project - Research and innovation

VIRTIGATION - Emerging viral diseases in tomatoes and cucurbits: Implementation of mitigation strategies for durable disease management
VIRTIGATION - Emerging viral diseases in tomatoes and cucurbits: Implementation of mitigation strategies for durable disease management

To download the project in a PDF format, please click on the print button and save the page as PDF
Ongoing | 2021 - 2025 Belgium
Ongoing | 2021 - 2025 Belgium
Affichage actuel du contenu de la page dans la langue maternelle, si disponible

Contexte

ToLCNDV (genus Begomovirus) was reported in Spain in 2012 and subsequently in Italy, Morocco and Tunisia. ToLCNDV is transmitted by the whitefly Bemisia tabaci, which makes its control very difficult and is prompting producers to use pesticides. In the recent years, severe epidemic outbreaks of the disease were associated with ToLCNDV and caused serious economic losses to greenhouse and openfield cucurbit crops, as infection can lead to complete crop loss. The rapid spread of ToLCNDV in the Mediterranean Basin represents a threat for horticultural production and calls for the implementation of phytosanitary and IPM measures including biological control of vectors and genetic resistance strategies. ToLCNDV was added to the EPPO Alert List in 2017.
The new tobamovirus ToBRFV is currently posing a huge threat to tomato and pepper crops worldwide as it breaks natural Tm-based resistances bred in commercial tomato varieties, especially under warm conditions. After the first identification in Israel and in Jordan in 2014, ToBRFV has been reported in the recent years in Germany, Italy, the UK, Greece, the Netherlands, Spain, Turkey and Italy. In 2019 the virus was added to the EPPO alert list and emergency measures are currently in force in the EU. Tobamoviruses are seed borne viruses. Infected seeds and plant debris may constitute a primary infection via soil and irrigation water contamination. The primary mode for tobamovirus contamination is mediated by mechanical plant manipulations and root injury. Beneficial insects (i.e. pollinators) may also participate in virus transmission. Climate change, trade, agrosystems and other aforementioned factors contribute to arising global virus threats to crop production.

Objectives

VIRTIGATION aims at developing rapid and lasting solutions to emerging viral diseases caused by begomoviruses (whitefly-transmitted) and tobamoviruses (mechanically transmitted) on cucurbits and tomato in Northern Europe and the Mediterranean Basin, and increasing knowledge to better control and manage the viral diseases. It is structured in 6 objectives :
1. Knowledge sharing and engagement of stakeholders in research activities
2. Develop robust diagnostic tests, quarantine measures and identify ecological factors driving disease outbreaks
3. Understand plant-virus(es)-vector interactions
4. Develop IPM solutions 
5. Pyramidize natural resistance 
6. Train the value chain 

Activities

VIRTIGATION's objectives will build on 1) detailed study of virus biology and transmission under climate change conditions; 2) development of classical solutions (IPM and natural resistance) to control viral diseases with two distinct modes of transmission; 3) testing novel approaches (biopesticides, biological control, cross-protection) to mitigate viral diseases and to reduce pesticide usage.

In order to take into account the diversity of vegetable cropping systems and viral diseases, focus groups involving extension services, commercial companies and growers will help co-designing research activities and mitigation strategies from the onset of the project.

Additional comments

The specific objectives of VIRTIGATION's multi-actor approach are to:
• Create common tools and guidelines for the implementation of the multi-actor approach
• Establish the VIRTIGATION network at various governance levels  in the project’s 11 focus countries
• Use the project’s national knowledge brokers (NKBs) to define a joint approach for all parts of the VIRTIGATION network to harmonize protocols and methods used for data gathering and delivering co-creation
• Coordinate events, joint activities and prepare Practice Abstracts for EIP-AGRI to stimulate co-design and exchange of knowledge between the VIRTIGATION consortium and the stakeholders of the VIRTIGATION network;                                                            The project’s NKBs have already identified an initial set of relevant stakeholders in all of the project’s 11 focus countries in Europe (Belgium, Netherlands, UK, France, Italy, Luxembourg, Spain, Germany) and across the globe (Israel, Morocco, India) to be included in the VIRTIGATION network. The NKBs have also defined the roles and expected involvement of the stakeholders in the network, to gather effective and continuous information to feed into the project’s scientific research.
VIRTIGATION’s multi-actor approach is based on established stakeholder relations of the project’s consortium. With this in mind, VIRTIGATION seeks to promote the active participation of the VIRTIGATION network members (e.g. farmers, growers, agro-industry, universities, research technology organizations and agricultural extension services) to co-design, refine and tailor its research to the needs of its stakeholders, to maximize the added-value of VIRTIGATION’s generated results for its stakeholders. 

Additional information

VIRTIGATION engages in a bottom-up, multi-actor approach to tailor its innovative solutions to the needs of the agriculture and horticulture sectors. Since the project’s aim is to have a durable impact on the entire tomato and cucurbit value chain, close collaborations with key actors and stakeholders such as farmers, growers, public research centers and seed and plant protection industries are essential. By linking producers directly with consumers, VIRTIGATION will create a multi-stakeholder network on emerging plant virus detection and knowledge exchange. Co-creation and co-design is at the heart of VIRTIGATION’s research activities, where it will not only directly use the inputs provided by the stakeholders of the VIRTIGATION network, but also train them in applying innovative bio-based remedies through common tools and guidelines. The ambition of the VIRTIGATION network is on the one hand to collate national know-how through the coordination efforts of National Knowledge Brokers, and on the other to ensure global exchange between actors in Europe, Israel, Morocco and India, in order to jointly combat the emerging viral diseases affecting tomatoes and cucurbits. 

