project - Research and innovation

Transition towards a more carbon and nutrient efficient agriculture in Europe
Transition towards a more carbon and nutrient efficient agriculture in Europe

Ongoing | 2018 - 2022 Belgium
Ongoing | 2018 - 2022 Belgium
Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Objectives

Nutri2Cycle wants to serve as innovation engine to extrapolate the impact of farm level innovations to regional & EU level. The objectives are:
- to map current flows & gaps in C,N, P cycles in the 3 major agricultural pillars (animal production, plant production, agro-residue processing)
- to implement a toolbox with comprehensible indicators to measure sustainability & evaluate trade-offs between current practice versus optimized farming systems
- to assess, prioritize & demonstrate agro-innovations at pilot/full scale
-to calculate the impact of agro-innovations on regional & EU level
-to evaluate how end-consumers play a role on food chain sustainability and how this can be influenced

Objectives

See objectives in English

Activities

Activities within Nutri2Cycle are 
- mapping the baseline for current flows & systems with regards to N, P & C
- identify optimized farm solutions which close loops & have less environmental impact as compared to the benchmark 
- perform agro-technical research (lab, pot, process, field experiments) on these solutions
- quantify the impact (at farm level) of agro-ecology systems by a comprehensive toolbox (techno-economic & environmental)
- calculate the impact potential by extrapolating farm level to regional & EU levels
- bridge the gap between producers & end-users a.o. by assessing ecolabels & consumer behavior 
- translate into practice by prototype demo’s showcasing the innovations

Activities

See project activities in English

Project details
Main funding source
Horizon 2020 (EU Research and Innovation Programme)
Horizon Project Type
Multi-actor project
Ort
Main geographical location
Arr. Gent

€ 7048003

Total budget

Total contributions including EU funding.

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

49 Practice Abstracts

Tractor-mounted sensor technologies using the NDVI (normalized difference vegetation index) indicator, such as Yara and Green Seeker, and drone technologies (Unmanned Aerial Vehicles, UAV) can be successfully used in nutrient management. The nutrient supply of plants and the heterogeneity of the plots can be seen indirectly from the data of the field maps made on the basis of the recorded raw data. The satellite communication of the tractor technologies use the 20m x 20m or 10m x 10m grid resolution, while the drone technology uses centimeter- precise information. Since the drones are equipped with positioning device, multi-spectral and thermal cameras, they can be used even in cloudy or unstable weather conditions, can adapt to the local conditions, and provide real-time information at a relatively low cost. They can be successfully applied to heterogeneous crops such as grapes and orchards. The results of the tests carried out within the Nutri2Cycle project showed that drone technology offers more perspectives than the tractor mounted sensor technology because a) their use can be easily learned by farmers b) there are several types of software available for raw data processing, b) the information can be made compatible with the automatic control of tractors, c) the processed data can be used also for spraying, and by determining the evapo-transpiration index in yield estimation, in irrigation and in evaluating the crops carbon sequestration potential, but also in the variable rate of sowing. Lately, farmers are constantly switching from the tractor sensor technology to the drone technology.

Az NDVI (normalised difference vegetation index) mutatót alkalmazó traktorra szerelt szenzortechnológiák, mint a Yara és Green Seeker és a nagy perspektívákat mutató dróntechnológiák (Unmaned Aerial Vehicles, UAV) sikeresen alkalmazhatók a tápanyag-gazdálkodásban. A felvételezett nyers adatok alapján készült tábla térképek adataiból közvetett módón válik láthatóvá a növények tápanyag-ellátottsága és a terület heterogenitása is. A traktor techológiák műholdas kommunikációja a 20m x 20m vagy a 10m x 10m rácsos felbontást alkalmazzák, míg a dróntechnológia centiméter pontos információkat. Mivel a drónok helymeghatározó eszközzel, multi spektrális és hő kamerákal vannak felszerelve felhős vagy változó időjárási körülmények között is használhatók, alkalmazkodnak a területi viszonyokhoz és valós idejű információkat szolgáltatnak relatív alacsony költséggel. Sikeresen alkalmazhatók heterogén növényeknél mint a szőlő és gyümölcsültetvények is. Az elvégzett tesztek eredményei azt mutatják, hogy a dróntechnológia a traktorra szerelt szenzortechnológiával szemben több perspektívát mutat ugyanis a) használatuk a gazdák által könnyen elsajátítható b) az adatfeldolgozáshoz többféle szoftver áll rendelkezésre, b) az információk kompatibilissé tehetők a traktorok automata vezérlésécel, c) alkalmazhatók permetezéshez is, illetve az evapo-transziprációs index meghatározásával a termésbecslésben is, az öntözésben és a szénmegkötés értékelésére, de a változó számú vetéshez is. A gazdák folyamatosan térnek át a traktor szenzortechnológiáról a dróntechnológiára. 

As part of the Nutri2Cycle project, the Chamber of Agriculture was asked for demonstrating the situation of nutrient cycling in a farm combining livestock, crops and agroforestry. So we followed from 2019 to 2022 an agroforestry plot at the Manicot farm which combines geese’ husbandry and cropping in Charente-Maritime. A 8 ha plot, planted since 2010 with linear intra-plot coppice for the production of energy biomass with, has been monitored on four different areas established according to the spreading of effluents and the agroforestry situation. The evaluation of the annual stocks of effluents led to a result of 145 m3 of slurry and 25 tons of manure.The contents of NPK elements on raw matter are lower than 0.5% per element: these effluents cannot claim the commercial qualification of fertilizer but they have a fertilizing value at farm.The four areas were followed mainly using remote sensing associated with analyzes of soil organic matter and tests of nitrogen mineralization kinetics. Observations were cross-referenced with fertilization balance calculations and crop development simulations using the STICS tool designed by INRAe.

Dans le cadre du projet Nutri2Cycle, la Chambre d'agriculture a été sollicitée pour une démonstration du cycle des nutriments sur une exploitation agricole combinant élevage, grandes cultures et agroforesterie. Nous avons ainsi suivi de 2019 à 2022 une parcelle agroforestière à la ferme Manicot qui allie élevage d'oies et culture en Charente-Maritime. La parcelle de 8 ha, plantée depuis 2010 en taillis intra-parcellaire linéaire pour la production de biomasse énergétique, a été divisée en quatre zones différentes selon l'épandage des effluents et la situation agroforestière.L'évaluation des stocks annuels d'effluents a abouti à un résultat de 145 m3 de lisier et 25 tonnes de fumier. Les teneurs en éléments NPK sur la matière première sont inférieures à 0,5% par élément : ces effluents ne peuvent prétendre à la qualification commerciale d'engrais mais ils ont une valeur fertilisante à la ferme. Les quatre zones ont été suivies principalement par télédétection associée à des analyses de matière organique des sols et à des tests de cinétique de minéralisation de l'azote. Les observations ont été croisées avec des calculs de bilans de fertilisation et des simulations de développement des cultures grâce à l'outil STICS conçu par l'INRAe.

A two-year demonstration was carried out in an organic farm combining field crops and a vineyard. The aim was to decide whether the oil-cake obtained from extracting rapeseed, hemp, sunflower and camelina oil should be used as livestock feed for a neighbouring farm, as was usually done, or as a fertiliser or soil-enhancer with biostimulating effect for the vineyard. During the first year, the fertilising efficiency of the oil-cake was compared to a commercial organic compost and a mix of both. During the second year, the oil-cake was compared to a control plot. The obtained results were mixed. One explanation is that the plots chosen for the demonstration were already showing differences in the soil profile, probably due to differences in sun exposure. Furthermore, legumes had been planted in every second interrow of the vineyard in every plot, which may have biased greatly the N content of some samples. Finally, the varying climatic conditions between the two years of demonstrations may have affected the results. The main recommendation would be to consider the oil-cake as an as effective fertiliser as the commercial compost. More experimentations should be done over more years to confirm these findings.

Une démonstration de deux ans a été conduite sur une ferme biologique combinant des cultures arables et un vignoble. L’objectif était de décider si le tourteau obtenu par extraction d’huile de colza, de chanvre, de tournesol et de cameline devait être utilisé en tant qu’aliment pour un élevage voisin, comme c’était d’habitude le cas, ou bien comme fertilisant ou améliorateur de sol avec un effet biostimulant pour le vignoble. Durant la première année, l’effet fertilisant du tourteau a été comparé à celui d’un compost biologique commercial et à un mélange des deux. Durant la seconde année, le tourteau a été comparé à une parcelle témoin. Les résultats obtenus ont été mitigés. Une des raisons possibles est que les parcelles choisies pour la démonstration montraient des différences préalablement à la démonstration, probablement en raison de différences d’exposition. De plus, des légumineuses avaient été plantées dans chaque deuxième interrang de chaque parcelle du vignoble, ce qui a pu biaiser le contenu N de certains prélèvements. Enfin, les conditions climatiques variables entre les deux années ont pu affecter les résultats. Plus d’expérimentations sont nécessaires sur un nombre plus important d’années pour confirmer ces résultats.

Variable Rate Application (VRA) of pig manure in top dressing fertilization may have a positive effect on the yield of potato. Therefore standard top dressing of chemical fertilizer and evenly spread of 50m3 basic fertilization (April) plus 14m3 top dressing (July) of manure was compared to application in 3 VRA zones: low (25+7m3) medium (50+14m3) and high (75+21m3). Two strategies were tested: more manure on rich soil (high buffering capacity, ‘all for the best’) and more manure on poor soil (‘robin hood’).Soil buffering capacity was assessed by measuring Electrical Conductivity (EC). EC is an indicator for the organic matter content, water-holding capacity and nutrient content. Based on this, 3 field zones were determined: poor (EC 1,6-3,7), medium (EC 1,9-4,0) and rich (EC 2,6-4,8). Per zone, soil was analysed on nutrients (NPK) content.The growth of the crop was assessed by drone thermal and spectral images, from which different indexes (NDVI, NDRE, VARI, WDVI) were calculated and represented in spatial maps. In addition, manual probe harvests were done on different moments; during the final harvest a yield map was produced. With data of treatment zones, differences in yield were calculated and economic consequences were discussed.

Variable Rate Application (VRA) van varkensmest in bijbemesting kan een positief effect hebben op de opbrengst van aardappel. Daarom werd standaardbemesting met kunstmest en gelijkmatig uitgereden 50m3 basisbemesting plus 14m3 mest vergeleken met 3 VRA zones: laag (25+7m3), middel (50+14m3) en hoog (75+21m3). Twee VRA-strategieën zijn getest: meer mest op rijke grond (hoge buffercapaciteit, 'all for the best') en meer mest op arme grond ('robin hood').Het bufferend vermogen van de bodem werd beoordeeld door de elektrische geleidbaarheid (EC) te meten. De EC is een indicator voor het organische stofgehalte, het waterhoudend vermogen en het nutriëntengehalte. Op basis hiervan werden arme (EC1,6-3,7), gemiddelde (EC 1,9-4,0) en rijke (EC 2,6-4,8) veldzones bepaald. Per zone werd de grond geanalyseerd op NPK. De groei van het gewas werd beoordeeld met dronebeelden, waaruit verschillende indexen (NDVI, NDRE, VARI, WDVI) werden berekend en weergegeven in ruimtelijke kaarten. Daarnaast werden op verschillende momenten handmatige sonde-oogsten uitgevoerd; bij de laatste oogst werd een opbrengstkaart gemaakt. Met gegevens van behandelzones werden verschillen in opbrengst berekend en economische gevolgen zijn doorgesproken.

Practice Center for Precision Agriculture, Reusel, South Netherlands, tested application of BioBased Fertilizer (BBF) on potato for project Nutri2Cycle in 2022.Basic fertilization was applied with a standard slurry injector. The test focussed on top dressing with pigmanure; where two issues were addressed: (i) Standard slurry is too heterogenous to do a reliable top dressing. Therefore the Liquid Fraction Dosing (LFD) of pig slurry was used, with a more constant NPK content. Even the thin fraction of pig slurry is difficult to pomp through an application system, it might cause constipation, therefore it was treated with plasma. (ii) Application was done with a trailing hose fertilization device, just before complete canopy coverage. It was expected that this system limits exhaust of fermentation gases, especially ammonia, and reduces the risk of burn marks on leaves.

Praktijkcentrum voor Precisielandbouw, Reusel, Zuid-Nederland, testte toepassing van Bio-meststoffen, (BioBased Fertilizer, BBF) op aardappel voor project Nutri2Cycle in 2022.De basisbemesting werd toegepast met een standaard drijfmestinjector. De test richtte zich op bijbemesting met organische mest, waarbij 3 zaken aan de orde kwamen: (i) Standaard drijfmest is te heterogeen om een betrouwbare bijbemesting te doen. Daarom werd de Liquid Fraction Dosing (LFD) van varkensdrijfmest gebruikt, met een constanter gehalte aan NPK. Zelfs de dunne fractie van varkensdrijfmest is moeilijk door een toepassingssysteem te pompen, het zou verstopping kunnen veroorzaken, daarom werd het behandeld met plasma. (ii) De bemesting werd uitgevoerd met sleepslangen, vlak voordat het gewas volledig sloot. Verwacht werd dat dit systeem de uitstoot beperkt van fermentatiegassen, met name ammoniak, en het risico van brandplekken op bladeren vermindert.Uit dit onderzoek bleek dat BBF's veilig kunnen worden gebruikt in de aardappelteelt op zandgronden.

Application of manure to agricultural soils can improve soil quality and productivity by maintaining its nutrient status and organic matter (OM) content. Resulting nitrogen (N) emissions in the form of ammonia (NH3) and the greenhouse gas nitrous oxide (N2O) may however lead to substantial environmental pressure. Manure plasma activation has been considered an innovative technique that lowers nitrogen losses during and after soil application. The scientific documentation on its effects is still limited.In 2022 Wageningen Environmental Research (WEnR) conducted a study within Nutri2Cycle project to quantify gaseous losses of NH3 and N2O from plasma activated manure (PAM) and non-treated raw manure (RM) applied to soil.

Bemesting van landbouwgronden kan de bodemkwaliteit en -productiviteit verbeteren door de nutriëntenstatus en het gehalte aan organische stof (OM) op peil te houden. De resulterende stikstof (N) emissies in de vorm van ammoniak (NH3) en het broeikasgas lachgas (N2O) kunnen echter leiden tot een aanzienlijke druk op het milieu. Behandeling van mest met plasma wordt aangeprezen als een innovatieve techniek die de stikstofverliezen tijdens en na het opbrengen in de bodem verlaagt. De wetenschappelijke documentatie over de effecten ervan is nog beperkt.In 2022 heeft Wageningen Environmental Research (WEnR) voor het Nutri2Cycle project een studie uitgevoerd om de gasvormige verliezen van NH3 en N2O uit plasma-geactiveerde mest (PAM) en niet-behandelde ruwe mest (RM) op de bodem te kwantificeren.

