformet.fi/risupeto/) katkaisee puut poikki kahdella pyörivällä kiekkoterällä, minkä perästä keruulaite vetää puut oksineen nippuun keruukammioon. Kerätty nippu vapautetaan pyörittämällä teriä vastakkaiseen suuntaan. Jatkuvatoimisuuden avulla päästään eroon puu- tai puskakohtaisesti tapahtuvasta käsittelystä jo kaatovaiheessa. Jatkuvatoimisuuden periaatteesta on hyötyä etenkin, kun korjataan pienikokoista puustoa tai pensaikkoa. Risupeto on suunniteltu käytettäväksi kaivukoneen puomissa.Suurina sarjoina valmistettavien kaivukoneiden etu on niiden metsäkoneita selvästi edullisempi hankintahinta sekä se, että tarvittaessa korjuuvarustus voidaan riisua ja käyttää peruskonetta sille suunnitelluissa perinteisissä maanrakennus töissä.
Pellet can be produced directly by the raw material supplier - the logging company - with the purpose of appropriating a larger share of the added value and keeping it within the rural economy. An example for that is represented by Pierini, a small-scale family-owned logging firm (a fourth generation logger) operating in the Umbria Region of central Italy. The company got into pellet production in 2013, in order to diversify their business and find an alternative to firewood, whose demand is decreasing because the aging rural population is opting for the more convenient pellet alternative, while prices have dropped due to the large increase in the number of firewood operators, since part-time firewood harvesting can be started with minimum equipment and many people have got into that following the financial crisis and the consequent loss of jobs in other sectors.
Since 2013, the company has commissioned a low-investment small-scale pellet plant, using modular industrial components manufactured by a number of different Italian manufacturers.
Plant operation occupies one person, who is completely busy with loading the bunkers, transferring the product from the drier to the refiner, bagging, moving the bags, etc.
The total cost of the process is (2018 figures):
Raw material 40 € t-1
Drying and refining 110 € t-1
Pressing and bagging 100 € t-1
Total 250 € t-1
Pierini are satisfied with the plant and the process. Small-scale pellet production may represent a viable opportunity for forest owners and operators confronted with a declining firewood market. The new product may support rural development more effectively than the massive import of industrial pellets does.
La produzione di pellet può essere effettuta su piccola scala da aziende locali, con lo scopo di mantenere una maggiore componente del valore aggiunto nell'ambito dell'economia rurale. Un esempio in tal senso è rappresentato dall'azienda Pierini, una piccola impresa (SME) boschiva a conduzione familiare con sede in Umbria. L'azienda ha iniziato a produrre pellet nel 2013, per diversificare la propria offerta andando incontro alla crescente domanda di pellet dovuta all'ampia diffusione di moderne stufe alimentate con tale biomassa. Inoltre, la tradizionale legna da ardere ha subito una continua diminuzione dei prezzi, data anche dalla sua possibilità di raccolta part-time che può essere realizzata con semplici ed economiche attrezzature accessibili a molte persone che hanno iniziato questa attività in seguito alla crisi finanziaria.
Dal 2013, l'azienda+D73 ha installato un impianto di pelletizzazione del legno di piccole dimensioni e a basso investimento, utilizzando componenti industriali modulari fabbricati da diversi produttori italiani.
L’impianto funziona con un solo operatore impegnato nel carico dei bunker, trasferimento del prodotto dall'essiccatoio al raffinatore, insaccamento, movimentazione del prodotto, ecc.
Il costo totale del processo di produzione è (dati 2018):
Materia prima 40 €/t
Essiccazione e raffinazione 110 €/t
Pressatura e insacco 100 €/t
Totale 250 €/t
L'azienda è molto soddisfatta dell’impianto e dell'intero ciclo produttivo attivati. Produrre pellet su piccola scala può rappresentare una valida opportunità, sia per i proprietari di boschi, sia per gli operatori forestali per fronteggiare un mercato della legna da ardere in declino. La penetrazione sul mercato nazionale ed estero di questo nuovo prodotto può sostenere le economie di aree boscate limitando il paradosso della massiccia importazione di pellet industriale prodotto a grandi distanze.
Microchip (a very small homogeneous wood chip) production matches the need for replacing industrial pellets with a new product manufactured by small enterprises, using locally available raw materials and low-investment technology.
Even if microchip cannot match the quality of pellets, it is still dry, dense and homogeneous enough for feeding stoves designed for pellet fuel, that are much cheaper compared with a classic chip boiler. Furthermore, microchips are cheaper than pellets, their origin is easier to trace and contribute to local economy.
In Italy, micro-chip production was pioneered by the Travaglini farm already 10 years ago. Customers would be provided with microchip-fed boilers, modified from pellet boliers - and would be assured a sustainable fuel supply at competitive price compared with conventional pellets. At present there are no standards defining microchips, so the certificate generally makes reference to chip quality Class A1+, according to standard UNI EN ISO 17225-1: 2015.
Main success factors are: the reaching final user, the use of unutilized labour resources, control of the raw material supply, capture of opportunity wood and reduced investment cost. The estimated output of slightly over 100 t per year, but it is a very profitable one and it is strategic for optimizing the use of internal resources and for reaching new customers.