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Emplacement
Main geographical location
Arr. Leuven

EUR 7,358,170.00

Total budget

Total contributions including EU funding.

Affichage actuel du contenu de la page dans la langue maternelle, si disponible

16 Practice Abstracts

In a collaborative study performed by researchers at CRAG (Centre for Research in Agrigenomics, CSIC-IRTA-UAB-UB) in Barcelona and at IHSM (Institute for Subtropical and Mediterranean Horticulture "La Mayora", CSIC-UMA) in Málaga, we have analyzed the genes of tomato plants that were activated or repressed after 2, 7, and 14 days after infection with the Tomato chlorosis crinivirus, ToCV. The results showed an early activation of response mechanisms to infestation by the insect vector, in our case the viruliferous whiteflies used for the inoculation, and later on, once the virus was established, lead to the activation of antiviral defense systems. To confirm these results, two genes previously related to plant immunity, named Hsp90 and Sgt1, were selected from the list of genes with altered expression, and their importance was verified through specific experiments in which their expression was silenced. To do so, the virus accumulations were quantified after artificially reducing the expression levels of the selected genes, finding that in parallel the plants' susceptibility to the virus infection was increased. These results, which served to identify components of the cellular machinery responding to virosis, will help us to design control strategies that utilize the enhancement of the plants' natural defenses to fight against viruses.
 

En un trabajo de colaboración de investigadores del CRAG (Centro de Investigación en Agrigenómica, CSIC-IRTA-UAB-UB) en Barcelona y  del IHSM (Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", CSIC-UMA) en Málaga, se han analizado los genes de las plantas de tomate que se activan o reprimen después de 2, 7 y 14 días de haber sido infectadas por el crinivirus causante de la clorosis del tomate, ToCV. Los resultados mostraron una activación temprana de mecanismos de respuesta a la infestación por el insecto vector, en nuestro caso las moscas blancas virulíferas usadas para la infección, derivando más adelante, y una vez establecido el virus , hacia la activación de los sistemas de defensa antiviral. Para confirmar los resultados, se seleccionaron de la lista de genes con expresión alterada dos genes previamente relacionados con inmunidad en plantas, denominados Hsp90 y Sgt1, y se verificó su importancia mediante experimentos en los que se silenciaba su expresión. Para ello se analizaron las acumulaciones de virus al reducir artificalmente los niveles de expresión de los genes seleccionados, encontrando que de forma paralela se aumentaba la suceptibilidad de las plantas a la infección por el virus. Estos resultados en los que se identifican componentes de la maquinaria celular de respuesta a virosis ayudarán a diseñar estrategias de control que utilicen la potenciación de las defensas naturales de las plantas.
 

This summary refers to a collaboration of researchers at CRAG (Centre for Research in Agrigenomics, CSIC-IRTA-UAB-UB) in Barcelona, and colleagues at IHSM (Institute for subtropical and Mediterranean Horticulture "La Mayora", CSIC-UMA) in Malaga, and  intends to provide descriptive procedures for studying in laboratory conditions the transmission of plant pathogenic viruses by insect vectors, coonsidering the most frequent and important vector organisms like aphids and whiteflies.  Indeed, many species of plant viruses are naturally disseminated through specific transmission by insect vectors, mainly phytophagous homopterans including aphids and whiteflies. For a successful transmission, and depending on the vector specificity and the mode of transmission, different durations of the periods for acquisition, retention, and inoculation are required. Therefore, the experimental setup to perform controlled transmission experiments under laboratory conditions involves handling the vector organisms and managing the times for the different steps of the process to optimize and standardize the results. The  basic procedures that can be applied to vector-mediated transmission experiments are described, giving examples for selected viruses and different host plants.
 

Este resumen se refiere a una colaboración de investigadores del CRAG (Centro de Investigación en Agrigenómica, CSIC-IRTA-UAB-UB) en Barcelona y colegas del IHSM (Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", CSIC-UMA) en Málaga, y tiene la intención de proporcionar procedimientos descriptivos para estudiar, en condiciones de laboratorio, la transmisión de virus patógenos de plantas por insectos vectores, considerando los organismos vectores más frecuentes e importantes como los pulgones y las moscas blancas. De hecho, muchas especies de virus de plantas se diseminan naturalmente a través de la transmisión específica por insectos vectores, principalmente homópteros fitófagos, incluidos pulgones y moscas blancas. Para poder reproducir una transmisión eficiente, y dependiendo de la especificidad del vector y del modo de transmisión, se requieren duraciones diferentes para los períodos de adquisición, retención e inoculación. Por lo tanto, la configuración experimental para realizar ensayos de transmisión controlados en condiciones de laboratorio implica el manejo de los organismos vectores y la gestión de los tiempos para los diferentes pasos del proceso, de forma que se puedan optimizar y estandarizar los resultados. Se describen los procedimientos básicos que se pueden aplicar a los experimentos de transmisión mediada por vectores, aportando ejemplos con virus seleccionados y diferentes plantas hospedadoras.
 

"""VIRTIGATION is a multi-actor project on a mission to protect tomatoes and cucurbits in Northern Europe and the Mediterranean Basin. Together with partners from key EU neighbouring areas – Morocco, Israel and India – the VIRTIGATION project aims to develop a set of bio-based solutions to safeguard tomatoes and cucurbits from emerging viral diseases.
Specifically, VIRTIGATION addresses emerging viral diseases caused by the begomovirus ToLCNDV (Tomato leaf curl New Delhi Virus, transmitted by whiteflies) and the tobamovirus ToBRFV (Tomato brown rugose fruit virus, mechanically transmitted). In particular practice-relevant measures will be developed to protect these plants."""
 