The trial site, which was located on a working arable farm, was established in 2019 and ran for the duration of the Nutri2Cycle project. The crop rotation consisted of maize silage (2019), spring wheat (2020), oilseed rape (2021), winter wheat (2022) & spring beans (2023). The trial site consisted of seven fertiliser treatment plots, which were zero fertiliser (control), chemical fertiliser (CF) only, and, a further five bio-based fertiliser (BBF) treatments, namely, treatments including cattle slurry, pig slurry solids, poultry manure, and two types of dairy processing sludge (DPS), to supply part of the crops nutrient requirements based on soil test data and targeted yield. These five BBF were analysed to assess both their nutrient value & nutrient availability. As the BBF did not provide all the crops N, P, K and S requirements, these treatments were supplemented or ‘’balanced’’ with CF in order to ensure all plots received the same amount of nutrients for optimal yield. Using available data from 2019 to 2022, several benefits of incorporating BBF into an arable NMP are apparent. Using BBF to recycle nutrients can provide a considerable amount of a crops P requirements, and, in doing so, can reduce the associated fertiliser costs and P imports. In addition, soil data from the trial has shown that BBF can also be used to effectively build soil P and K fertility. In addition, CF only plots and balanced BBF plots returned comparable yields, which indicates that incorporating BBF fertilisers into arable systems could be a financially viable option for crop farmers and a way to reduce the reliance on CF

See the summary in English.  

Microalgae are small photosynthetic organisms, which means they can produce their own organic carbon from CO2. These organisms are much more efficient in capturing CO2 from the atmosphere than conventional crops, and therefore have a higher potential for mitigation of greenhouse gas emissions.Besides CO2, microalgae require N, P, K and other macro and micronutrients, which can be provided in the form of liquid fraction of digestate, creating value from it. However, the liquid fraction of digestate has high ammonia concentration and high turbidity, which can hinder microalgae growth.To address these challenges, the Nutri2Cycle project evaluated the growth of microalgae on digestate on a pilot scale 500 L photobioreactor installed in a greenhouse in Belgium. Filtration, dilution and fed-batch strategies were tested to improve the quality of the digestate for microalgae cultivation.

Microalgen zijn kleine fotosynthetische organismen, wat betekent dat ze hun eigen organische koolstof kunnen produceren uit CO2. Deze organismen zijn veel efficiënter in het vastleggen van CO2 uit de atmosfeer dan conventionele gewassen en hebben daarom een groter potentieel voor het verminderen van de uitstoot van broeikasgassen.Naast CO2 hebben microalgen N, P, K en andere macro- en micronutriënten nodig, die kunnen worden geleverd in de vorm van de vloeibare fractie van digestaat, waardoor er waarde wordt gecreëerd. De vloeibare fractie van digestaat heeft echter een hoge ammoniakconcentratie en een hoge troebelheid, wat de groei van microalgen kan belemmeren.Om deze uitdagingen aan te pakken, evalueerde het Nutri2Cycle-project de groei van microalgen op digestaat in een fotobioreactor van 500 L op proefschaal in een kas in België. Filtratie, verdunning en fed-batch strategieën werden getest om de kwaliteit van het digestaat voor de kweek van microalgen te verbeteren.

Phosphorus is industrially upcycled from the renewable food grade animal bone meal unexploited biomass that is converted into macroporous and economically high nutrient density “ABC” Animal Bone Char BioPhosphate. Unique zero emission/energy independent innovative 3R pyrolysis process applied that has been specifically developed to upcycle animal bone meal by-products to make ABC. In the second processing step the blank ABC is biotech formulated into multi-nutrient compound BIO-NPK-C biofertilizer commercial products with multifunctional character and combined with other bio-origin nutrient sources. This is a high added value transformation of unexploited biomass into new and lawful biofertilizer products at less cost, perceived to be of greater quality and environmental/climate value with second life/new function that finished product becomes more practical and valuable than what it previously was. The 3R is aiming to replace in significant industrial scale the imported, energy intensive, chemically processed and non-renewable mineral compound fertilizers, which supply chain/security is disrupted for long term by the new 2023 energy and geopolitical situation. ABC targets agri food crop producer users with demands for environmental friendly and efficient BIO-NPK-C compound formulated bio-based fertilisers to be market competitive, resilient and adaptive to wide range of different climatic/soil applications at less cost. Lawfulness demonstrated, EU REACH certified, MS Authority permitted for commercial applications while EU 2019/1009 EC fertilizer conformity pre-audited to meet different product functional category requirements to create multiple financial and non-financial benefits for the users.

A foszfor újrahasznosítása megújuló élelmiszer-minőségű állati csontlisztből mint kiaknázatlan biomasszából történik, melyet makropórusos és gazdaságosan magas tápanyag sűrűségű ABC állati csontszén Biofoszfáttá alakítanak. Egyedülálló, zéró emisszió/energia független innovatív 3R pirolízis eljárást alkalmaz, melyet kifejezetten az állati csont melléktermékek újrahasznosítására fejlesztettek ki. A második lépésben az ABC-t biotechnológiai eljárással többfunkciós karakterű BIO-NPK-C termékekké alakítják és más bio-tápanyagforrásokkal kombinálnak. Ez a kiaknázatlan biomassza magas hozzáadott értékű és gazdaságos átalakítása új és törvényes biotrágya termékekké, jobb minőséget és környezetvédelmi/klímaértéket képvisel, második élettel/új funkcióval, mely által késztermék értékesebb, mint amilyen korábban volt. A 3R jelentős ipari méretben kívánja kiváltani az importált, energiaigényes, kémiai úton feldolgozott nem megújuló műtrágyákat, amelyek ellátási láncát/biztonságát hosszú távon megzavarta a 2023-as új energetikai és geopolitikai helyzet. Az ABC a mezőgazdasági élelmiszernövény-termelőket célozza meg, akik környezetbarát és hatékony BIO-NPK-C összetett tápanyagokat igényelnek, hogy versenyképesek, rugalmasak legyenek és alkalmazkodni tudjanak az eltérő éghajlati/talaji viszonyokhoz. Az eljárás törvényi megfelelősége igazolt, EU REACH tanúsítvánnyal rendelkezik, valamint tagállami hatósági forgalomba hozatali engedélye van, míg az EU 2019/1009 rendeletének történő megfelelőségét előzetesen auditálták, a különböző termék-funkcionális kategóriák követelményei szerint, ezáltal a felhasználók számára többféle gazdasági és nem anyagi előnyt biztosítanak.

Livestock manure is typically applied to cropland when it is generated in an amount that fits the farm’s land nutrient needs. But when it is produced in excess, livestock manure will need to be exported and/or treatment due to its high and concentration of nutrients, such as nitrogen. Ammonia recovery from livestock manure can produce fertilisers as marketable products and allows for nitrogen loop closure. This particular lighthouse demo investigation develops low temperature vacuum evaporation for the recovery of ammonia from pig slurry, to obtain a salt solution that can be used as a fertiliser. A vacuum evaporation plant (Ammoneva®) has been placed and operated in a farm of UPB Genetic World, S.L. (Viver i Serrateix, Barcelona, Spain). The field pilot plant consists of a solid-liquid separator, a 6.4 m3 vacuum evaporator, a liquid ring vacuum pump, and an acid trap. After a solid liquid separation, and prior entering the evaporator, the pH value of liquid fraction (LF) of pig slurry is modified to a range of 9-11. Each evaporation cycle lasts for 4 hours, and is performed at a temperature of 40-45 °C and 800 mbar of vacuum. Ammonia evaporated from the LF is conducted to the acid trap, where it is absorbed as an ammonium solution, and a LF with low ammonia content is obtained. 

Els purins s'apliquen normalment a les terres de conreu quan es generen en una quantitat que s'ajusta a les necessitats de nutrients de la terra de la granja. Però quan es produeix en excés, els purins s’han d’exportar i/o tractar degut al seu alt contingut en de nutrients, com el nitrogen. La recuperació d'amoníac dels purins pot produir fertilitzants com a productes comercialitzables i així tancar el cicle del nitrogen. La present investigació demostrativa desenvolupa l'evaporació al buit a baixa temperatura per a la recuperació d'amoníac de purins de porc, per obtenir una solució amoniacal que es pugui utilitzar com a fertilitzant. S'ha operat una planta d'evaporació al buit (Ammoneva) en una granja d’UPB Genetic World, S.L. (Viver i Serrateix, Barcelona, Espanya). La planta pilot consta d'un separador sòlid-líquid, un evaporador de 6,4 m3, una bomba de buit d'anell líquid i una trampa d'àcid. Després d'una separació sòlid-líquid i abans d'entrar a l'evaporador, el valor de pH de la fracció líquida (FL) de purins de porc es modifica a un rang de 9-11. Cada cicle d'evaporació té una durada de 4 hores, i es realitza a una temperatura de 40-45 °C i 800 mbar de buit. L'amoníac evaporat de la FL es condueix a la trampa d'àcid, on s'absorbeix en forma d'una solució d'amoni, i s'obté una FL amb baix contingut en amoníac. 

Portuguese Farmers need some evidence that mineral fertilizer can “safely” be replaced by organic fertilizers, namely by manure-based fertilizers. Some issues regarding the management and application of such materials need to be clarified/evidenced to farmers namely: 1) The impact on soil health; 2) The impact on weed development; 3) The mineral fertilizer replacement potential; and (iv) The ability of these materials to increase soil organic matter (SOM) content. The potential use of poultry manure compost and pig slurry to replace mineral fertilizers as basal fertilization in maize crop was tested in a commercial Farm located at Azinhaga (Quinta da Cholda – Portugal) in three contrasting sites: site 1) a sandy soil with low organic matter content, submitted to regular application of compost and conventional agriculture practices; site 2) a loamy soil with medium soil organic matter content, no application of organic materials and conventional agriculture practices; and site 3) sandy loam soil under no-tillage practice over the last 15 years. At each site, basal nitrogen fertilization using mineral fertilizers was replaced by pig slurry or poultry compost application. Greenhouse gases emissions were measured during maize growth and the crop yield, nutrient recovery and soil health were assessed at the end of the experiment.The maize yields obtained in the three sites in plots fertilized with pig slurry or poultry manure were all similar or higher than those obtained with mineral fertilization. However, the use of compost led to an increase of nitrous oxide, one of the stronger GHG.

Os agricultores portugueses precisam de alguma evidência de que os fertilizantes minerais podem ser substituídos “com segurança” por fertilizantes orgânicos, nomeadamente por fertilizantes à base de estrume. Algumas questões relativas à gestão e aplicação de tais materiais precisam ser esclarecidas/evidenciadas aos agricultores, nomeadamente: 1) O impacto na saúde do solo; 2) O impacto no desenvolvimento de ervas daninhas; 3) O potencial de substituição de fertilizantes minerais; e (iv) A capacidade destes materiais de aumentar o conteúdo de matéria orgânica do solo (MOS). O potencial uso de composto de esterco de aves e dejetos suínos em substituição a fertilizantes minerais como fertilização basal na cultura do milho foi testado em uma fazenda comercial localizada na Azinhaga (Portugal) em 3 locais: 1) solo arenoso com baixo teor de matéria orgânica, submetido a tratamento regular aplicação de compostagem e práticas agrícolas convencionais; 2) solo argiloso com teor médio de matéria orgânica, sem aplicação de materiais orgânicos e práticas agrícolas convencionais; 3) solo franco-arenoso sob prática de plantio direto nos últimos 15 anos. Em cada local, a fertilização basal com nitrogênio usando fertilizantes minerais foi substituída pela aplicação de dejetos de suínos ou composto de aves. As emissões de GEE foram medidas durante o crescimento do milho e o rendimento da colheita, a recuperação de nutrientes e a saúde do solo foram avaliados no final do experimento. Os rendimentos de milho obtidos nos três locais em parcelas fertilizadas com dejetos suínos ou esterco de aves foram todos semelhantes ou superiores aos obtidos com fertilização mineral. No entanto, o uso de composto levou a um aumento de óxido nitroso, um dos GEE mais fortes.

A life cycle assessment (LCA) study compared the acidification of pig slurry with sulfuric acid in the outdoor storage with no treatment in intensive pig production in Denmark in terms of their environmental performance. Slurry acidification reduces environmental emissions and impacts directly related to the farm, such as emissions of greenhouse gases (mainly methane, CH4), acidification, eutrophication and fine particulate matter (derived from ammonia, NH3), but may also contribute to enhanced nutrient recycling overall. However, it can also have harmful effects due to the consumption of additional energy and sulphuric acid manufacturing derived from off-farm resources and increased nitrate leaching due to changed chemical properties of the slurry. To justify slurry acidification as a cleaner production technology on all levels, energy and material sources should be examined and carefully selected. Acidification costs between 1 – 2 € per ton of slurry, which can partially be substi¬tuted by reduced mineral N fertiliser needs as the slurry fertiliser equivalent value increases by about 30-40%. Since farmers are expected to adjust their mineral Nitrogen (N) fertiliser application to the con¬centration and expected efficiency of N in the slurry, no great differences in yield are expected. 

Un estudio de evaluación del ciclo de vida (ACV) comparó la acidificación del purín de cerdo con ácido sulfúrico en el almacenamiento al aire libre con ningún tratamiento en la producción intensiva de cerdos en Dinamarca en términos de su desempeño ambiental. La acidificación del purín reduce las emisiones ambientales y los impactos directamente relacionados con la explotación, como las emisiones de gases de efecto invernadero (principalmente metano, CH4), la acidificación, la eutrofización y las partículas finas (derivadas del amoníaco, NH3), pero también puede contribuir a un mejor reciclaje de nutrientes en general. . Sin embargo, también puede tener efectos nocivos debido al consumo de energía adicional y a la fabricación de ácido sulfúrico derivado de recursos no agrícolas y al aumento de la lixiviación de nitratos debido al cambio de las propiedades químicas del lodo. Para justificar la acidificación de los purines como una tecnología de producción más limpia en todos los niveles, se deben examinar y seleccionar cuidadosamente las fuentes de energía y materiales. La acidificación cuesta entre 1 y 2 euros por tonelada de purín, lo que puede sustituirse parcialmente con menores necesidades de fertilizantes N minerales, ya que el valor equivalente del fertilizante en purín aumenta aproximadamente entre un 30 y un 40 %. Dado que se espera que los agricultores ajusten su aplicación de fertilizantes minerales de nitrógeno (N) a la concentración y eficiencia esperada del N en el purín, no se esperan grandes diferencias en el rendimiento.

A life cycle assessment (LCA) study compared the acidification of pig slurry with sulfuric acid in the outdoor storage with no treatment in intensive pig production in the Netherlands in terms of their environmental performance. Slurry acidification reduces environmental emissions and impacts directly related to the farm, such as emissions of greenhouse gases (mainly methane, CH4), acidification, eutrophication and fine particulate matter (derived from ammonia, NH3), but may also contribute to enhanced nutrient recycling overall. However, it can also have harmful effects due to the consumption of additional energy and sulphuric acid manufacturing derived from off-farm resources and increased nitrate leaching due to changed chemical properties of the slurry. To justify slurry acidification as a cleaner production technology on all levels, energy and material sources should be examined and carefully selected. Acidification costs between 1 – 2 EUR / t slurry, which can partially be compen¬sated by reduced mineral N fertiliser needs as the fertiliser equivalent value increases by about 30-40%. Since farmers are expected to adjust mineral N fertiliser application to the concentration and ecpected efficiency of N in the slurry, no great differences in yield are to be expected.