La produzione di cippatino (cippato piccolo e omogeneo) permette di sostituire il pellet industriale con un prodotto fabbricato da piccole imprese, utilizzando materie prime locali e tecnologia a basso investimento.
Anche se il cippatino non può eguagliare la qualità del pellet, ha comunque caratteristiche simili tanto che può alimentare stufe a pellet, più economiche delle caldaie a cippato. Inoltre è più economico del pellet, è facilmente rintracciabile e contribuiscono all'economia locale.
I F.lli Travaglini sono pionieri della biomassa e del cippatino: tra i primi a installare una caldaia a cippato per riscaldare il complesso agricolo e già 10 anni fa hanno iniziato a interessarsi al cippatino. I F.lli Travaglini vendevano già le caldaie a cippatino, le hanno modificate e garantendo un approvvigionamento sostenibile a prezzi competitivi rispetto al pellet. Al momento non esistono norme che definiscono i microchip, quindi il certificato fa generalmente riferimento alla classe di qualità del chip A1+, secondo la norma UNI EN ISO 17225-1:2015.
I principali fattori di successo sono: la vendita diretta all'utente finale, l'utilizzo di risorse di lavoro non utilizzate, il controllo dell'approvvigionamento di materie prime, la valorizzazione del legname e la riduzione dei costi di investimento. La produzione stimata è poco superiore alle 100 t annue, ma è molto redditizia e strategica per ottimizzare l'impiego delle risorse umane interne e per arrivare a nuovi clienti.
Fiusis is a 1 MWe cogeneration plant aimed to transform 10,000 t of pruning residues per year into 8 million kWh of electricity and heat. Recently, this plant has been equipped with a wood pellet production line that uses excess heat for drying the sawdust and yields about 1 t of high-quality pellet per day. Moreover, future plans include a facility for turning the wood ash generated by the plant into high-quality fertilizer.
Fiusis was able to create an effective supply chain of biomass by developing a system that matches the local farmers’ needs. In particular, Fiusis offers free pruning residue collection and disposal services to over 2,000 farms. This prevents farmers from burning pruning residues in the field, thus avoiding widespread and recurring air quality issues. When pruning residue is burned in the plant – rather than in the field – fumes pass through a high efficiency filtration system able to remove all noxious emission, including fine particulate. The main strengths of the company are:
- Close connection with farmers and agricultural contractors for the recovery of pruning residues.
- Production of clean energy (electric and thermal) from a renewable source available locally.
- Local production of wood pellets, suitable for fuelling high efficiency stoves for residential use.
- Propensity for innovation through scientific research, aimed at life-long learning and continuous improvement.
- Full application of the principles of the circular economy.
The initial investment of 8 M € was made possible through project financing. At present, the company has an annual turnover of around 2 M €, a most important result given the specificity of the local context and the positive effects this initiative generates on the local agricultural sector. Fiusis has created new and qualified employment for 33 workers, in addition to the tangible benefit it generates for over 2,000 farmers by solving the issue of residue disposal at zero cost to them. This is therefore a winning model of sustainability, studied and replicated elsewhere in Italy and abroad.
FIUSIS è un impianto di produzione di energia da 1 MWe, ubicato in Puglia a Calimera (LE), alimentato unicamente con cippato di legno vergine ottenuto dalle potature degli uliveti delle campagne salentine. Entrato in funzione nel 2010, nel corso degli anni ha voluto e saputo creare una filiera locale di approvvigionamento della biomassa integrandosi totalmente con il territorio circostante. A tal fine Fiusis svolge gratuitamente un servizio di raccolta, condizionamento e prelievo dei residui della potatura presso oltre 2.000 aziende agricole, che - con la compilazione di un’apposita scheda - richiedono questo tipo d’intervento. Per lo svolgimento delle sue attività, l’impianto Fiusis ha creato lavoro per circa 33 addetti tra diretti e indiretti, oltre al beneficio tangibile che genera agli agricoltori in termini di riduzione dei costi di gestione delle biomasse residuali. Infatti, prima dell'attivazione della filiera legno-energia di Fiusis, i residui della potatura (circa 10.000 t/anno) venivano bruciati direttamente nei campi con tutte le conseguenze ambientali connesse a tale pratica.
I principali punti di forza dell'azienda sono:
- Stretto collegamento con agricoltori e contoterzisti per il recupero dei residui di potatura.
- Produzione di energia pulita (elettrica e termica) da fonte rinnovabile disponibile localmente.
- Produzione locale di pellet di legno, idoneo ad alimentare stufe ad alto rendimento per uso residenziale.
- Propensione all'innovazione attraverso la ricerca scientifica, finalizzata all'apprendimento permanente e al miglioramento continuo.
- Piena applicazione dei principi dell'economia circolare.
Inoltre, dal recupero dei cascami termici dell'impianto, si essicca una quota del legno vergine raccolto per destinarlo ad una linea di produzione di pellet per stufe in un nuovo stabilimento (70 sacchetti/ora).
Per chiudere l’intero ciclo produttivo, in un’ottica di Economia Circolare, Fiusis è in procinto di costruire un ulteriore stabilimento per recuperare le ceneri prodotte dalla combustione del legno vergine di potature del proprio impianto per produrre fertilizzanti a norma di legge.
Contacts
Project coordinator
-
Project coordinator
Project partners
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner
-
Project partner