"""VIRTIGATION ist ein Multi-Akteur-Projekt mit dem Ziel Tomaten und Kürbisgewächse vor aufkommenden Viruskrankheiten in Europa und dem Mittelmeerraum zu schützen. Gemeinsam mit Partnern aus europäischen Ländern sowie Marokko, Israel und Indien wird versucht eine Reihe von biobasierten Lösungen zu entwickeln.
Konkret geht es bei VIRTIGATION um neu auftretende Viruskrankheiten, die durch das Begomovirus ToLCNDV (Tomato leaf curl  Neu- Delhi-Virus, Übertragung durch Weiße Fliegen) und das Tobamovirus ToBRFV (Tomato brown rugose fruit virus, mechanische Übertragung).""
Dabei sollen insbesondere praxisnahme Maßnahmen entwickelt werden, um den Anbau dieser Pflanzen zu gewährleisten.aufkommenden Viruskrankheiten in Europa und dem Mittelmeerraum zu schützen. Gemeinsam mit Partnern aus europäischen Ländern sowie Marokko, Israel und Indien wird versucht eine Reihe von biobasierten Lösungen zu entwickeln. 
Konkret geht es bei VIRTIGATION um neu auftretende Viruskrankheiten, die durch das Begomovirus ToLCNDV (Tomato leaf curl Neu- Delhi-Virus, Übertragung durch Weiße Fliegen) und das Tobamovirus ToBRFV (Tomato brown rugose fruit virus, mechanische Übertragung) verursacht werden."
 

Bemisia tabaci (Hemiptera: Aleyrodidae) is a significant pest worldwide, causing damage to plants both directly and indirectly by transmitting numerous economically important viruses. The Tomato Leaf Curl New Delhi Virus (ToLCNDV), transmitted by whiteflies from the Bemisia tabaci complex, spread from Southeast Asia to the Mediterranean region in the early 2000s. ToLCNDV affects cucurbits and has caused significant economic losses in Europe, particularly in Greece, Italy, Spain, Portugal, and recently in France. Climate change is expected to exacerbate the spread of B. tabaci and its associated diseases. To better understand how climate change will affect the epidemiology of ToLCNDV in cucurbits, LIST researchers are testing how changes in temperature, humidity, and CO2 concentration in climatic chambers will affect the acquisition and inoculation of ToLCNDV in B. tabaci, as well as the gene expression of target genes in the whitefly vector. The experiments aim to shed light on an unexplored topic and help address future challenges in plant protection.
 

Bemisia tabaci (Hemiptera: Aleyrodidae) ist weltweit ein bedeutender Schädling, der sowohl direkt durch Saugschaden als auch indirekt durch die Übertragung zahlreicher wirtschaftlich wichtiger Viren Schäden an Pflanzen verursacht. Das Tomato Leaf Curl New Delhi Virus (ToLCNDV), das von Weißen Fliegen aus dem Bemisia tabaci-Komplex übertragen wird, breitete sich in den frühen 2000er Jahren von Südostasien bis in den Mittelmeerraum aus. ToLCNDV befällt Kürbisgewächse (z.B. Zuchini) und hat in Europa erhebliche wirtschaftliche Verluste verursacht, insbesondere in Griechenland, Italien, Spanien, Portugal und seit kurzem auch in Frankreich. Es wird erwartet, dass der Klimawandel die Ausbreitung von B. tabaci und der von ihr übertragenen Krankheitenen noch verschlimmern wird. Um besser zu verstehen, wie sich der Klimawandel auf die Epidemiologie von ToLCNDV bei Kürbisgewächsen auswirken wird, testen die LIST-Forscher, wie sich Veränderungen der Temperatur, der Luftfeuchtigkeit und der CO2-Konzentration in Klimakammern auf die Aufnahme von ToLCNDV durch das Schadinsekt und dessen Weitergabe, sowie auf die Genexpression von Zielgenen in der Weißen Fliege auswirken. Die Experimente sollen die Wechselwirkungen zwischen Schadinsekt und Virus charakterisieren und dazu beitragen, zukünftige Herausforderungen im Pflanzenschutz anzugehen.
 

The project VIRTIGATION, funded by the European Union under the Horizon 2020 programme, involves 25 partners from 12 different countries, and aims to develop solutions for the control of emerging viruses on cucurbits and tomatoes caused by begomoviruses and tobamoviruses (the first ones transmitted by insects). Main entomological objectives of the project are to: i) understand plant-virus-vector interactions; ii) identify ecological factors that favour outbreaks of infections; iii) investigate biology of vector insects and their virus transmission efficiency under climate change conditions; iv) enhance and optimize natural resistance, especially for lower attractiveness of plants to vector insects; v) develop solutions for the integrated control of the viruses and their vectors. Within this project, the University of Catania (Department of Agriculture, Food and Environment – Di3A) will have to: a) contribute to a survey in various partner countries on methods used for whitefly control, especially Bemisia tabaci; b) coordinate field trials to evaluate the efficacy of new plant extracts with insecticidal action, also analysing their secondary effects on natural enemies and pollinators; c) carry out field trials with the most promising accessions for their resistance to B. tabaci MED; d) evaluate the combination of different approaches for whitefly control. 
 