Een levenscyclusanalyse (LCA) studie vergeleek de verzuring van varkensdrijfmest met zwavelzuur in de buitenbewaring zonder behandeling in de intensieve varkenshouderij in Nederland op hun milieuprestaties. Aanzuring van de drijfmest draagt bij aan een betere recycling van nutriënten in het algemeen en vermindert emissies en effecten die rechtstreeks verband houden met de boerderij, zoals de uitstoot van broeikasgassen (CH4) en fijnstof (NH3). Het kan echter ook schadelijke effecten hebben door de levering van extra energie en zuurproductie afkomstig van bronnen buiten de boerderij en verhoogde nitraatuitspoeling als gevolg van veranderde chemische eigenschappen van de drijfmest. Om verzuring van drijfmest als schonere productietechnologie op alle niveaus te rechtvaardigen, moeten energie- en materiaalbronnen worden onderzocht en zorgvuldig worden geselecteerd. Verzuring kost tussen de 1 en 2 EUR / ton drijfmest, die gedeeltelijk kan worden vervangen door een verminderde behoefte aan minerale N-meststoffen, aangezien de waarde van de meststofequivalent met ongeveer 30-40% toeneemt. Aangezien van boeren wordt verwacht dat zij de minerale N-bemesting aanpassen aan de N-concentratie in de drijfmest, zijn er geen grote opbrengstverschillen te verwachten. Of drijfmestverzuring al dan niet S-bemesting vervangt en of extra bekalking nodig is om mogelijke bodemverzuring tegen te gaan, heeft weinig invloed op de milieuprestaties van drijfmestverzuring ten opzichte van de nulmeting. Echter, hoe hoger de vraag naar S van gewassen, hoe lager de extra impact van verzuring en boeren kunnen gestimuleerd worden om drijfmest aan te zuren in plaats van directe S-bemesting. Aangezien aanvullende kalkbehoeften geen invloed hadden op relatieve vergelijkingen, hoeft de pH-status van de bodem geen deel uit te maken van de besluitvorming. Bij vergelijking van drijfmestverzuring met strengere P-doseringen bleken strengere P-doseringen gunstiger dan invoering van drijfmestverzuring.

A life cycle assessment (LCA) study compared the acidification of pig slurry with sulfuric acid in the outdoor storage with no treatment in intensive pig production in Denmark in terms of their environmental performance. Slurry acidification reduces environmental emissions and impacts directly related to the farm, such as emissions of greenhouse gases (mainly methane, CH4), acidification, eutrophication and fine particulate matter (derived from ammonia, NH3), but may also contribute to enhanced nutrient recycling overall. However, it can also have harmful effects due to the consumption of additional energy and sulphuric acid manufacturing derived from off-farm resources and increased nitrate leaching due to changed chemical properties of the slurry. To justify slurry acidification as a cleaner production technology on all levels, energy and material sources should be examined and carefully selected. Acidification costs between 7 – 15 DKK / 1 – 2 € per ton of slurry, which can partially be substituted by reduced mineral N fertiliser needs as the slurry fertiliser equivalent value increases by about 30-40%. Since Danish farmers are required to adjust their mineral Nitrogen (N) fertiliser application to the concentration of N in the slurry and a minimum required efficiency, no great differences in yield are to be expected.

En livscyklusvurdering (LCA)-undersøgelse sammenlignede forsuring af svinegylle med svovlsyre i udendørs gylletanke med ingen behandling i intensiv svineproduktion i Danmark med hensyn til deres miljømæssige virkninger. Gylleforsuring reducerer miljøemissioner og -påvirkninger direkte relateret til bedriften, såsom emissioner af drivhusgasser (især metan, CH4), forsuring, eutrofiering og fine partikler i luften (forårsaget af ammoniak, NH3). Gylleforsuring kan dog også have skadelige effekter udenfor gården på grund af yderligere energi forbrug og syrefremstilling samt øget nitratudvaskning på grund af ændrede kemiske egenskaber af gyllen. Hvis gylleforsuring skal være en renere produktionsteknologi på alle niveauer bør energi- og materialekilder derfor undersøges og nøje udvælges. Forsuring koster mellem 7 – 15 DKK/t gylle, som delvist kan kompenseres af reduceret mineralsk N-gødningsbehov, da gødningsækvivalentværdien stiger med ca. 30-40%. Den danske miljøregulering kræver at landmændene tilpasser tilførslen af mineralsk N-gødning til koncentrationen af N i gyllen og en mindste krævet gødningseffekt, og der forventes derfor ikke store forskelle i afgrøde udbytte. 

Life cycle assessment (LCA) was applied to evaluate duckweed ponds and constructed wetlands as polishing steps in pig manure liquid fraction treatment. Using nitrification-denitrification (NDN) of the liquid fraction as the starting point, the LCA compared direct land application of the NDN effluent with different combinations of duckweed ponds, constructed wetlands and discharge into natural waterbodies.Duckweed ponds and constructed wetlands are viewed as a viable tertiary treatment option and potential remedy for nutrient imbalances in areas of intense livestock farming, such as in Belgium. As the effluent stays in the duckweed pond, settling and microbial degradation reduce the remaining phosphorous (P) and nitrogen (N) concentrations. Combined with duckweed and/or wetland plants that take up nutrients in their plant body, this approach can reduce over-fertilisation of soils and prevent excessive N and P losses to aquatic environments. In addition, duckweed could serve as an alternative livestock feed and replace imports of protein destined for animal consumption.

Levenscyclusanalyse (LCA) werd toegepast om eendenkroosvijvers en aangelegde moerassen te evalueren als zuiveringsstappen bij de behandeling van vloeibare mestfracties van varkens. Uitgaande van nitrificatie-denitrificatie (NDN) van de vloeibare fractie als vertrekpunt, vergeleek de LCA rechtstreekse toepassing van het NDN-effluent op land met verschillende combinaties van eendenkroosvijvers, aangelegde moerassen en lozing in natuurlijke waterlichamen.Eendenkroosvijvers en aangelegde moerassen worden beschouwd als een haalbare tertiaire zuiveringsoptie en potentieel middel tegen voedingsstoffenonevenwichtigheden in gebieden met intensieve veehouderij, zoals in België. Omdat het effluent in de eendenkroosvijver blijft, verminderen bezinking en microbiële afbraak de resterende concentraties fosfor (P) en stikstof (N). Gecombineerd met eendenkroos en/of moerasplanten die voedingsstoffen opnemen in hun plantlichaam, kan deze aanpak overbemesting van bodems verminderen en overmatig verlies van N en P naar wateromgevingen voorkomen. Bovendien zou eendenkroos kunnen dienen als alternatief veevoer en import van eiwitten bestemd voor dierlijke consumptie kunnen vervangen.


A life cycle assessment study evaluated the environmental impacts of insect production based on agro-residues with soybean meal and fishmeal as protein sources.Given their nutritional value and ability to convert agro-residues into fertilisers, the larvae of Black Soldier Fly may foster nutrient recycling and feedstuff production within the EU on less land than current practices. However, BSF originate from the tropics and their rearing in Europe requires substantial heating and diets composed solely of residues rarely meet their dietary requirements and additional feed is needed.Both heating and non-residue feed are environmental hotspots of insect production and cause great impacts on fossil resource and water use, and climate change. Overall, insect protein had greater impacts than protein from soybean meal or fishmeal unless location and/or heating source are changed.Since non-residue feed inputs are needed, insect production based on endive roots and Brussels sprout stems performed worse than their natural degradation on agricultural fields. For manure, BSF production showed advantages due to avoidance of industrial composting and field application, but a clear superiority could not be demonstrated.Using renewable source instead of natural gas for heating decreased impacts but for non-manure diets such switch was insufficient. Transferring BSF production to warmer regions where no heating is needed could be a more promising option.

Een levenscyclusanalyse (LCA)-studie evalueerde de milieueffecten van insectenproductie op agro-residuen (andijviewortels, spruitstengels en dikke fractie varkensmest) met sojameel en vismeel als eiwitbronnen.Gezien hun voedingswaarde en het vermogen om landbouwresiduen om te zetten in meststoffen, kunnen de larven van de zwarte soldaatvlieg (BSF) (Hermetia illucens) de recycling van nutriënten en de productie van voedermiddelen binnen de EU bevorderen op minder land dan de huidige praktijk.BSF is echter afkomstig van de onderwerpen en hun kweek in Europa vereist aanzienlijke verwarming en diëten die uitsluitend uit residuen bestaan, voldoen zelden aan hun voedingsbehoeften en er is aanvullend voer nodig. Zowel verwarming als niet-residuvoer zijn ecologische hotspots van insectenproductie en hebben grote gevolgen voor het gebruik van fossiele hulpbronnen en water, en voor klimaatverandering. Over het algemeen had insecteneiwit een grotere impact dan eiwit uit sojameel of vismeel, tenzij de locatie en/of verwarmingsbron werd gewijzigd.Omdat voer zonder residuen nodig is, presteerde de insectenproductie op basis van andijviewortels en stengels van spruitjes slechter dan hun conventionele behandeling. Voor mest vertoonde BSF-productie voordelen door het vermijden van conventionele compostering en veldtoepassing, maar een duidelijke superioriteit kon niet worden aangetoond.Het gebruik van hernieuwbare bronnen in plaats van aardgas verminderde de impact, maar voor diëten zonder mest was een dergelijke omschakeling onvoldoende. Een andere optie zou kunnen zijn om BSF te produceren in warmere streken waar geen verwarming nodig is.

This study assessed a selected range of innovative agricultural technologies (12 in total) aimed at closing loops of Nitrogen (N), Phosphorus (P) and Carbon (C) with regards to their overall environmental and social performance.All environmental life cycle assessments (eLCAs) were compliant with the EU Product Environmental Footprint methodology. Data inventories were based on data from technology providers, field scale modelling, literature and/or the ecoinvent database. Given the different purposes of the technologies (e.g. slurry ammonia volatilisation reduction vs. waste stream P recovery), they cannot sensibly be compared on how much they improve C, N and P recovery and recycling. Therefore, each technology was compared against a baseline without the technology, to quantify the environmental benefits and drawbacks in relative terms.Further, Dashboard Indicators (DBI) of environmental impacts, assessed qualitatively by experts, were compared against the quantitative LCA results, to see if these simple DBI could provide useful technology guidance, saving more comprehensive LCA studies. This comparison of DBI vs. LCA can provide useful learnings for where and how to improve guidelines for DBI assessment.Finally, the social LCA study selected and tested a range of indicators of potential social hotspots and opportunities related to the implementation of these novel technologies.

See the summary in English.   

Intensive livestock activity in Lombardy (northern Italy) and in other regions in Europe (like Denmark; Catalonia, Spain; Flanders, Belgium; Netherlands) is causing several environmental issues. The nitrates directive limits the amount of manure that can be used in fields (depending on if the area is considered vulnerable or not). The possibility to export some fractions of the effluent can increase the number of livestock heads without jeopardising the environment.The solution has the aim to reduce pig slurry volumes to allow a better management of nutrients, both for export from livestock areas and on site (top dressing with ready effect nitrogen). The products are: a solid fraction (19% ww), a concentrate (a RENURE like material, 33% ww) and clean water (48% of mass). The plant separates the effluent in a solid fraction (19%), which will be composted and a liquid fraction. The latter is further separate thanks to reverse osmosis (super tight filtrations) in clean water (48%) and a concentrate (33%) that can be exported from the farm as RENURE (it could be considered a chemical fertiliser instead of livestock effluent). The liquid concentrate has high concentration of ready-to-use nutrients for plants. Field experiment on corn demonstrate that fertilisation with concentrate is as good as a chemical fertilisation (urea), as yield were the same.

L'allevamento intensivo in Lombardia e in altre regioni d'Europa causa diversi problemi ambientali. La Nirettiva Nitrati limita la quantità di refluo utulizzabile nei campi. La possibilità di esportare alcune frazioni degli effluenti può aumentare il numero di capi di bestiame senza compromettere l'ambiente. La soluzione ha l'obiettivo di ridurre i volumi del liquame suino per consentire una migliore gestione dei nutrienti, in loco e per agevolare l'exportI prodotti sono: una frazione solida (19% ww), un concentrato (un materiale tipo RENURE, 33% ww) e acqua pulita (48% della massa). L'impianto separa l'effluente in una frazione solida (19%), che verrà compostata, e una frazione liquida. Quest'ultimo è ulteriormente separato grazie all'osmosi inversa in acqua pulita (48%) e un concentrato (33%) che può essere esportato dall'azienda agricola come RENURE. Il concentrato liquido ha un'alta concentrazione di nutrienti pronti ad essere assimilati dalle piante. Esperimenti in campo su mais hanno dimostrato che la concimazione con concentrato è valida quanto una concimazione chimica (urea), determinando le medesime rese.

The solution encompasses a plant performing anaerobic digestion of sewage sludge and a “stripping system” extracting ammonia to increase the plant's digestion efficiency and produce ammonium sulphate, which can be used as valuable fertilizer or sold for industrial uses. Digestate and ammonium sulphate are used to fertilise crop, zeroing the use of synthetic fertilisers and providing valuable organic matter to the soil. Minimum tillage and precision distribution of digestate is implemented.To investigate the effect of the combined use of digestate, precision agriculture and no-tillage, field trials were set up close to the abovementioned facility. Two crops, rice and wheat, were considered and a randomised field test was performed. The investigated theses were: i)fertilisation with digestate+ AS distribution ii) fertilization with urea iii) no fertilisation(control) During the agricultural season, ammonia emissions nitrous oxide, methane, and carbon dioxide emissions were measured Odour emissions during fertilization are evaluated, and changes in main soil characteristics are also analysed. All agronomical data related to fertilization, field management, and irrigation operations were collected, together with yield data.

La soluzione include un impianto di digestione anaerobica alimentato a fanghi di depurazione e un “sistema di strippaggio” per estrarre ammoniaca, aumentare l'efficienza di digestione dell'impianto e produrre solfato di ammonio, utilizzato come fertilizzante o venduto per usi industriali. Il digestato e il solfato di ammonio vengono utilizzati per la concimazione delle colture, azzerando l'uso di fertilizzanti di sintesi e apportando sostanza organica al suolo. Allo stesso tempo viene implementata la lavorazione minima e la distribuzione precisa del digestato. Per indagare l'effetto dell'uso combinato di digestato, agricoltura di precisione e minima lavorazione del terreno, sono state allestite prove in campo nei pressi dell'impianto. Sono state prese in considerazione due colture, riso e grano. Le tesi indagate sono state: i) fertilizzazione con distribuzione digestato+AS ii) fertilizzazione con urea iii) assenza di fertilizzazione(controllo). Durante la stagione agricola sono state misurate le emissioni di ammoniaca, le emissioni di protossido di azoto, metano e anidride carbonica.Durante la concimazione sono state misurate le emissioni di odore e le variazioni delle principali caratteristiche del suolo. Sono stati raccolti i dati agronomici relativi alle operazioni di fertilizzazione, gestione del campo e irrigazione, insieme ai dati di resa.