Il progetto VIRTIGATION, finanziato dall'Unione Europea nell'ambito del programma Horizon 2020, coinvolge 25 partner provenienti da 12 paesi diversi, e mira a sviluppare soluzioni per il controllo dei virus emergenti su cucurbitacee e pomodoro causati da begomovirus e tobamovirus (i primi trasmessi da insetti). I principali obiettivi entomologici del progetto sono: i) comprendere le interazioni pianta-virus-vettore; ii) individuare i fattori ecologici che favoriscono l'insorgere di infezioni virali; iii) studiare la biologia degli insetti vettori e la loro efficienza di trasmissione dei virus in condizioni di cambiamento climatico; iv) potenziare e ottimizzare la resistenza naturale, soprattutto per la minore attrattività delle piante nei confronti degli insetti vettori; v) sviluppare soluzioni per il controllo integrato dei virus e dei loro vettori. Nell'ambito di questo progetto, l'Università degli Studi di Catania (Dipartimento di Agricoltura, Alimentazione e Ambiente – Di3A) dovrà: a) contribuire a un'indagine in vari paesi partner sui metodi utilizzati per il controllo degli aleirodidi, con particolare riferimento a Bemisia tabaci; b) coordinare prove di campo per valutare l'efficacia di nuovi estratti vegetali ad azione insetticida, analizzandone anche gli effetti secondari sui nemici naturali e sugli impollinatori; c) effettuare prove di campo con le accessioni più promettenti per la loro resistenza a B. tabaci MED; d) valutare la combinazione di diversi approcci per il controllo degli aleirodidi vettori di virus. 
 

Whiteflies (Hemiptera: Aleyrodidae) are critical pests attacking many cultivated plants in almost all areas of the world. Among them, Bemisia tabaci (Gennadius) is a global pest that causes significant losses to a wide variety of crops by affecting plants development. To control B. tabaci infestations, the release of natural enemies has become increasingly important as an ecologically safe and effective biological control method and, among predators used, the mirid bug Macrolophus pygmaeus (Rambur) plays a primary role. Anyway, due to its zoophytophagous habits, a wrong application rate of this predator can also make this beneficial a threat to the plants; and this is why a better understanding is needed of the role that M. pygmaeus plays on crops, evaluated in a holistic way. To this aim, and in order to deepen knowledge on the impact that whiteflies alone or combined with M. pygmaeus may have on vegetable solanaceous crops (with special emphasis to tomato and eggplant), the main morphological (total height, dry weights, leaf area) and physiological (photosynthetic performance, indirect chlorophyll content) parameters of the plants were analysed in different conditions (healthy plants, or infested by the pest, or with pest and predator together). At the experimental conditions and the insect densities adopted, results show a variable susceptibility by different plant species to B. tabaci and a significant reduction induced by M. pygmaeus in negative effects caused by the pest on morpho-physiological traits of the plants.
 

Gli Aleirodidi sono insetti fitofagi che attaccano molte piante coltivate in quasi tutto il mondo. Tra questi, Bemisia tabaci (Gennadius) è un parassita globale che causa perdite significative a un'ampia varietà di colture, influenzando lo sviluppo delle piante. Per controllare le sue infestazioni, il rilascio di nemici naturali è diventato sempre più importante come metodo di controllo biologico ecologicamente sicuro ed efficace e, tra i predatori utilizzati, il miride Macrolophus pygmaeus (Rambur) ha un ruolo primario. Tuttavia, per i suoi costumi zoofitofagi, un’applicazione non corretta di questo predatore può renderlo una minaccia per le piante; ed è per questo che è necessaria una migliore comprensione del ruolo svolto da M. pygmaeus, valutato in modo olistico. Per approfondire le conoscenze sull'impatto che B. tabaci da sola o in combinazione con M. pygmaeus può avere sulle solanacee orticole (soprattutto pomodoro e melanzana), i principali parametri morfologici (altezza totale, peso secco, superficie fogliare) e fisiologici (rendimento fotosintetico, contenuto indiretto di clorofilla) delle piante sono stati analizzati in diverse condizioni (piante sane, o infestate dal parassita, o con parassita e predatore insieme). Alle condizioni sperimentali e alle densità di insetti adottate, i risultati mostrano una suscettibilità variabile delle diverse piante a B. tabaci e una significativa riduzione indotta da M. pygmaeus degli effetti negativi causati dal parassita sui tratti morfo-fisiologici delle piante.
 

Tomato leaf curl New Delhi virus (ToLCNDV) is now emerging in the Mediterranean Basin, starting from Spain in 2012. It has been observed for the first time in France in 2020 in  Gard and Bouches-du-Rhône. Mediterranean ToLCNDV is a bipartite begomovirus, causing leaf curl disease mainly in zucchini and others cucurbits, and genetically distinct from Asian (Indian)-ToLCNDV that has a broader host range. The cryptic species of whitefly Bemisia tabaci is the main insect vector of ToLCNDV while mechanical inoculation is also possible. Previous studies indicate that the Mediterranean clade represents a homogenous population, probably originating from a single introduction. We established a suitable protocol of inoculation and performed biological and molecular characterization of the French isolates in order to estimate their risks of emergence and their potential agronomic impact. Symptom observation of French ToLCNDV isolates on melon and zucchini showed two different types so-called “severe” and “recovery”. French ToLCNDV was found to be transmissible by Bemisia tabaci as expected but not by the greenhouse whitefly Trialeurodes vaporariorum. Host range analysis in experimental conditions suggest that Bryony and Tomato are susceptible to French and Spanish ToLCNDV and may constitute virus reservoirs, what should be taken into consideration for virus control. Our results expand the knowledge on this emerging virus and offer perspectives for shaping the future plant disease management.
 

Le ToLCNDV est un virus émergent dans le Bassin Méditerranéen, où il a d'abord été observé en Espagne en 2012. En France, il a été observé pour la première fois en 2020 dans le Gard et les Bouches-du-Rhône. Le ToLCNDV Méditerranéen est un begomovirus bipartite, causant des déformations foliaires surtout chez les cucurbitacées, et génétiquement distinct du ToLCNDV Asiatique (Indien) qui infecte une gamme de plantes plus large. Le complexe d'espèces d'aleurodes Bemisia tabaci est le principal vecteur du ToLCNDV; le virus peut être transmis mécaniquement de façon peu efficace. Des études précédentes ont montré que le ToLCNDV constitue une population génétiquement homogène, probablement issue d'une introduction unique. Nous avons développé des travaux pour caractériser les isolats français au niveau biologique et moléculaire, en vue d’estimer leurs risques d’émergence et leur impact agronomique potentiel. L’observation des symptômes sur melon et courgette a révélé deux types différents, « sévère » ou « avec récupération » selon les isolats. Des expériences de transmission par insecte ont montré que le ToLCNDV Français est transmis par B. tabaci comme attendu mais pas par l’aleurode des serres Trialeurodes vaporariorum. Des résultats  en conditions expérimentales indiquent que la tomate et la bryone sont des hôtes potentiels du ToLCNDV et peuvent constituer des réservoirs viraux. Nous résultats améliorent la connaissance de ce virus émergent en vue de mieux gérer la maladie à l’avenir.
 

ToBRFV is a newly emerged virus that causes severe losses in tomato production. Within five years, ToBRFV infections were reported in Asia, North America and Europe. ToBRFV belongs to tobamovirus genus, however all the available tomato resistant varieties used for tobamoviruses, such as TMV and ToMV, cannot halt infections caused by this new virus. The severity of this disease, its rapid spread, and the scarcity of resistant cultivars make this virus a global threat for tomato production. Our objective is to find ToBRFV resistance in wild Solanum accessions and introgress this trait into tomato cultivars reaching the first step for creating modern resistant tomato varieties. So far, we have screened 75 Solanum accessions from which two S. pennellii found resistant to ToBRFV. Segregation populations have been obtained from these two accession that is the first step for mapping the gene responsible for the resistance trait. The identification and introgression of the resistance gene are in progress.                                                                  
 

ToBRFV is een nieuw  virus dat ernstige schade en verliezen veroorzaakt in de tomatenteelt. Binnen vijf jaar na de eerste vondstren van het virus in Jordanië en Israël werden ToBRFV-infecties gemeld in Azië, Noord-Amerika en Europa. ToBRFV behoort tot de groep van de tobamovirussen, maar geen van de tomatenrassen die resistent zijn tegen tobamovirussen zoals TMV en ToMV, kan de infecties die door dit nieuwe virus worden veroorzaakt stoppen. De ernst van deze ziekte, de snelle verspreiding ervan en het gebrek aan resistente cultivars maken dit virus tot een wereldwijde bedreiging voor de tomatenteelt. Ons doel is ToBRFV-resistentie te vinden in wilde Solanum-soorten en deze eigenschap in commerciele tomatencultivars te introduceren, waarmee we de eerste stap zetten naar het creëren van moderne resistente tomatenrassen. Tot nu toe hebben we 75 Solanum-accessies gescreend, waarvan twee S. pennellii-accessies resistent werden bevonden tegen ToBRFV. kruisingspopulaties zijn verkregen uit deze twee accessies; een eerste stap om het gen dat verantwoordelijk is voor het resistentiekenmerk in kaart te brengen.Aan de identificatie en verdere inkruising van het resistentiegen wordt gewerkt.                                                                 
 

TECNOVA (TEC, Spain) and Landwirtschaftskammer Nordrhein-Westfalen (LNW, Germany) work together in the task “Optimization of eradication methods after tobamovirus outbreaks” of VIRTIGATION project. Both institutes are working on the validation of solarization and steaming methods to eradicate tobamoviruses in contaminated cocopeat bags by TMV (Tobacco mosaic virus). For solarization, TEC has used a transparent 37.5 µm think polyethylene plastic during 60 days (from September to November to try simulate the summer in other countries in Europe) with reordered temperatures between 15.2 to 46.2°C. LNW is testing two steaming protocols: (1) 90 °C during 20 min and (2) at 90 °C during 40 min. In order to test the success of both methods, the disinfected bags were used to growth new plants. In addition, it has tried to discern if the substrate must necessarily be free of crop residues or not. The results of the solarization have been very promising. All tomato plants grew up symptomless in solarized bags. Only in one of the six lines (temperature > 40°C during 10-13 days) TMV were detected by PCR. Moreover, in bags with infected material (roots and leaves), the maximum temperature was until 4°C higher than in bags with just substrate. Incorporate vegetal material helped to increase the number of days with high temperature (> 40°C), from 7-13 to 14-34 days in substrate bags without and with infected material, respectively. The steaming results are coming soon in the following moths. After steaming it has been detected: (i) plants in the non-steamed bags showed better fitness than the steamed variants; (ii) growth of mold fungi could be observed on the substrate and (iii) substrate bags must be used immediately and cannot be stored for a while.
 