Pig farmers struggle to dispose all manure on farm. (Processed) manure involves laborious and expensive transport. The fast growing plant duckweed might be a solution because it requires a lot of nitrogen (N) and phosphorus (P) to sustain its growth.The principle is simple: (de-)nitrified effluent is added to a pond of water, and the plant takes up all N and P it requires. By doing so, the effluent can be discharged without a negative impact on the natural ecosystem and at the same time, a protein rich plant is produced which is a source of essential minerals, which could be used in animal feed.Maximizing the addition of the (de-)nitrified effluent from pig manure within the legal limits, can still cause troubles. N is taken up, but the effluent contains more potassium (K) than required for the plant growth. As a result, K slowly builds up, until it becomes toxic for duckweed. In the project we determined a method to estimate the speed of the accumulation. We found that the depth of the pond dilutes the nutrient build up and acts as a buffer. A pond depth of 1 m allows the K levels to be below any toxicity levels after one growing season. Each winter, the pond can be discharged and refreshed with rain water. Sadly, the K cycle is generally overlooked in legislation and research. We learned to increase the amount of the unprocessed liquid fraction of pig manure in our pond


Varkenshouders hebben moeite om al hun mest af te voeren. Bovendien gaat (verwerkte) mest gepaard met duur transport. De snelgroeiende plant eendenkroos kan hiervoor een oplossing zijn, omdat deze plant de meeste stikstof (N) en fosfor (P) nodig heeft om zijn groei in stand te houden.Het principe is eenvoudig: effluent wordt toegevoegd aan een poel, en de plant neemt alle benodigde N en P op. Op die manier kan het effluent worden geloosd zonder negatieve gevolgen voor het natuurlijke ecosysteem en wordt tegelijkertijd een eiwitrijke plant geproduceerd die kan worden gebruikt in diervoeder.De maximale toevoeging van het effluent van varkensmest binnen de wettelijke grenzen kan echter nog steeds problemen opleveren. N wordt opgenomen, maar het effluent bevat meer kalium (K) dan nodig is voor de plantengroei. Daardoor hoopt K zich langzaam op, tot het giftig wordt voor eendenkroos. In het project bepaalden we een methode om de snelheid van de ophoping te schatten. We ontdekten dat de diepte van de vijver de opbouw van nutriënten verdunt en als buffer fungeert. Bij een vijverdiepte van 1 m kan het K-gehalte na één groeiseizoen onder het toxiciteitsniveau liggen. Elke winter kan de vijver worden leeggemaakt en ververst met regenwater.Aangezien K een goede voedingsbron is, kan het biologische effluent over de velden worden verspreid om in de K-behoefte te voorzien. Als echter K-meststoffen moeten aangekocht worden wegens de lagere beschikbaarheid van varkensmesteffluent, schaad je indirect de planeet, omdat de toepassing en productie van K-meststoffen een grotere energie- en grondstof-impact hebben dan de toepassing van dierlijke mest en de daarvan afgeleide producten.Uit dit onderzoek bleek dat een verhoging van de hoeveelheid van de onverwerkte dunne fractie van varkensmest in de eendenkroosvijver de nutriëntenefficiëntie optimaliseert en K-afval vermindert.

Large surpluses of on-farm N and P are processed or exported out of Flanders while tons of synthetic N-fertilisers are purchased and used for crop production. The use of recycling-derived fertilisers (RDFs) from manure can counter this situation. Currently, RDFs derived from animal manure still need to comply with the legal application constraints of animal manure and are thus not often used. That is why five RDFs (ammonium nitrate and ammonium sulphate (from stripping-scrubbing), digestate from co-digestion of pig manure, liquid fraction of digestate and pig urine) were compared with mineral fertiliser CAN, pig manure and a blank treatment in a 3-year field trial focusing on short term N-effects of the RDFs. During the first (crop: maize) and second (crop: spinach) year, the weather conditions were extremely dry and hot. Therefore water availability became the principal factor determining crop growth. In these extreme conditions, no significant differences in fresh and dry yield were observed for the different objects. Residual nitrate of all RDFs was comparable to mineral fertilizers.During the third year (crop: early potatoes), the weather conditions were wet and rather cold. Intensive precipitation led to nitrate leaching so crop yield was lower than expected in all objects. In these circumstances, delayed N mineralization from pig slurry may have coincided better with the N uptake from the early potatoes, leading to a somewhat better (not significant) yield. N - mineralization from digestate however appeared to happen too late for the potatoes (N demand is high in the early phases of the growing season in early potatoes). This may also explain the (not significant) higher residual nitrate in the soil after digestate at harvest.

Het mestoverschot in Vlaanderen wordt verwerkt en geëxporteerd, terwijl kunstmest wordt aangekocht om in de gewasbehoefte te voorzien. Nochtans kan gebruik van herwonnen meststoffen dit oplossen. Echter moeten deze voldoen aan de wettelijke toepassingsvereisten van dierlijke mest waardoor het gebruik laag is. Daarom werden de korte termijneffecten van 5 herwonnen meststoffen (ammoniumnitraat, sulfaat, digestaat, dunne fractie digestaat, varkensurine) vergeleken met KAS kunstmest, varkensmest en een blanco behandeling in een driejarige veldproef. Het doel van de proef was om een verband te leggen tussen de hoeveelheid N die wordt aangebracht en de drogestofproductie. Weersomstandigheden tijdens groeiseizoen speelden een sterke rol met extreem droog en warm weer in jaar 1, 2 en nat en koud in jaar 3. In Jaar 1 (maïs),2 (spinazie) was nitraatresidu voor alle herwonnen meststoffen gelijkaardig aan kunstmest. Jaar 3 leidde intensieve neerslag tot nitraatuitspoeling zodat de gewasopbrengst in alle objecten lager was dan verwacht. In deze omstandigheden viel de vertraagde N-mineralisatie uit varkensdrijfmest wellicht beter samen met de N-opname door vroege aardappelen, met iets betere (niet significante) opbrengst. N-mineralisatie uit digestaat bleek echter te laat te gebeuren voor de aardappelen: N vraag is hoog in de vroege fasen van het groeiseizoen bij vroege aardappelen. Dit kan ook het (niet significante) hogere restnitraat in de bodem na digestaat bij de oogst verklaren.

Farm scale anaerobic digestion (AD) is a technology by which farmers can create renewable energy by valorising agricultural residues. The AD process takes place in a large reactor in the absence of oxygen, where organic material (e.g. manure or crop residues) is being converted into biogas. The biogas (mainly methane) is subsequently burned in a combined heat and power (CHP) unit and results in a renewable energy source in the form of heat and electricity. The fermented biomass is called digestate and can be used on the farm as organic fertilizer.The majority of the 50+ farm scale anaerobic digesters in Flanders are active on dairy farms and run on mono digestion of cattle slurry. Other agricultural sectors (pig farming or vegetable farming) however also show potential for the application of farm scale AD. The most important conditions to be an economically feasible case on farms appear to be a sufficiently high demand for electricity on the farm, the availability of sufficient agricultural residual flows and limited additional cost (e.g. for potential extra pretreatment steps or logistic aspects).Pig farming in particular seems to be highly interesting to apply farm scale AD. To validate the feasibility of performing mono digestion of pig manure in a stable way, Inagro performed a pilot scale test in their farm scale digester (31 kW) during three months. The input feed consisted of the solid fraction coming from an adapted stable system and pig slurry (to decrease the dry matter content in order to prevent operational problems).

Pocketvergisting is een technologie waarmee landbouwers hernieuwbare energie kunnen produceren door de valorisatie van reststromen. Het proces vindt plaats in een grote reactor in afwezigheid van zuurstof, waar organisch materiaal (bv. mest of gewasresten) wordt omgezet in biogas. Het biogas (voornamelijk methaan) wordt vervolgens verbrand in een warmtekrachtkoppelingsinstallatie (WKK) en levert hernieuwbare energie in de vorm van warmte en elektriciteit. De vergiste biomassa wordt digestaat genoemd en kan op de landbouwbedrijf worden gebruikt als organische meststof.De meeste van de meer dan 50 pocketvergisters in Vlaanderen zijn actief op melkveebedrijven en werken op monovergisting van runderdrijfmest. Andere landbouwsectoren (varkenshouderij of groenteteelt) tonen echter ook potentieel voor de toepassing van deze technologie. De belangrijkste voorwaarden voor een economisch haalbare toepassing op landbouwbedrijven lijken een voldoende grote vraag naar elektriciteit op het bedrijf, de beschikbaarheid van voldoende agrarische reststromen en beperkte meerkosten (bv. voor mogelijke extra voorbehandelingsstappen of logistieke aspecten) te zijn.Met name de varkenshouderij is zeer interessant voor toepassing van pocketvergisting. Om de haalbaarheid van monovergisting van varkensmest op een stabiele manier te valideren, voerde Inagro gedurende drie maanden een piloottest uit in hun pocketvergister (31 kW). De toevoer bestond uit de vaste fractie afkomstig van een aangepast stalsysteem en varkensdrijfmest (om het drogestofgehalte te verlagen om operationele problemen te voorkomen).

The intensification of agriculture has greatly enhanced crop productivity, much needed with the present population growth, but its potential environmental impact also increased. Precision Agriculture has potential to tackle this challenge and the present work is framed within that context, as it intends to study the spatial variability of soils in order to precisely apply organic fertilizers. For this, three distinct zones were defined in a 6.77 ha vineyard based on high and low values of 1) apparent soil electrical conductivity (ECap), measured using an indirect sensor (Geonics EM38®), and 2) normalized difference vegetation index (NDVI), obtained from satellite images. Soil samples from each zones were then collected and chemically analysed. Most of the selected soil chemical properties, such as nutrients concentration, varied significantly among zones, showing a potential for differential application of fertilizers. Regarding soil mineralogy, significant differences were also observed between zones, as zones defined with high ECap showed higher percentage of clay and lower percentage of sand, with the opposite also true. Another reassuring but expectable outcome was the fact that zones with high NDVI presented the highest concentration of soil nitrogen and phosphorus. Both indicators are non-destructive, cost less and require less labour and, as seen, has showed efficiency in the delineation of distinct zones and in providing information about soil properties. With this information, the farmer knows which areas lack or have an excess of a specific nutrient and manage soil and crop fertilization in accordance, thus applying only the necessary amount or providing higher amounts in the poorer areas, resulting in a more evenly production.

A intensificação da agricultura aumentou consideravelmente a produtividade das culturas, contudo, o impacto associado também aumentou. A Agricultura de Precisão tem potencial para enfrentar este desafio e o presente trabalho insere-se neste contexto, visto que pretende estudar a variabilidade espacial do solo de forma a aplicar com precisão os fatores de produção, nomeadamente fertilizantes. Assim, numa vinha de 6,77 ha foram definidas três zonas distintas, com base em valores altos e baixos de 1) condutividade elétrica aparente do solo (ECap), medida através de um sensor (Geonics EM38®), e 2) índice de vegetação por diferença normalizada (NDVI), obtido a partir de imagens de satélite. Amostras de solo dessas zonas foram então colhidas e analisadas. A maioria das propriedades químicas do solo estudadas, como a concentração de nutrientes, variou significativamente entre zonas, evidenciando potencial para a aplicação diferenciada de fertilizantes. Em relação à mineralogia do solo, foram também observadas diferenças significativas entre zonas, onde zonas definidas com alto ECap apresentaram maior percentagem de argila no solo e menor percentagem de areia, e o contrário também se observou. Outro resultado otimista, mas expectável, foi o fato de as zonas com alto NDVI apresentarem as maiores concentrações de azoto e fósforo no solo. Ambos os indicadores são não-destrutivos, mais económicos e requerem menos mão de obra e foram eficazes no delineamento de zonas distintas e no fornecimento de informações sobre as propriedades do solo. Dessa forma, o agricultor consegue aplicar fertilizantes de acordo com a carência ou excesso de nutrientes de um dado local, aplicando apenas o necessário ou reforçando as áreas mais pobres, o que resulta numa produção mais homogénea.

Poultry manure, due to the high content of organic substances, are an attractive raw material for biogas production, however, mono-digestion in their case may be difficult due to the low C/N ratio. Therefore, it seems reasonable to optimize the substrate, obtained by creating a homogeneous mixture of manure with other organic waste and their co-digestion. For this reason, in our study we tested the possibility of anaerobic co-digestion of poultry manure with sewage sludge. The proposed solution, seems to be very interesting option, because it leads to an enhanced production of biogas (>40%), as well as volatile solids removal (>20%). In this context, the implementation of this solution in WWTPs provides an unique opportunity for these facilities to improve their energy self-sufficiency as well as profitability which are possible by enhancing energy recovery from sludge as well as full utilisation of the existing infrastructure (oversized digesters) and hence creates a new place for the treatment of the poultry manure. Moreover, considering the solution at the investment planning stage may significantly impact the disposal capacity per volume unit of the digester, thereby affecting investment costs. However, the implementation of this solution in the wastewater treatment plant is still a big challenge and needs further studies including the identification of optimal digesting conditions, information about substrate pumping, infrastructure for WWTP (e.g. efficiency co-generation devices, energy consumption in activated sludge system, inhibition thresholds and processing properties). Other challenging task for future research is: 1) the identification of the microbial community structure which can vary in response to the changing environmental conditions such as: OLR, HRT; 2) optimization of feedstock composition.

Pomiot kurzy, ze względu na wysoką zawartość substancji organicznych, jest atrakcyjnym surowcem do produkcji biogazu, jednak jego monofermentacja może być utrudniona ze względu na niski iloraz C/N. Dlatego też, zasadna wydaje się optymalizacja wsadu poprzez stworzenie jednorodnej mieszaniny obornika z innymi odpadami organicznymi i ich wspólne przetwarzanie (kofermentacja). Z tego powodu, w naszych badaniach sprawdziliśmy możliwość beztlenowej kofermentacji obornika drobiowego z osadami ściekowymi. Zaproponowane rozwiązanie wydaje się być bardzo interesującą opcją, ponieważ prowadzi do zwiększenia produkcji biogazu (>40%), jak również stopnia przefermentowania (>20%). W tym kontekście, wdrożenie tego rozwiązania w oczyszczalniach ścieków stwarza unikalną szansę dla tych obiektów na poprawę samowystarczalności energetycznej oraz rentowności, które są możliwe dzięki zwiększeniu odzysku energii z osadów, jak również pełnemu wykorzystaniu istniejącej infrastruktury (przewymiarowane komory fermentacyjne), a tym samym stwarza nowe miejsce dla przetwarzania pomiotu kurzego. Ponadto, uwzględnienie tego rozwiązania na etapie planowania inwestycji może znacząco wpłynąć na wydajność utylizacji w przeliczeniu na jednostkę objętości komory fermentacyjnej, a tym samym na koszty inwestycji. Jednakże wdrożenie tego rozwiązania w oczyszczalni ścieków jest nadal dużym wyzwaniem i wymaga dalszych badań obejmujących określenie optymalnych warunków fermentacji, informacji na temat pompowania substratów, infrastruktury dla oczyszczalni ścieków (np. sprawności urządzeń kogeneracyjnych, zużycia energii w komorach osadu czynnego, progów inhibicji oraz parametrów procesu). Innymi wyzwaniami dla prowadzonych badań są: 1) identyfikacja struktury zbiorowiska mikroorganizmów, która może zmieniać się w odpowiedzi na zmieniające się warunki środowiskowe, takie jak: OLR, HRT; 2) optymalizacja składu substratów.