TECNOVA (TEC, España) y Landwirtschaftskammer Nordrhein-Westfalen (LNW, Alemania) colaboran en la “Optimización de métodos de erradicación de tobamovirus” del proyecto VIRTIGATION. Los institutos están trabajando en la validación métodos de solarización y esterilización por vapor para erradicar tobamovirus en sacos de fibra de coco contaminadas por TMV (Tobacco mosaic virus). Para la solarización se ha utilizado un plástico de polietileno transparente de 37,5 µm durante 60 días (de septiembre a noviembre intentando simular el verano en países europeos) con temperaturas entre 15,2 y 46,2°C. LNW está probando dos protocolos de vaporización: (1) 90°C, 20 min y (2) 90°C, 40 min. Para probar el éxito de ambos métodos, los sacos desinfectados se usaron para cultivar nuevas plantas. Además, se pretende discernir si el sustrato debe estar libre de residuos de cosecha o no. Los resultados de la solarización han sido muy prometedores. Todas las plantas de tomate crecieron sin síntomas en los sacos solarizados. Únicamente en una de las seis líneas (temperatura > 40°C durante 10-13 días) se detectó TMV mediante PCR. Además, en los sacos con material infectado (raíces y hojas), la temperatura máxima fue hasta 4°C mayor que en las bolsas con solo sustrato. La incorporación de material vegetal ayudó a aumentar el número de días con temperatura alta (> 40°C), de 7-13 a 14-34 días en los sacos sin y con material infectado, respectivamente. En cuanto a la vaporización se ha detectado: (i) las plantas en los sacos no vaporizados mostraron mayor vigorosidad; (ii) tras el tratamiento se ha observado el crecimiento de moho en el sustrato y, por lo tanto, (iii) los sacos deben usarse de inmediato y no almacenarse por un tiempo. Este ensayo se encuentra todavía en ejecución.
 

Tomato brown rugose fruit virus (ToBRFV) poses a huge threat to commercial tomato cultivation worldwide. Due to its high persistence and easy mechanical transmission, ToBRFV is extremely hard to get rid of once it enters the greenhouse. Current management strategies therefore centre around preventive measures, such as improved hygiene, in an attempt to keep the virus out of the crop. Early detection of the virus can also play an important role. Our research shows that ToBRFV circulates in greenhouse water systems and can be detected in drain water samples before the plants start showing symptoms. We illustrate that drain water can be used to monitor ToBRFV outbreaks and thus can serve as an early warning system.
 

El virus del fruto rugoso marrón del tomate (ToBRFV) representa una enorme amenaza para el cultivo comercial de tomate en todo el mundo. Debido a su alta persistencia y fácil transmisión mecánica, ToBRFV es extremadamente dificil de eliminar una vez que entra en el invernadero. Por lo tanto, las estrategias actuales de manejo se centran en medidas preventivas, como una mejor higiene, en un intento de mantener el virus fuera del cultivo. La detección temprana del virus también puede desempeñar un papel importante. Nuestra investigación muestra que ToBRFV circula en los sistemas de agua de los invernaderos y puede ser detectado en muestras de agua de drenaje antes de que las plantas comiencen a mostrar síntomas. Ilustramos que el agua de drenaje puede ser utilizada para monitorear los brotes de ToBRFV y, por lo tanto, puede servir como un sistema de alerta temprana.
 

Today, pest management based on biological control is the most sustainable alternative to pesticide use. The whitefly Bemisia tabaci is one of the key pests negatively impacting yield and quality of vegetable crops; while the predator Macrolophus pygmaeus is one of the main natural enemies widely used for its control, although it can sometimes behave as a pest, causing damage to plants. In this study, the impact of M. pygmaeus as a plant feeder has been investigated, by analyzing the combined impact of the whitefly and the predator bug on potted eggplants under laboratory conditions. Results show no statistical differences between the heights of plants infested by the whitefly or by both insects compared with non infested control plants. However, indirect chlorophyll content, photosynthetic performance, leaf area, and shoot dry weight were all greatly reduced in plants infested only by B. tabaci, compared with those infested by both the pest and its predator or with noninfested control plants. Contrarily, root area and dry weight values were more reduced in plants exposed to both insects, compared to those infested only by the whitefly or to noninfested plants (the latter showing the highest values). These results show how M. pygmaeus can significantly reduce the damage caused by B. tabaci to host plants, although its effects on the belowground part of the plants remains unclear. Anyway, from a practical point of view and given the overall positive effect of the predator, both for its control of the whitefly and reduction of negative effects on crops, its release during the early stages of B. tabaci infestation in greenhouse environments is recommended. 
 

Al giorno d'oggi, la gestione dei parassiti basata sul controllo biologico è l'alternativa più sostenibile all'uso di agrofarmaci. L'aleirode Bemisia tabaci costituisce uno dei parassiti chiave che incidono negativamente sulla resa e sulla qualità delle colture ortive; invece, il miride Macrolophus pygmaeus è considerato uno dei principali nemici naturali ampiamente utilizzati per il suo controllo. Talvolta tale predatore può causare danni alle colture, pertanto in questo studio è stato esaminato l'impatto combinato di B. tabaci e del predatore su piante di melanzana in condizioni di laboratorio. I risultati non hanno mostrato differenze statistiche tra le altezze delle piante infestate dal parassita o da entrambi gli insetti rispetto alle piante non infestate. Tuttavia, il contenuto indiretto di clorofilla, la prestazione fotosintetica, l’area fogliare e il peso secco dei germogli sono stati maggiormente modificati nelle piante infestate solo da B. tabaci, rispetto a quelle infestate sia dall’alaeirode che dal suo predatore o rispetto alle piante non infestate. Contrariamente, i valori dell'area e del peso secco delle radici sono risultati inferiori nelle piante esposte a entrambe le specie di insetti, rispetto a quelle infestate solo dall'aleirodide o alle piante non infestate. Questi risultati mostrano come il predatore possa ridurre significativamente i danni causati alle piante ospiti dalla presenza di B. tabaci, anche se il suo effetto sulla parte ipogea delle piante rimane ancora poco chiaro. Tuttavia, dato l’effetto complessivamente positivo del miride predatore sulle colture, da un punto di vista pratico, viene raccomandato il suo rilascio durante le prime fasi di infestazione di B. tabaci negli ambienti serricoli.
 