Due to chemical composition and properties poultry manure is considered a valuable substrate to obtain fertilizing products such as composts and biochars. Compost from poultry manure compared to poultry manure when applied to fields does not contribute to excessive gaseous emissions including ammonia or carbon dioxide. It is microbiologically safe, and thus does not pose any threat to the environment. Biochars produced through pyrolysis of poultry manure can be used in composting as a supplementary material in composting mixtures to limit nitrogen loss during composting. Poultry derived biochar can be also used as an additive to mature composts or as a soil enhancer directly introduced to soils. The main goal of this research is to convert poultry manure into composts such as nitrogen losses can be limited during the process and to evaluate the obtained composts, composts mixed with poultry manure derived biochar and poultry manure derived biochar itself for fertilization of soils with low organic matter. So far, the results show that the obtained compost from poultry manure fulfils the requirements for fertilizers. It is microbiologically safe (free from pathogens), contains 73% of organic matter, 41.7% of carbon, 1.8% of nitrogen, 8.1% of phosphorous, C/N of 22 and pH of 9.2. Currently, the pot experiments with selected growing media amended with poultry manure composts, biochars and their mixtures are in progress. They are aimed to evaluate the effect of poultry manure derived fertilizing products on soil properties and growth of selected plants.

Z uwagi na skład i właściwości pomiot kurzy stanowi wartościowy substrat do otrzymywania różnych produktów nawozowych takich jak komposty czy biowęgle. Kompost z pomiotu kurzego w porównaniu do świeżego pomiotu kurzego nie wydziela do atmosfery dużych ilości gazów tj. amoniak czy dwutlenek węgla. Jest również stabilny mikrobiologicznie, dzięki czemu nie stanowi zagrożenia dla środowiska. Biowęgiel otrzymane w wyniku pirolizy pomiotu kurzego mogą być wykorzystane w procesie kompostowania jako dodatek do mieszanek kompostowych, który będzie ograniczał straty azotu podczas samego procesu. Może być również wykorzystany jako dodatek do dojrzałych kompostów lub jako polepszacz glebowy wprowadzany bezpośrednio do gleb. Głównym celem badań jest uzyskanie kompostów z pomiotu kurzego przy jednoczesnym ograniczeniu strat azotu podczas samego procesu kompostowania oraz ocena kompostów z pomiotu kurzego oraz ich mieszanek z biowęglem otrzymanym z pomiotu kurzego do nawożenia gleb ubogich w materię organiczną. W wyniku przeprowadzonych badań otrzymano kompost z pomiotu kurzego, który spełniał wymagania dla nawozów. Był bezpieczny pod względem sanitarnym (wolny od jaj pasożytów i bezpieczny mikrobiologicznie), zawierał 73% materii organicznej, 41.7% węgla, 1.8% azotu, 8.1% fosforu, stosunek węgla do azotu to 22, a pH 9.2. Obecnie prowadzone są doświadczenia wazonowe z wybranymi podłożami wzrostowymi, które pozwolą na określenie wpływu dodatku kompostów z pomiotu kurzego, ich mieszanek z biowęglem i biowęgla z pomiotu kurzego na właściwości gleb i wzrost wybranych roślin.

Extensive agriculture results in increasing amounts of phosphorous compounds in soils mostly due to the use of mineral fertilizers. In consequence, this biogen is transferred to water, and in turn can cause eutrophication of water reservoirs. Phosphorus fertilizers contain some heavy metals which can lead to soil contamination due to improper fertilization. What is more, excessive acidification of soils can contribute to mobility of heavy metals already present in soils. One of the potential solutions to mitigate and/or prevent from these threats is introducing to soils substances with suitable sorption properties such as biochars. The overall goal of this research was to evaluate the sorption properties of biochars produced from poultry manure. The obtained results demonstrated that sorption of phosphorus was above 95% of the applied dose. At the same time biochar produced from poultry manure at 425 °C showed not only high sorption capacity but also demonstrated desorption of phosphorus at around 21%. This biochar property could be of importance when it comes to agricultural soils where excessive phosphorus fertilization could be a threat. Such sorbent could also function as phosphorus storage. The research confirmed high efficiency (above 99%) of biochars to remove heavy metals ions, even at high concentrations in solutions (1000 mg L-1). Alkaline character of these biochars is also important. The application of obtained biochars to soils could prevent from excessive acidification of soils. In conclusion, the obtained poultry manure derived biochars can be valuable additives to soil, and thus prevent from improper fertilizing practices by immobilizing excessive amounts of phosphorus and at the same time limiting the mobility of selected contaminants such as heavy metals.

Intensywna produkcja rolna związana jest z wprowadzaniem do gleb dużych ilości związków fosforu obecnych w nawozach mineralnych. Migracja tego biogenu do wód, jest jedną z przyczyn eutrofizacji zbiorników wodnych. Obecne w nawozach fosforowych, pewne ilości metali ciężkich, przy niewłaściwym nawożeniu, mogą być źródłem zanieczyszczenia gleb. Ponadto nadmierne zakwaszanie gleb może powodować mobilność metali ciężkich obecnych w glebach. Jednym ze sposobów eliminacji tych zagrożeń jest wprowadzanie do gleb substancji o dobrych własnościach sorpcyjnych, np. biowęgla. Przedmiotem badań była ocena zdolności sorpcyjnych biowęgla wyprodukowanego z pomiotu kurzego. Badania wykazały, że zdolność do sorpcji fosforu jest na poziomie powyżej 95% zadanej dawki. Jednocześnie biowęgiel wytworzony w temperaturze 425 °C charakteryzował się nie tylko dużą pojemnością sorpcyjną, ale również zdolnością do desorpcji fosforu na poziomie 21%. Ta cecha biowęgla jest szczególnie przydatna w obszarach rolniczych, gdzie nadmierne stosowanie nawozów fosforowych jest zagrożeniem, a jednocześnie sorbent może być rezerwuarem tego biogenu. Przeprowadzone badania potwierdziły również wysoką skuteczność (powyżej 99% zawartości początkowej) biowęgli w usuwaniu jonów metali ciężkich, nawet przy ich dużej koncentracji w roztworze (1000 mg L-1). Istotny jest również alkaliczny charakter tych sorbentów. Stosowanie biowęgli w uprawach może przeciwdziałać nadmiernemu zakwaszeniu gleb. Zatem wytworzone sorbenty są dobrym dodatkiem glebowym, mogącym przeciwdziałać złym praktykom nawozowym poprzez unieruchomienie nadmiernej ilości fosforu przy jednoczesnym ograniczeniu mobilności innych zanieczyszczeń, np. metali ciężkich.

The main aim of the deep-technology and product development driven BioPhosphate research (2002-2022) is to replace mineral fertilisers, most importantly the Cadmium and Uranium contaminated mineral and soft rock phosphate fertilizers, closing the CNP loops/reducing GHG emissions at less cost. High material core temperature, innovative zero emission pyrolysis (3R) applied to recover 35% P2O5 concentrated Phosphorus from pressure sterilized food grade cattle bone byproducts, which is than controlled release BIO-NPK-C compound biofertilizer formulated as of organic farmer user demands. The average dose is 300-500 kg/ha. The outcome of BioPhosphate research so far is TRL8, where the technology has been experimented in deployment conditions (i.e. real world) and proven its functioning in its final form with compliance with industrial/enviro standards of the addressed markets (EU, UK, USA, AU, JP). The BioPhosphate BIO-NPK-C compound biofertilizer products MS Authority permitted in 2020, fully meet the new 2022 EC Fertiliser criteria in several product functional categories and prepared for REACH certification (ongoing). As a result so far the BioPhosphate research so far already removed most technical/market risks, while majority of the underlying scientific/engineering problems being solved. The last research action is in progress, e.g. TRL9 first full industrial replication model deployed at 20,800 t/y capacity that is the ultimate evidence that research is successfully completed. TheBIO-NPK-C compound BioPhosphate biofertilizer is safer, better and less costly versus any market competitive productin the agri sector.

The main aim of the deep-technology and product development driven BioPhosphate research (2002-2022) is to replace mineral fertilisers, most importantly the Cadmium and Uranium contaminated mineral and soft rock phosphate fertilizers, closing the CNP loops/reducing GHG emissions at less cost. High material core temperature, innovative zero emission pyrolysis (3R) applied to recover 35% P2O5 concentrated Phosphorus from pressure sterilized food grade cattle bone byproducts, which is than controlled release BIO-NPK-C compound biofertilizer formulated as of organic farmer user demands. The average dose is 300-500 kg/ha. The outcome of BioPhosphate research so far is TRL8, where the technology has been experimented in deployment conditions (i.e. real world) and proven its functioning in its final form with compliance with industrial/enviro standards of the addressed markets (EU, UK, USA, AU, JP). The BioPhosphate BIO-NPK-C compound biofertilizer products MS Authority permitted in 2020, fully meet the new 2022 EC Fertiliser criteria in several product functional categories and prepared for REACH certification (ongoing). As a result so far the BioPhosphate research so far already removed most technical/market risks, while majority of the underlying scientific/engineering problems being solved. The last research action is in progress, e.g. TRL9 first full industrial replication model deployed at 20,800 t/y capacity that is the ultimate evidence that research is successfully completed. TheBIO-NPK-C compound BioPhosphate biofertilizer is safer, better and less costly versus any market competitive productin the agri sector.

In combination with precision farming, in under-root fertilization of maize seeds (or similar row crops), mineral fertilizers can be replaced by liquid organic fertilizers, such as liquid manure or biogas residue. This is the first precise application technology for liquid organic fertilizers for early under-root fertilization of maize, and potentially other row crops. In order to replace mineral fertilizer banded below seeds, a precise placement of manure close to the seeds (in the seeding lines and in a precise soil depth) is necessary. The new technology consists of a precise application technique of liquid organic fertilizer in terms of positioning, making use of GPS information, and in terms of dosage. Application of under-root fertilization can be carried out before or after sowing, even simultaneously. The preliminary conclusions are: (a) liquid manure for under-root fertilizer application instead of application of mineral P (and N) fertilizers has advantages with regard to the on-farm nutrient management; (b) in soils rich in P due to prior intensive manure application, under-root fertilization with liquid manure would reduce the P demand in form of mineral fertilizers; (c) in poor soils, this technique can increase particularly the P use efficiency; (d) N and P surplus thus can be reduced by reducing mineral fertilizer application around seeding; (e) results also show that under-root application of liquid manure can be combined with the strip-till technique; this combination makes it possible to make advantage of mulch sowing, which protects soils against erosion; (f) results showed that under-root application of liquid manure did not negatively affect yields and quality of silage maize.

Mit der Unterfußdüngung von Mais (oder ähnlichen Reihenkulturen) kann in Kombination mit Maßnahmen der Präzisionslandwirtschaft Mineraldünger durch flüssige organische Dünger wie Gülle oder Biogasgärreste ersetzt werden. Es handelt sich um eine Neuentwicklung für die frühe Unterfußdüngung von Mais und ggf. andere Reihenkulturen mit organischen Flüssigdüngern. Um den i.d.R. unter Fuß ausgebrachten Mineraldünger adäquat ersetzen zu können, ist eine ebenso präzise Ausbringung der Gülle hinsichtlich der Positionierung (in den Saatlinien und in einer bestimmten Bodentiefe) unter Nutzung GPS-Informationen und hinsichtlich der Dosierung erforderlich, wobei die Applikation vor oder nach der Aussaat erfolgen kann. Die vorläufigen Schlussfolgerungen bezüglich der Unterfußdüngung bei Mais sind: (a) Die Verwendung von Gülle zur Unterfußdüngung anstelle von mineralischen P- (und N-) Düngern hat Vorteile im Hinblick auf das Nährstoffmanagement in den landwirtschaftlichen Betrieben; (b) in Böden mit hohem P-Gehalt aufgrund vorheriger intensiver Gülleausbringung würde die Unterfußdüngung mit Gülle den P-Bedarf in Form von Mineraldünger reduzieren; (c) in armen Böden kann diese Technik insbesondere die P-Nutzungseffizienz erhöhen; (d) N- und P-Überschüsse können durch die Reduzierung der Mineraldüngerausbringung vor oder kurz nach der Aussaat reduziert werden; (e) die Unterfußdüngung kann mit dem Strip Till-Verfahren kombiniert werden, wodurch auch gleichzeitig die Vorteile einer erosionsmindernen Mulchsaat nutzbar sind; (f) die Ergebnisse zeigen, dass die Unterfußdüngung mit Gülle keinen negativen Einfluss auf die Erträge und die Qualität von Silomais besitzen.

Processing manure can contribute to closing carbon (C) and nutrient loops, but this will only succeed when the products resulting from manure processing (also called bio-based fertiliser) are being accepted by arable farmers as a replacement for mineral fertilisers. This not only depends on the performance of these bio-based fertilisers compared to mineral fertiliser, but also on the costs and benefits. In this study, the effect of refining bio-based fertilisers was tested on potato yield. The less refined, and therefore cheaper, product (thin fraction of the digestate) as well as the refined product (ammoniumsulphate) showed a high nitrogen fertiliser replacement value (81% and 73% respectively). This means that both products are suited as a replacement for mineral N fertiliser. In the field, the different products showed limited differences in plant growth and yield which confirms the safe use of these products for potato growing. The fields that received only bio-based fertiliser showed similar results, but bio-based fertilisers will not be used as a replacement for animal manure in practice in the Netherlands due to the higher costs. Although this study concludes that both products are suitable as a replacement for mineral N fertiliser, only the refined product will potentially be used because it has the status of anorganic fertiliser.

Het verwerken van mest kan bijdragen aan het sluiten van koolstof (C) -en nutriënten kringlopen, maar dat lukt alleen als de producten die door mestverwerking verkregen worden (ook wel bio-gebaseerde meststoffen genoemd) als kunstmestvervanger geaccepteerd worden door akkerbouwers. Dit hangt niet alleen af van de prestatie van deze bio-gebaseerde meststoffen ten opzichte van kunstmest, maar ook van de kosten -en baten. In deze studie werd het effect van verfijning van bio-gebaseerde mestproducten getest op aardappeloogst. Zowel het minder verfijnde, en dus goedkopere, product (dunne fractie van het digestaat) als het verfijnde product (ammoniumsulfaat) gaven een hoge stikstofkunstmest vervangingswaarde (81% en 73% respectievelijk). Dit betekent dat beide producten geschikt zijn om stikstofkunstmest te vervangen. In het veld toonden de geteste mestproducten weinig verschil in plantengroei en opbrengst. Dit bevestigt dat de bio-gebaseerde mestproducten veilig gebruikt kunnen worden voor de aardappelteelt. De velden die alleen bio-gebaseerde meststof ontvingen toonde vergelijkbare resultaten, maar vanwege de hogere kosten zullen deze meststoffen in de praktijk in Nederland niet snel gebruikt worden ter vervanging van dierlijke mest. Alhoewel deze studie concludeert dat beide producten stikstofkunstmest kunnen vervangen, zal in de praktijk waarschijnlijk alleen het verfijnde product gebruikt worden omdat het de status van anorganisch meststof heeft.