Invasive weeds cause significant crop yield and economic losses in agriculture. The highest indirect impact may be attributed to the role of invasive weeds as virus reservoirs within commercial growing areas. The new tobamovirus tomato brown rugose fruit virus (ToBRFV), first identified in the Middle East, overcame the Tm-22 resistance allele of cultivated tomato varieties and caused severe damage to crops. In this study, we determined the role of invasive weed species as potential hosts of ToBRFV and a mild strain of pepino mosaic virus (PepMV-IL). Of newly tested weed species, only the invasive species Solanum elaeagnifolium and S. rostratum were susceptible to ToBRFV infection. S. rostratum was also susceptible to PepMV-IL infection. No phenotype was observed on ToBRFV-infected S. elaeagnifolium grown in the wild or following ToBRFV inoculation. S. rostratum plants inoculated with ToBRFV contained a high ToBRFV titer compared to ToBRFV-infected S. elaeagnifolium plants. Mixed infection with ToBRFV and PepMV-IL of S. rostratum plants, as well as S. nigrum plants (a known host of ToBRFV and PepMV), displayed synergism between the two viruses, manifested by increasing PepMV-IL levels. Additionally, when inoculated with either ToBRFV or PepMV-IL, disease symptoms were apparent in S. rostratum plants and the symptoms were exacerbated upon mixed infections with both viruses. In a bioassay, ToBRFV-inoculated S. elaeagnifolium, S. rostratum and S. nigrum plants infected tomato plants harboring the Tm-22 resistant allele with ToBRFV. The distribution and abundance of these Solanaceae species increase the risks of virus transmission between species.
 

"Las malas hierbas invasoras representan una amenaza significativa para la agricultura causando importantes pérdidas en el rendimiento de los cultivos y en la economia Sirven como reservorios de virus, especialmente el virus de fruto rugoso marrón del tomate ToBRFV que ha superado alelos de resistencia en variedades cultivadas de tomate lo que conduce a graves daños en los cultivos Este estudio investiga el potencial de especies de malas hierbas invasoras especialmente Solanum elaeagnifolium y S rostratum como hospedadores de ToBRFV y una cepa leve del virus del mosaico del pepino PepMV L) Los resultados muestran la susceptibilidad de S elaeagnifolium y S rostratum al ToBRFV con S rostratum también siendo susceptible al PepMV IL Las infecciones mixtas en plantas de S rostratum y S nigrum muestran sinergismo viral, exacerbando los síntomas de la enfermedad Los experimentos de bioensayo demuestran la transmisión de ToBRFV de las malas hierbas infectadas a las
plantas de tomate lo que es preocupante debido a la distribución y abundancia de estas especies de malas hierbas que aumentan el riesgo de transmisión de virus"
 

Background Counting of insects on plants is crucial in plant breeding for insect resistance, to determine infestation in the field, or for assessment of crop protection products. The traditional method of visually counting insect (larvae, eggs) using a microscope is time-consuming and requires expertise. For instance, whiteflies, a  common pest on various crops, can lay up to hundreds of eggs on a single leaf within a few days. An automated and rapid method for quantifying insect eggs can save time and human resources. Results Researchers created a tool called Eggsplorer, which automates the counting of whitefly eggs. Images of leaves with whitefly eggs were collected using a custom-built imaging system. These images were used to train  a deep learning model that can detect and count the eggs accurately.  The model was then integrated in a user-friendly web-based application. In testing, Eggsplorer achieved a counting accuracy of nearly 94% when compared to manual counts. It proved to be a reliable method for determining the resistance and susceptibility of different plants to whitefly infestation. Practical recommendation: Eggsplorer presents a new method for fast automatic determination of insects eggs on plants, that is easily accessible for users in a web-based application. Eggsplorer could be integrated into mobile phone platforms allowing users to collect data on the go and receive real-time advice on pest infestation. Furthermore, this innovation can be further developed to analyze not only eggs but other developmental stages of other insects on different plants.
 

Het tellen van insecten op planten is essentieel bij plantenveredeling en het beoordelen van gewasbescherming. De traditionele methode van visueel tellen van insecteneieren met behulp van een microscoop is tijdrovend en vereist expertise. Om dit probleem aan te pakken, is er een nieuwe geautomatiseerde tool ontwikkeld genaamd Eggsplorer. Om deze tool te ontwikkelen zijn foto's van bladeren met wittevliegeieren verzameld met behulp van een op maat gemaakt camerasysteem. Deze afbeeldingen zijn gebruikt om een deep learning model te trainen voor nauwkeurige detectie en tellen van de eieren. Het model is vervolgens geïntegreerd in een gebruiksvriendelijke web-app, waar snel en nauwkeurig fotos geupload en geanalyseerd kunnen worden. Bij testen behaalde Eggsplorer een nauwkeurigheid van bijna 94% bij het tellen in vergelijking met experts. Met de methode konden betrouwbaar resistentie en vatbaarheid van verschillende planten voor wittevliegbesmetting bepaald worden. Praktisch advies: Eggsplorer kan gebruikt worden voor snelle en automatische bepaling van insecteneieren op planten, gemakkelijk toegankelijk via een web-based app. Integratie in een mobiele app zou gegevensverzameling onderweg mogelijk maken en gebruikers real-time van advies kunnen voorzien over plaag-ontwikkeling. Bovendien kan deze innovatie verder worden ontwikkeld om ook andere ontwikkelingsstadia van insecten op verschillende planten te analyseren.
 