Understanding consumer behaviour, perception and acceptance of eco-friendly and sustainable food products is one of the key objectives for the Nutri2Cycle project with the aim of bridging the current environmental informational gap between producers and consumers. As a first step towards achieving this goal, techniques of meta-analysis were applied to studies on the relationship between sustainable agricultural products and consumers' willingness to pay (WTP). The data obtained from over 100 papers screened in the analysis showed that the percentage difference in the WTP estimated ranged from 2% to 92%. The overall WTP valuation was calculated as 33%, that is, consumers are willing to pay about a 33% more for sustainable attributes in food products. This WTP depended significantly on variations of the consumers' region (the highest WTP was located in Asia, 65%) as well as the food categories (cereal & bread provided the highest WTP, 60%). Moreover, the results showed the presence of different sustainable claims was not a significant factor and it did not influence the WTP significantly which means that consumers have knowledge about what sustainable food product is but should become more familiar with them to learn to distinguish between the different sustainable claims and their meanings. There are currently a wide range of Ecolabels in the market, with significant differences in scope, indicators, verification processes or claims affecting the overall effectivity of Ecolabels. The farmers can indeed benefit from striving towards a label - as consumers are willing to pay more – however, the labelling landscape is too scattered. Therefore, unification of the Ecolabelling schemes is required and the European ecolabelling landscape need a continuous updating that allows an easy decision-making process for consumers and stakeholders involved.

Comprender cuál es la percepción del consumidor por los alimentos etiquetados como sostenibles y/o respetuosos con el medio ambiente es uno de los objetivos clave del proyecto Nutri2Cycle, contribuyendo a cerrar la brecha de información ambiental que existe actualmente entre productores y consumidores. El primer paso para ello ha sido la aplicación de técnicas de metaanálisis a una amplia variedad de estudios publicados sobre los criterios que definen su compra. Los datos obtenidos en los más de 100 artículos examinados mostraron que la diferencia porcentual en la disposición de pago oscilaba entre el 2% y el 92%, situándose la media en un 33%, lo que significa que los consumidores estarían dispuestos a pagar alrededor de un 33% más por alimentos calificados como sostenibles. Esta variación dependía significativamente de la región del consumidor (la más alta se encontró en Asia, 65%), y de la categoría de alimentos (la más alta fue para los cereales y el pan, 60%). Los resultados mostraron también que la presencia de etiquetas ambientales no era un factor significativo en la compra. La principal conclusión a extraer es por tanto que los consumidores sí saben qué es un alimento sostenible (ya que están dispuestos a pagar más por ellos) pero necesitan familiarizarse con los distintos tipos de ecoetiquetado, puesto que, en la actualidad, existen una gran variedad de ecoetiquetas con importantes diferencias en cuanto a alcance, significado etc. De hecho, los agricultores podrían beneficiarse del trabajo por conseguir una etiqueta, ya que los consumidores estarían dispuestos a pagar más. Sin embargo, actualmente el marco del etiquetado no está muy definido. Esto afecta directamente a su efectividad y por esta razón es necesario unificar los actuales esquemas de ecoetiquetado, con el objetivo último de permitir un proceso de toma de decisiones mucho más sencillo para consumidores y productores.

Intensive livestock activity in Lombardy (northern Italy) and in other regions in Europe (like Denmark; Catalonia, Spain; Flanders, Belgium; Netherlands) is causing several environmental issues. The nitrates directive limits the amount of manure that can be used in fields (depending on if the area is considered vulnerable or not). The possibility to export some fractions of the effluent can increase the number of livestock heads without jeopardising the environment. The plant separates the effluent in a solid fraction, which will be composted and a liquid fraction. The latter is further separate thanks to reverse osmosis (super tight filtrations) in clean water and a concentrate that can be exported from the farm as RENURE (it could be considered a chemical fertiliser instead of livestock effluent). Results are not complete yet because tests are still in progress, but we can already share some comments:
I. “Clean” water, more than half of the input volume, fit all the parameters to be disposed in superficial water bodies (rivers or lakes) or used for irrigation, 
II. about one-sixth of the input volume is recovered as solid fraction that can be composted
III. The liquid concentrate has high concentration of ready-to-use nutrients for plants.
Moreover, a real scale field experiment is set (on corn) to demonstrate that fertilisation with concentrate is AT LEAST as good as a chemical fertilisation (urea).

L'intensa attività zootecnica in Lombardia e in altre regioni d'Europa (come Danimarca, Catalogna, Spagna, Belgio, Paesi Bassi) sta causando diversi problemi ambientali. La direttiva nitrati pone un limite alla quantità di letame che può essere messo in campo (a seconda che l'area sia considerata vulnerabile o meno). La possibilità di esportare alcune frazioni dell'effluente può aumentare il numero di capi di bestiame senza compromettere l'ambiente. L'impianto separa le deiezioni in una frazione solida, che verrà compostata, e in una frazione liquida. Quest'ultimo è ulteriormente separato grazie all'osmosi inversa (una filtrazione estremamente fine) in acqua pulita e un concentrato che può essere esportato dall'azienda come RENURE (può essere considerato un fertilizzante chimico e non come effluenti zootecnici). I risultati non sono ancora completi perché i test sono ancora in corso, ma possiamo già condividere alcuni commenti:
I. L'acqua “pulita”, più della metà del volume in ingresso, soddisfa tutti i parametri per essere smaltita in corpi idrici superficiali (fiumi o laghi) o utilizzata per l'irrigazione.
II. Circa un sesto del volume in ingresso viene recuperato come frazione solida compostabile.
III. Il concentrato ha un'alta concentrazione di nutrienti pronti all'uso per le piante. 
Inoltre, è stato impostato un esperimento di campo in scala reale (sul mais) per dimostrare che la fertilizzazione con concentrato è ALMENO efficace quanto la fertilizzazione chimica (urea).

Due to the increase of the population and the improvement of life quality for large groups of people worldwide, the food need and the production of wastes is increasing consequently. Higher food production will require a higher quantity of fertilizers, while waste disposal (mainly sewage sludge) can be expensive, energy consuming and environmentally hazardous. The system encompasses a plant performing anaerobic digestion on sewage sludge. Anaerobic digestion is a biological process, conducted without air that stabilizes the substrate, makes the nutrients more available for plants, and increases the product's health safety while producing biogas. The digestate can partly substitute chemical fertilizers in a very efficient way. Moreover, this plant has a “stripping system” that can extract ammonia to increase the plant's digestion efficiency and produce ammonium sulphate, which can be used as valuable fertilizer or sold for industrial uses. Results are not complete yet, because tests are still in progress, but we can already share some comments:
I. In a full-scale field experiment, rice yields were similar using chemical fertilizers vs digestate + ammonium sulphate, showing the excellent quality of this solution for fertilization (experiment now running for two years out of three).
II. Analyses on rice grain showed similar composition for chemical fertilizers and for digestate + ammonium sulphate fertilization.
III. Using digestate + ammonium sulphate, we expect an increase of soil quality, intended as organic matter quantity and stability.
IV. Nitrate leaching in digestate + ammonium sulphate fertilization resulted very low, similar with chemical treatment and the untreated. The Digestate + Ammonium sulphate combination is a suitable fertilizer, safe, and with performance substantially equal to traditional chemical fertilizers. Nevertheless, such equivalent performance cannot be reached if other practices are not assured in its production and use (i.e. digestate highly stabilized and injected in soil). Besides, the parallel electric energy production (through biogas combustion) and the safe sewage sludge disposal make this technology very efficient. Finally, based on the provisional data, it has a positive effect on soil in the long run, increasing the amount and stability of organic matter, while the concentrations of pollutants (both organic and inorganic) are similar to that of a traditional fertilized field.

A causa dell'aumento della popolazione e del miglioramento della qualità della vita per alcune fasce di popolazione, il fabbisogno alimentare e la produzione di rifiuti sono in aumento. Una maggiore produzione alimentare richiederà una maggiore quantità di fertilizzanti, mentre lo smaltimento dei rifiuti (principalmente fanghi di depurazione) è costoso, richiede grandi quantità di energia ed è pericoloso per l'ambiente. L'impianto in questione processa fanghi di depurazione tramite digestione anaerobica. Quest’ultima è un processo biologico, condotto in assenza di aria, che stabilizza il substrato, rende più disponibili i nutrienti per le piante e aumenta la sicurezza sanitaria del prodotto, producendo biogas. Il digestato così prodotto può sostituire in parte i fertilizzanti chimici in modo molto efficiente. Inoltre, questo impianto dispone di un “sistema di strippaggio” in grado di estrarre ammoniaca, così da aumentare l'efficienza dell'impianto e produrre solfato di ammonio, che viene utilizzato come fertilizzante o può essere venduto per usi industriali. Visto che i lavori sono ancora in corso i risultati non sono definitivi, ma possiamo già condividere alcuni commenti: 
I. In un esperimento in pieno campo, le rese del riso sono state simili utilizzando fertilizzanti chimici e digestato + solfato di ammonio, a dimostrazione dell’eccellente qualità di questa soluzione per la fertilizzazione (esperimento ora in corso da due anni su tre).
II. Le analisi sul chicco di riso hanno mostrato una composizione simile per la fertilizzazione chimica e per digestato + solfato di ammonio.
III. Utilizzando digestato + solfato di ammonio ci aspettiamo un miglioramento della qualità del suolo, inteso come quantità e stabilità di sostanza organica. 
IV. La lisciviazione dei nitrati nella fertilizzazione con digestato + solfato di ammonio è risultata molto bassa, simile al trattamento chimico e al non trattato. La combinazione digestato + solfato ammonico è un fertilizzante idoneo, sicuro e con prestazioni sostanzialmente pari ai tradizionali fertilizzanti chimici. Tuttavia, tali prestazioni positive non possono essere raggiunte se non sono assicurate altre pratiche nella sua produzione e utilizzo (es. digestato altamente stabilizzato e iniettato nel suolo). Inoltre, la produzione elettrica (attraverso la combustione del biogas) e lo smaltimento sicuro dei fanghi di depurazione rendono questa tecnologia molto efficiente. Infine, dai dati provvisori, ha un effetto positivo sul suolo nel lungo periodo, aumentando la quantità e la stabilità della sostanza organica, mentre la concentrazione degli inquinanti (sia organici sia inorganici) è simile ad un campo fertilizzato tradizionalmente.

Large surpluses of on-farm nitrogen (N) and phosphorus (P) are processed or exported out of Flanders while tonnes of synthetic N-fertilisers are purchased and used for crop production. The use of recycling-derived fertilisers (RDFs) from manure can counter this situation. Currently, RDFs derived from animal manure still need to comply with the legal application constraints of animal manure and are thus not often used. That is why five RDFs (ammonium nitrate, ammonium sulphate, digestate from co-digestion of pig manure, liquid fraction of digestate and pig urine) are compared with mineral fertiliser CAN, pig manure and a blank treatment in a 3-year field trial focusing on short term N-effects of the RDFs. The main goal of the trial is to establish a clear relationship between the amount of N applied by RDF and dry matter production for each applied RDF. During the second year of the field trial (crop: spinach), weather conditions had a significant impact: the trial period was extremely dry, with only 12 l/m² of rain received between sowing and harvest. Therefore water shortage was an important factor influencing the growth of spinach. Hence, local differences in soil fertility appeared causing N availability as no longer the only decisive factor for crop growth and causing extra variability in the field trial, parallelly with a sandstorm that damaged many young plants. Therefore, no differences in fresh and dry yield were observed between RDFs, except ammonium nitrate which had significantly lower yield. This is probably also due to soil treatment because the applied N via ammonium nitrate had to be directly in contact with the root zone in harmful dry conditions. Residual nitrate was lower than legal limits for all RDFs except pig urine at 70% N dose.

Het mestoverschot in Vlaanderen wordt verwerkt en geëxporteerd, terwijl kunstmest wordt aangekocht om in de gewasbehoefte te voorzien. Nochtans kan het gebruik van herwonnen meststoffen dit oplossen. Echter moeten deze voldoen aan de wettelijke toepassingsvereisten van dierlijke mest waardoor het gebruik laag is. Daarom worden de korte stikstof termijneffecten van vijf herwonnen meststoffen (ammoniumnitraat, -sulfaat, digestaat, dunne fractie van digestaat en varkensurine) vergeleken met KAS kunstmest, varkensmest en een blanco behandeling in een driejarige veldproef. Het doel van de proef is om een verband te leggen tussen de hoeveelheid N die wordt aangebracht en de drogestofproductie. Tijdens het tweede jaar van de velproef (gewas: spinazie) hadden de weersomstandigheden een grote invloed: de proefperiode was extreem droog, met slechts 12 l/m² regen tussen zaaien en oogsten. Watertekort was daarom een belangrijke factor. Dit veroorzaakte lokale verschillen in bodemvruchtbaarheid waardoor N-beschikbaarheid niet langer de bepalende factor was voor de gewasgroei. Bovendien was er door de droogte en een zandstorm extra variabiliteit. Er werden daarom geen verschillen in verse en droge opbrengst waargenomen tussen de herwonnen meststoffen, behalve een significant lagere opbrengst bij ammoniumnitraat. Dit effect heeft wellicht te maken met de bodembewerkingen, aangezien de toegediende N via ammoniumnitraat reeds van bij het begin van de teelt in de bewortelde zone aanwezig moet zijn. Hierdoor kwamen de kiemplantjes direct in contact met de meststoffen in stresserende, droge omstandigheden. Het nitraatresidu was voor alle meststoffen lager dan het wettelijk maximum, behalve voor varkensurine 70%.

Management of poultry and chicken manure is a challenge not only in Poland but globally. Due to the concentration of large poultry farms, it is more important to use such a management methods that will reduce the negative impact on the environment, and at the same time will be consistent with the principles of circular economy and economically justified. It is also important to take into account the carbon footprint and legislation in force in a given country, as well as the European Green Deal strategy. Currently, poultry and chicken manure are most often used as an organic fertilizer in agriculture. However, due to the environmental nuisance and periodicity of application, new technologies are considered as a source of energy and fertilizers. The most advanced methods of energy recovery include methane fermentation, but in Poland manure or chicken manure is used only in a few agricultural biogas plants, only in the process of co-fermentation with other substrates. This is due to high investment costs and the optimization process that requires specialist knowledge. More widespread is drying and granulating of chicken / poultry manure itself or prior mixing with various other substrates (dolomite, opoka-rock, coal), which are placed on the market after being certified as eco-fertilizers. The most important criterion for selecting a technology for farmers is the cost of the investment and the benefits that would be obtained from the selected technology. Additional important factors in the final choice are incentives and technical support, environmental regulations and level of education. The size of the farm is also important as there must be consistency between the quantity of the waste stream and the processing technology. On the other hand, external investors take into account the net profit as the most important criterion, and for the local government an important aspect is the acceptance or not of the local community. Poultry farm owners who plan to handle and manage poultry manure onsite can use the help from specilized consulting companies or scientific consultants who can help with the selection of a poultry manure processing technology and the development of a case-specific solution.

Zagospodarowanie pomiotu i obornika kurzego stanowi wyzwanie nie tylko w Polsce ale i na świece. Z uwagi na koncentrację dużych ferm drobiarskich coraz istotniejszy jest taki sposób zagospodarowania, który ograniczy negatywny wpływ na środowisko, a jednocześnie będzie zgodny z zasadami GOZ i ekonomicznie uzasadniony. Nie bez znaczenia jest także uwzględnienie śladu węglowego i prawodawstwa obowiązującego w danym kraju a także strategii Europejskiego Zielonego Ładu. Obecnie najczęściej obornik i pomiot wykorzystywane są jako nawóz organiczny w rolnictwie. Jednak ze względu na uciążliwość środowiskową i okresowość stosowania, rozpatrywane są nowe technologie jako źródło energii oraz nawozów. Do najbardziej zaawansowanych metod odzysku energii należy fermentacja metanowa, jednak w Polsce obornik czy pomiot kurzy wykorzystywany jest zaledwie w kilku biogazowaniach rolniczych, wyłącznie w procesie kofermentacji z innymi substratami. Związane jest to z wysokimi kosztami inwestycyjnymi i wymagającym specjalistycznej wiedzy procesem optymalizacji. Bardziej rozpowszechnione jest suszenie i granulowanie samego obornika/pomiotu lub uprzednie mieszanie z różnymi innymi substratami (dolomit, opoka, węgiel), które po uzyskaniu certyfikatu eko-nawozów są wprowadzane na rynek. Najważniejszym kryterium wyboru technologii dla właścicieli ferm jest koszt inwestycji oraz korzyści, jakie uzyskaliby dzięki wybranej technologii. Ważnymi czynnikami ostatecznego wyboru są także zachęty i wsparcie techniczne, przepisy środowiskowe i poziom wykształcenia. Ważna jest także wielkość gospodarstwa, ponieważ musi istnieć spójność między ilością strumienia odpadów a technologią przetwarzania. Z kolei zewnętrzni inwestorzy jako najważniejsze kryterium uwzględniają zysk netto, a dla samorządu lokalnego ważnym aspektem jest akceptacja lub nie miejscowej społeczności. Właściciele ferm kurzych, którzy chcą we własnym zakresie zagospodarowywać pomiot kurzy mogą zwrócić się do wyspecjalizowanych firm doradczych bądź konsultantów naukowych, którzy z kolei pomogą w wyborze odpowiedniej technologii i opracowaniu rozwiązania dla danego przypadku.

Treatment and nutrient recovery of waste streams have an essential role in improving the sustainability of conventional agriculture. Lemna minor, small floating-flowering aquatic plants known as duckweed, has been shown to grow on wastewaters and subsequently produce a protein-rich feed ingredient suitable for pig production, offering a possible solution for addressing both the protein scarcity and local nutrient abundancy. In this study, the potential of Lemna minor to valorise agricultural wastewater into a protein-rich feed component to meet the growing demand for animal feed protein and reduce the excess of nutrients in certain European regions was investigated. Three pilot-scale systems were fed with a mixture of the liquid fraction and the biological effluent of a swine manure treatment system diluted with rainwater in order that the weekly N and P addition was equal to the N and P removal by the system. The study shows that a duckweed lagoon can be used as an extra polishing step after swine manure treatment, converting the manure into dischargeable water instead of spreading it on arable land. Based on the N and P removal, it is estimated that one hectare of duckweed can remove the residual N and P of the biological effluent produced by 2805 swines. However, the side streams contain also K, Cl, S, Ca, Mg, and Na. It was found that these are inadequately removed from the system and will accumulate over time. By extrapolation, it was found that after 9 years K will be the first element to reach toxic concentrations for duckweed. This means that an operator should replenish the growing medium before this time. Furthermore, it should be avoided that potential harmful elements like the heavy metals As, Cd, and Pb would accumulate over time in the growing medium and subsequently taken up by the plant reaching toxic concentrations for animal consumption. It was observed that As, Cd, and Pb content were below the limits of the feed Directive 2002/32/EC in the duckweed grown on the tested medium are the elements even decreased over time. This is evidence for policy makers to consider the use of agricultural side streams like the biological effluent of the pig manure treatment system as a nutrient source for duckweed cultivation which is intended for animal consumption, if other safety risks are also validated in a similar way. In contrast, the plant is even a source of Mn, Zn, and Fe which are beneficial elements for swine’s metabolisms.

Het potentieel van Lemna minor om landbouwkundige zijstromen in eiwitrijk voeder om te zetten werd onderzocht om tegemoet te komen aan de groeiende vraag naar eiwitrijke diervoeders en het overschot aan nutriënten in sommige regio’s in Europa te verwerken. Daarvoor werden er drie opstellingen gevoed met een verdund mengsel van vloeibare fractie en biologisch effluent van varkensmest zodat de wekelijkse toevoeging van N en P gelijk staat aan de verwijderingscapaciteit dat het systeem heeft. De studie toont aan dat een eendenkroosvijver gebruikt kan worden als een laatste omzettingstap van biologisch effluent tot loosbaar water, waardoor het niet meer hoeft uitgereden worden op landbouwgrond. Het wordt geschat dat een hectare eendenkroos de mest van 2805 varkens kan verwerken. Echter, naast N en P bevatten de stromen ook K, Cl, S, Ca, Mg, en Na. Bij een continue toediening werd vastgesteld dat de verwijderingscapaciteit van het systeem lager is dan de toediening, waardoor de elementen accumuleren na verloop van tijd. K is het eerste element die concentraties zal bereiken die hoger zijn dan de toxische grens voor eendenkroosgroei. Een kweker zal dus minstens om de 9 jaar het water moeten verversen. Bovendien moet vermeden worden dat toxische elementen zoals As, Cd, en Pb accumuleren tot toxische concentraties. In de studie werd geobserveerd dat deze elementen dalen over tijd en steeds onder de voorgeschreven limieten staan (uit Europese richtlijn 2002/32/EC). Dit kan ondersteunend bewijs zijn voor beleidsmakers om het gebruik van eendenkroos in diervoeders toe te laten nadat ze bemest zijn met reststromen uit de varkensmestverwerking. Dit als ook aanwijzingen zijn dat er geen andere gezondheidsrisico’s bestaan die hier niet werden onderzocht. Bovendien blijkt dat het eendenkroos ook een bron is van Mn, Zn, en Fe, waardoor het gunstig kan zijn voor het metabolisme van het varken.

The Nutri2Cycle project will assess the current Nitrogen (N), Phosphorus (P) and Carbon (C) flows looking into existing management techniques in different farms across Europe and analysing their related environmental problems. One of such technologies is the application of digestate in orchards. If taking into consideration that the vast majority of Croatian farmers don’t apply digestate in agricultural production, one could conclude that digestate application can be considered as an innovative solution. Application of digestate in large scale orchards may have been applied across EU already, but it is considered to be an innovative management solution in Croatia. Furthermore, when digestate is applied it is usually for the energy crop production and not in long-term plantations. The underlying working principle refers to the application of digestate in raspberry plantation in the beginning of the project. In the phase of soil preparation, a combination of Ca(OH)2 in concentration of 1,00 t/ha, thick fraction of digestate in concentration of 50,00 t/ha and cattle manure in concentration of 33,00 t/ha was used. Also, next to organic fertilizers, 30 grams/plant of mineral fertilizer (NPK 7-20-30) was also applied. When investigating existing research databases, there were no specific research found on application of digestate in raspberry plantation. Use of digestate contributes to the Nitrogen and Carbon cycles in agriculture. It can also increase soil biodiversity, while reducing erosion, leaching and water pollution Numerous research findings indicate that digestate from agricultural biogas plants cannot only be a good fertilizer but also an effective mean to close the carbon cycle in the soil for a more sustainable agriculture. To conclude, digestate in Croatia is often neglected in application. When deciding, farmers should take into account important benefits that digestate has for crops, such as presence of high amounts of easily accessible plant nutrients, improved physical structure of soil, reduced ammonia emissions, and the appearance of unpleasant odours.Considering all of this, farmers now have a new and significant role in society, as both, crop and energy producers and waste processors.

Projekt Nutri2Cycle će osigurati važna dostignuća za održivo i učinkovito upravljanje prirodnim resursima. Također, predmetni projekt analizira trenutne tokove dušika (N), fosfora (P) i ugljika (C), odnosno postojeće tehnologije njihovog upravljanja na poljoprivrednim gospodarstvima. Jedna od takvih tehnologija je i primjena digestata u voćarstvu. Ako se uzme u obzir da velika većina hrvatskih poljoprivrednika ne primjenjuje digestat u poljoprivrednoj proizvodnji, moglo bi se zaključiti da se primjena digestata smatra inovativnim rješenjem u poljoprivredi. Primjena digestata u voćnjacima velikih površina možda je već i zastupljena u cijeloj EU, ali u Hrvatskoj se smatra inovativnim rješenjem. Nadalje, kada se primjenjuje digestat, njegova primjena je učestalija u proizvodnji energetskih usjeva, za razliku od primjene u dugogodišnjim nasadima. Temeljni princip rada odnosi se na primjenu digestata u nasadu malina na početku projekta. U fazi pripreme tla kombinacija Ca(OH)2 u koncentraciji 1,00 t/ha, kruti digestat u koncentraciji 50,00 t/ha i goveđi gnoj u koncentraciji 33,00 t/ha je korišten. Također, uz organska gnojiva primijenjeno je i 30 grama/biljci mineralnog gnojiva (NPK 7-20-30). Tijekom istraživanja postojećih baza podataka, nisu pronađena značajna istraživanja o samoj primjeni digestata u voćarstvu. Korištenje digestata doprinosi ciklusima dušika i ugljika u poljoprivredi. Također, primjena digestata doprinosi povećanju biološke raznolikosti tla, istovremeno smanjujući eroziju, ispiranje i zagađenje vode. Nadalje, istraživanja pokazuju da digestat iz poljoprivrednih bioplinskih postrojenja može biti i gnojivo, ali imati i značaj u zatvaranju ciklusa ugljika u tlu radi održivije poljoprivrede. Može se zaključiti da je digestat u Hrvatskoj često zanemaren u primjeni. Poljoprivrednici bi trebali razmotriti najvažnije prednosti, koje uključuju prisutnost velikih količina lako dostupnih biljnih hranjivih tvari, poboljšanu fizičku strukturu tla, smanjenu emisiju amonijaka i pojavu neugodnih mirisa. Uzimajući u obzir gore navedeno, poljoprivrednici stječu novu i važnu ulogu u društvu, kao proizvođači energije i prerađivači otpada.

The production of a manure-based fertilizer will proportionate a more sustainable agriculture practice through the valorisation of animal manure in a circular economy. Hence by adding an organic material to the soil the carbon soil reserve should increase and thereby improve its fertility and productivity. The production of a manure-based fertilizer will allow a better control of the nutrients flow, since it will ensure a decrease in the nutrient losses associated with the raw manures, such as ammonia emissions or nitrate leaching. Also, one of the difficulties in applying manure is the nutrients’ concentration that are unbalanced for the crop’s necessities, so in that case, this production aims to produce a fertilizer based on the mixture of manures, treated or not, that will have a known ratio of N:P. In that line, two scenariosare possible, one at farm scale where the farm manure can be amended with a small amount of mineral fertilizer to achieve the desired N:P ratios, and a second scenario where, at a central plant, different manures will be blended between them also to reach the intended N:P ratios. In both scenarios, the intention is to use mineral fertilizers as a complement and not as the main nutrients sources. The manure-based fertilizer will allow to close the nutrient cycle since the solution proposed here intended to reduce the known environmental impacts of manure application to the soil and, by reducing nutrients losses, the agronomic results should be comparable to the mineral fertilizers. The results obtained in this project showed that it is possible, at farm scale, to improve the agronomic value of manure by using some simple treatment as separation or by using some additives. It is to believe that such improvement might contribute to a wider use of manure as susbtitute of mineral fertilizers.

A produção de fertilizante orgânico com base em efluentes pecuários, irá proporcionar práticas agrícolas mais sustentáveis, pela valorização de efluentes pecuários numa filosofia de economia circular. Não obstante, a adição de material orgânico ao solo irá aumentar a sua reserva de carbono e por conseguinte melhorar a fertilidade e produtividade do mesmo. A produção do fertilizante orgânico irá permitir um melhor controlo dos fluxos de nutrientes, visto garantir uma diminuta perda de nutrientes associada aos efluentes em bruto, tais como as emissões de amoníaco ou a lixivição de nitratos. Por outro lado, uma das dificuldades em aplicar efluentes pecuários é a sua concentração de nutrientes, que é desproporcional face às necessidades das culturas, pelo que este trabalho terá o intuito de produzir um fertilizante através da mistura de efluentes pecuários, com ou sem tratemento, que terão um rácio de N:P conhecido. Neste sentido, criaram-se dois cenários, o primeiro atuando ao nível da exploração onde ao efluente da mesma será adicionada uma pequena quantidade de adubo para perfazer os rácios requeridos, enquanto no segundo criou-se uma central de processamento onde ocorrerá a mistura dos efluentes entre si para obter igualmente os referidos rácios. Em ambos os cenários, a intenção é que a fertilização mineral passe a ser um complemento. A produção do fertilizante orgânico irá permitir fechar o ciclo de nutrientes visto que a solução proposta pertende reduzir os impactos ambientes associados à aplicação de efluentes em bruto e pela redução da perda de nutrientes é expetável uma performance agronómica similar à aplicação de fertilizantes minerais. Os resultados obtidos neste projeto mostraram que é possível, à escala da exploração, melhorar o valor agronômico dos estrumes e chorumes usando alguns tratamentos simples como a separação ou usando alguns aditivos. Acredita-se que tal melhoria possa contribuir para uma utilização mais ampla dos estrumes e chorumes como substitutos de fertilizantes minerais.

The excessive use of mineral fertilizers seen in the last few decades has contributed to an increase in environmental impacts, such as water contamination, soil erosion and resource depletion. To maintain crop productivity high but its impacts low, it is vital to promote the recycling of nutrients and to increase resource use efficiency. The present work’s aim is the substitution of the conventional mineral fertilizers with manures and slurries, thus taking avail of livestock production wastes and hopefully maintain crop productivity but with less impacts. As such, it is important to study the effects of organic (manures and slurries) versus mineral fertilization. In our trials, cattle manure, poultry manure, cattle slurry, and acidified cattle slurry were applied to soil in an apple orchard, with the purpose of evaluating fruit production and quality, greenhouse gas (GHG) emissions and soil nutrient content. Regarding fruit production, there were no significant differences between the mineral and the organic treatments, indicating that the organic materials did not injure crop productivity as one would expect due to their characteristic slow mineralization rate, however, leaf analysis has shown that the organic treatments presented higher content of phosphorus, potassium, and boron, indicating that the plants were able to obtain nutrients from the manures and slurries. However, the organic treatments produced more GHG, although it is worthy to note that acidified cattle slurry has significantly reduced CH4 emissions when compared to raw cattle slurry, hence reducing the environmental impacts associated with slurry application. More results are expected, as the trials are still on-going, nonetheless the outcomes seem promising. Replacement of mineral fertilizer by manure in orchards fertilization is an excellent tool to improve the soil quality but also to decrease the carbon footprint of apple production. Furthermore, the use of manure might be beneficial for maintenance of soil cover.