This review looks at the group of tobamoviruses to which tomato brown rugose fruit virus belongs. Some tobamoviruses cause latent infection in their hosts, which means that no obvious symptoms are visible. This has implicitations for diagnostics as multiple infections with latent and non-latent viruses may only focus on the symptom-inducing viruses. Furthermore, latent viruses may affect symptomology or replication of co-infecting viruses which may lead to more severe symptoms on host plants.
 

Dieser Review betrachtet die Tobamovirusgruppe, eine Gruppe von Viren, zu denen auch das tomato brown rugose fruit virus zählt. Einige Tobamoviren rufen latente Infektionen hervor, d.h., auf den Wirtspflanzen sind keine oder nur sehr milde Symptome sichtbar. Dieses stellt Diagnostiker vor besondere Herausforderungen, da in Mischinfektionen von latenten und nicht-latenten Viren oft der Fokus auf den symptom-verursachenden Viren liegt. Darüberhinaus können latente Viren auch Einfluß auf die Symptome oder Replizierung von co-infizierenden Viren haben, was zu stärkeren Symptomen auf Wirtspflanzen führen kann.
 

Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
 

Los begomovirus constituyen un grupo extremadamente exitoso de virus emergentes de plantas transmitidos por moscas blancas del complejo Bemisia tabaci. Los huéspedes incluyen importantes cultivos de hortalizas, tubérculos y fibras que se cultivan en los trópicos y subtrópicos. Los factores que contribuyen a la diversidad y al éxito cada vez mayores de los begomovirus incluyen su predisposición a recombinar sus genomas, la interacción con los satélites de ADN reclutados a lo largo de su evolución, la presencia de plantas silvestres como reservorio de virus y fuente de especiación, así como la polifagia extrema y el movimiento continuo de los insectos vectores a las regiones templadas. En esta revisión se analizan estas características, así como algunos temas controvertidos (replicación en el insecto vector, supuesta transmisión por semillas, transmisión por insectos distintos de B. tabaci y expansión del rango de huéspedes a plantas monocotiledóneas). 
 

Begomoviruses constitute a successful group of emerging plant viruses threatening vegetable, root and fiber crops worldwide that are transmitted in nature by whiteflies of the Bemisia tabaci complex. Tomato leaf curl New Delhi virus is a paradigmatic example of a begomovirus that has recently emerged in Mediterranean countries after movement from its original location in the Indian subcontinent. The Mediterranean isolates of this virus belong to a novel strain, named “Spain strain”, which infects zucchini and other cucurbits but is poorly adapted to tomato. This work aimed to clarify some aspects of the whitefly transmission of tomato leaf curl New Delhi virus. It was shown that contrary to a recent study reporting the transmission of an Indian isolate of the virus by the greenhouse whitefly (Trialeurodes vaporariorum), the Mediterranean isolate is not transmitted by this insect. In addition, the most prevalent Bemisia tabaci species, Mediterranean, is not an efficient vector of this begomovirus between zucchini plants and the wild cucurbit Ecballium elaterium. These results suggest that this wild plant, although frequently infected, may not play a relevant role as a reservoir in the epidemiology of the disease caused by tomato leaf curl New Delhi virus Spain strain.
 

ToLCNDV-Spain no se transmite por Trialeurodes vaporariorum y es ineficientemente transmitido por Bemisia tabaci MED entre calabacín y la cucurbitácea silvestre Ecballium elaterium

Los begomovirus constituyen un exitoso grupo de virus vegetales emergentes que amenazan los cultivos de hortalizas, tubérculos y fibras en todo el mundo y que se transmiten en la naturaleza por las moscas blancas del complejo Bemisia tabaci. El virus del rizado del tomate de Nueva Delhi es un ejemplo paradigmático de un begomovirus que ha surgido recientemente en los países mediterráneos después del movimiento desde su ubicación original en el subcontinente indio. Los aislamientos mediterráneos de este virus pertenecen a una nueva cepa, denominada “cepa España”, que infecta a los calabacines y otras cucurbitáceas pero se adapta mal al tomate. Este trabajo tuvo como objetivo aclarar algunos aspectos de la transmisión por mosca blanca del virus del rizado del tomate de Nueva Delhi. Se demostró que, contrariamente a un estudio reciente que informó la transmisión de un aislado indio del virus por la mosca blanca de los invernaderos (Trialeurodes vaporariorum), el aislado mediterráneo no es transmitido por este insecto. Además, la especie más prevalente de Bemisia tabaci, la mediterránea, no es un vector eficaz de este begomovirus entre las plantas de calabacín y la cucurbitácea silvestre Ecballium elaterium. Estos resultados sugieren que esta planta silvestre, aunque frecuentemente infectada, puede no jugar un papel relevante como reservorio en la epidemiología de la enfermedad causada por la cepa española del virus del rizado del tomate de Nueva Delhi.
 

Affichage actuel du contenu de la page dans la langue maternelle, si disponible

Contacts

Project coordinator

  • , KU Leuven, Coordinator

    Project coordinator

Project partners

  • DCM CORP

    Project partner

  • TECNOVA

    Project partner

  • LIST

    Project partner

  • NRI-University of Greenwich

    Project partner

  • CSIC

    Project partner

  • CRAG

    Project partner

  • UNICT

    Project partner

  • WU

    Project partner

  • WR

    Project partner

  • INRAE

    Project partner

  • EMWEB

    Project partner

  • Volcani Center

    Project partner

  • PCH

    Project partner

  • APREL

    Project partner

  • JKI

    Project partner

  • Syngenta France

    Project partner

  • Scientia Terrae

    Project partner

  • HVH2

    Project partner

  • AGAPA

    Project partner

  • LNW

    Project partner

  • Project partner

  • RTDS

    Project partner

  • Project partner

  • DCM CORP

    Project partner