O uso excessivo de fertilizantes minerais visto nas últimas décadas tem contribuído para o aumento dos impactos ambientais, como a contaminação de água, erosão do solo e esgotamento de recursos. Para manter a produtividade alta, mas os impactos baixos, é vital promover a reciclagem de nutrientes e aumentar a eficiência do uso de recursos. O objetivo do presente trabalho é a substituição dos fertilizantes minerais convencionais por estrumes e chorumes na fertilização de pomares de macieira, aproveitando-se dessa forma os resíduos da produção pecuária mantendo-se a produtividade da cultura e reduzindo os impactos ambientais associados. Como tal, é importante estudar os efeitos da fertilização orgânica (estrumes e chorumes) versus mineral. Os nossos ensaios utilizarão estrume bovino, estrume de aves, chorume bovino e chorume bovino acidificado, com o objetivo de avaliar a produção e o desempenho da cultura, as emissões de gases com efeito estufa (GEE) e o teor de nutrientes no solo. Em relação à produção de frutos, não houve alterações significativas entre tratamentos, indicando que os materiais orgânicos não prejudicaram a produtividade da cultura como seria de esperar devido à característica taxa de mineralização lenta, no entanto, a análise foliar mostrou que os tratamentos orgânicos apresentaram maior conteúdo de fósforo, potássio e boro, indicando que as plantas foram capazes de utilizar os nutrientes nestes tratamentos. No entanto, os tratamentos orgânicos produziram mais GEE, embora o chorume bovino acidificado tenha diminuído significativamente as emissões de CH4 quando comparado ao chorume bovino bruto, reduzindo assim os impactos ambientais associados à aplicação de chorumes. Esperam-se mais resultados, pois os ensaios ainda estão a decorrer, mas os primeiros resultados parecem promissores. A substituição de fertilizantes minerais por estrume ou chorume na fertilização de pomares é uma excelente ferramenta para melhorar a qualidade do solo, mas também para diminuir a pegada de carbono da produção de maçã. Além disso, o uso de estrumes e chorumes pode ser benéfico para a manutenção do coberto vegetal na entrelinha.

A farm in Charente Maritime, France, combines field crops with a vineyard. Crop production is done through organic farming for the past 5 years, whereas the vineyard already for ten years. With this progressive change into organic farming, the farmers had to change their fertilization practices towards organic fertilizers. However, an important problem to face in organic farming is the lower efficiency in NP inputs, because of the more unpredictable behavior of organic fertilizers without appropriate monitoring. The farm cultivates about ten species including Rapeseed, Hemp, Sunflower and Camelina for oil. After treating the oilseed crops, the farm gets oil-cake as residue. Until now the oil-cakes are used as livestock feed for a neighboring farm, but the farmers would like to recover their residues. To decide whether the oil-cake could be used as fertilizer, or soil enhancer with biostimulating effects for the vineyard, they need to monitor the synchronization between NP release from residues and the grapevine uptake and optimize the balance between C storage and organic fertility in the soil of grapevine plots. A demonstration essay has been designed to follow up and assess the fertilizing efficiency of the farm residues alone or combined with a commercial organic fertilizer on the plot with vineyard, from 2019-2021. With the characterizations of the oil-cake and the plot soil, the grapevine development will be monitored with a manual sensor and remote sensing to assess the biomass and nitrogen status, and will be explained with the properties of the organic inputs. 
The results provided by this demonstration should provide key information to decide on the best way for recycling their residue and whether this is the right way to go.

Une ferme en Charente Maritime associe grandes cultures et viticulture. Avec le passage progressif à l'agriculture biologique, vignoble puis grandes cultures, les agriculteurs ont dû changer leurs pratiques de fertilisation et doivent utiliser des engrais biologiques. La moindre efficacité des apports en NP, du fait du comportement des fertilisants organiques plus difficile à évaluer, est un enjeu.
La ferme cultive une dizaine d'espèces en grandes cultures dont le colza, le chanvre, le tournesol et la cameline pour l'huile. Après l’extraction de l’huile, la ferme recycle les tourteaux comme aliments pour bétail donnés à une exploitation voisine.
Les agriculteurs s'interrogent sur le meilleur moyen de valoriser leurs résidus. Pour décider l’utilisation du tourteau comme fertilisant ou amendement pour la vigne, ils doivent vérifier la bonne synchronisation entre la libération de nutriments des résidus et l'absorption par la vigne, et optimiser l'équilibre entre le stockage de C et la fertilité organique dans le sol des parcelles de vigne.
Un essai de démonstration a été conçu pour suivre et évaluer l'efficacité fertilisante des résidus de ferme seuls ou combinés avec un engrais organique commercial sur la parcelle avec vignoble, de 2019 à 2021. Avec les caractérisations des tourteaux et du sol de la parcelle, le développement de la vigne sera suivi par capteur manuel et télédétection pour évaluer la situation de la biomasse et de l'azote. Il sera expliqué par les propriétés des apports organiques.
Les résultats de cette démonstration d'essai devraient fournir aux agriculteurs les informations clés pour décider de la meilleure façon de recycler leurs résidus et, si le recyclage agronomique est le bon moyen.

An agricultural holding in Charente-Maritime, France produces arable crops (wheat, triticale, pea, corn, and rapeseed) to breed goose livestock. The farmers decided to plant trees on an arable plot to develop an agroforestry system combining energy biomass and feeding crops while simultaneously improving animal welfare.
Using its livestock effluents – slurry and manure – to fertilize the crops , this farm already engages into circular economy. However, the farmers wanted to optimize the efficiency of the effluents use, and decrease their synthetic fertilizer input.
The Chamber of agriculture proposed a demonstration action on the agroforestry plot to analyze the effluents behavior as fertilizers and to assess carbon storage and soil fertility in 2019-2021, using soil analysis, remote sensing and modeling tools. The feeding crops are commonly fertilized using synthetic Nitrogen fertilizer. In the first year (2019), this was partially substituted by livestock slurry : 15% of the crop requirement was provided by soil stock nitrogen, 20% from animal manure and 65% by synthetic fertilizers. Considering climatic conditions it is too early to make firm conclusions on comparison of nutrient efficiency from effluents against that of mineral fertilizer. In the following growing seasons, we aim to systematically increase the use of biobased fertilizer sources and reduce the dependency on mineral fertilizers.
As results of this demonstration, it is expected to draft possible scenarios to increase the substitution of synthetic fertilizers by farm effluents and assess the increases of soil fertility and carbon storage in this agroforestry system.
When the results are positive, the farmers will extend the agroforestry system to a wider area.

Une exploitation agricole de Charente-Maritime produit les cultures (blé, triticale, pois, maïs et colza) pour alimenter son élevage d'oies. Les agriculteurs ont décidé d’implanter des arbres sur une parcelle pour installer un système agroforestier combinant production de biomasse énergétique, cultures alimentaires et amélioration du bien être animal.
Utilisant ses effluents d'élevage pour fertiliser les cultures, cette ferme propose un haut niveau d'économie circulaire. Mais les agriculteurs veulent optimiser l'utilisation des effluents d’élevage et ainsi diminuer les engrais synthétiques ou d’extraction en assurant la circulation des nutriments NP et en assurant un haut niveau de captation du carbone pour une bonne production agroforestière.

La Chambre d'agriculture a proposé de conduire une démonstration de suivi des effluents sur la parcelle agroforestière pour évaluer le stockage de carbone et la fertilité du sol sur la période 2019-2021, à partir de l'analyse du sol et à l’aide d’outils de télédétection et de modélisation.
Les cultures sont habituellement fertilisées avec des engrais synthétiques. Pendant la première année (2019), la substitution partielle par du lisier fournit 20% des besoins en N contre 15% par le sol et 65% par les engrais synthétiques. Actuellement, il n'y a pas le recul nécessaire pour comparer l'efficacité des effluents à celle des engrais minéraux, sachant qu’elle dépend fortement des conditions climatiques.
Par la suite, nous visons à augmenter la substitution par les effluents agricoles avec évaluation de la fertilité des sols et du stockage du carbone.
En cas de retour positif, les agriculteurs pourraient étendre la solution agroforestière à une plus grande surface de leur exploitation.

In Lombardy (Italy) an anaerobic digestion (AD) plant is situated that treats 70.000 t/y waste (mainly sewage sludge) producing digestate, used as fertilizer, and biogas. An innovative stripping system reduces ammonia inhibition in the reactor while also producing ammonium sulphate, a fertilizer. Both digestate and ammonium sulphate comply to the legal limits for fertilizers. 
To evaluate the effect of digestate fertilization a 2 ha field test was set up. Digestate, mineral fertilizer and non-fertilized control treatment were compared in triplicate for the cultivation of wheat, rice, and corn following the principles of minimum tillage and precision agriculture. Field trials started in 2018 and will continue for three years. 
We observed that corn yields are statistically higher in digestate treatments, while rice yields are not statistically different between treatments. Odour emissions from digestate distribution are similar to those from mineral fertilizer, if injection in soil is used, instead of spreading. Ammonia emissions are higher in digestate treatments and lower in chemical treatments. Digestate treatments show higher cumulative emissions of N2O and lower cumulative emissions of CH4, compared with mineral fertilization treatments. During crop season there’s a risk of nitrate leaching only after fertilizations, but nitrate concentrations at 100 cm depth are very low (< 20 mg kg-1), with no differences between digestate and mineral fertilization.

L’impianto di digestione anaerobica, situato in Lombardia, tratta 70000 t/anno di rifiuti, principalmente fanghi, producendo digestato, usato come fertilizzante, e biogas. Un sistema di strippaggio innovativo riduce l’inibizione da ammoniaca nel reattore, producendo solfato ammonico; entrambi soddisfano i requisiti legali per i fertilizzanti. 
L’effetto della fertilizzazione con digestato è stata valutata con una prova in pieno campo (2 ha) dove vengono confrontati in triplo trattamenti con digestato, fertilizzante minerale e un controllo non fertilizzato, sulle colture di frumento, riso e mais, seguendo i principi di minima lavorazione e agricoltura di precisione. Le prove di campo, iniziate nel 2018, durano tre anni. 
Le rese del mais sono statisticamente maggiori nei trattamenti con digestato, mentre le rese del riso non hanno mostrato differenze significative tra i trattamenti. Le emissioni di odori allo spandimento del digestato sono risultate simili a quelle del fertilizzante minerale, nel caso in cui viene utilizzata l’iniezione nel suolo invece dello spandimento. I trattamenti con digestato mostrano maggiori emissioni cumulate di N2O e minori emissioni cumulate di CH4, e maggiori emissioni di ammoniaca rispetto alle fertilizzazioni minerali. Durante l’anno c’è rischio di lisciviazione dei nitrati solo dopo le fertilizzazioni, ma le concentrazioni a 100 cm di profondità sono molto basse (< 20 mg kg-1), senza differenze tra fertilizzazione minerale e digestato.

This practice aims to balance the nutrients in manure (especially C:N ratio) so that a fertilizer is produced that is better useable by plants and also reduces nutrient loss through leaching.
Manure is inoculated with microorganisms that have been selected to perform specific functions. The product is a liquid suspension of microorganisms based on phototropic and lactic acid bacteria and yeast in a natural environment of sugarcane molasses. These microorganisms act directly on the slurry first, and on the soil later, reducing nitrogen losses by enhancing the biodegradation of manure.
When these additives under investigation are added to the manure, they are anticipated to improve the hygienic conditions in facilities (barns, coops, pens…) reducing ammonia emissions (at least 65%) and also moving carbon sources and nutrients in manure to forms easily assimilated by the plants (from ammonium to nitrate in the case of nitrogen, residual proteins converted into amino acids and solubilisation of solids and phosphorus).
The microorganisms contained in this additive constitute is the ideal environment for plant growth, directly affecting the quality of the crops and the soil (the product progressively inhibits the attack of other bacteria and microorganisms that cause pathologies by having a colonizing effect on the soil).

Esta práctica tiene por objetivo el equilibrar los nutrientes del estiércol (especialmente la relación C:N) para que, de esta manera, se produzca un fertilizante que se aproveche mejor por las plantas y además se consiga una reducción de la pérdida de nutrientes por lixiviación.
El estiércol es inoculado con microorganismos que han sido seleccionados para realizar funciones específicas. El producto es una suspensión líquida de microorganismos basada en bacterias y levaduras fototrópicas y de ácido láctico en un entorno natural de melaza de caña de azúcar. Estos microorganismos actúan directamente sobre el estiércol primero, y sobre el suelo después, reduciendo las pérdidas de nitrógeno al aumentar la biodegradación del estiércol.
Se prevé que cuando estos aditivos objeto de investigación se añadan al estiércol, mejoren las condiciones higiénicas de las instalaciones (granjas, cooperativas, corrales...) reduciendo las emisiones de amoníaco (como mínimo un 65%) y también desplazando las fuentes de carbono y los nutrientes del estiércol a formas fácilmente asimilables por las plantas (de amonio a nitrato en el caso del nitrógeno, proteínas residuales convertidas en aminoácidos y solubilización de sólidos y fósforo).
Los microorganismos contenidos en este aditivo constituyen el entorno ideal de crecimiento de las plantas, afectando directamente a la calidad de los cultivos y del suelo (el producto inhibe progresivamente el ataque de otras bacterias y microorganismos causantes de patologías al tener un efecto colonizador sobre el suelo)

Anaerobic digestion (AD) technology promotes the bioconversion of livestock waste, apart from other organic waste streams (such as those from the agrifood industry), into methane and carbon dioxide, allowing its energetic valorization. However, AD does not significantly reduce the concentration of nitrogen or phosphorus, and it is essential in all cases to carry out a nutrient balance before applying the digestate to farmland in order to minimize the environmental impact and, in many cases, it is essential to resort to techniques for reducing or recovering these nutrients.
The crystallization of nitrogen and phosphorus in the form of struvite (MgNH4PO4·6H2O), is one of the possible techniques used to eliminate and/or recover nutrients from the digestate, obtaining a product that can be applied as a base for high quality ecological fertilizers.
Several factors influence the struvite precipitation: the chemical composition of the residual effluent, the pH, the molar ratio of Mg:N-NH4:P-PO4 (Mg:N:P), the degree of supersaturation, the temperature and the presence of foreign ions (such as calcium).
In the investigated pilot struvite reactor, the reaction takes place at room temperature or similar (25-30 ºC), so there is no large energy consumption and there is no need to add water. 
As raw materials the following were used: pig slurry digestate, magnesium salt (usually MgCl2·6H2O) and NaOH.
The technology has been demonstrated at a sufficiently relevant scale (crystallization reactor with a capacity of 50 L), so that the results can be used for subsequent implementation on an industrial scale. Phosphorus removal yields of over 95% have been obtained.

La tecnología de digestión anaeróbica (DA) promueve la bioconversión de los residuos agroganaderos, además de otros residuos orgánicos (como los de la industria agroalimentaria), en metano y dióxido de carbono, permitiendo su valorización energética. Sin embargo, la DA no reduce significativamente la concentración de N o P, y es esencial en todos los casos realizar un balance de nutrientes antes de aplicar el digestato a las tierras de cultivo para minimizar el impacto ambiental y, en muchos casos, es esencial recurrir a técnicas de reducción o recuperación de estos nutrientes.
La cristalización de nitrógeno y fósforo en forma de estruvita (MgNH4PO4·6H2O), es una de las posibles técnicas utilizadas para eliminar y/o recuperar nutrientes del digestato, obteniendo un producto que puede ser aplicable como base en fertilizantes ecológicos de alta calidad.
Varios factores influyen en la precipitación de la estruvita: la composición química del efluente residual, el pH, la relación molar de Mg:N-NH4:P-PO4 (Mg:N:P), el grado de sobresaturación, la temperatura y la presencia de iones extraños (como el calcio).
En el reactor piloto utilizado para la obtención de estruvita, la reacción se produce a temperatura ambiente o similar (25-30 ºC), por lo que no hay un gran consumo de energía y no es necesario añadir agua.
Como materias primas se utilizaron las siguientes: digestato de purines de cerdo, sal de magnesio (normalmente MgCl2·6H2O) y NaOH.
La tecnología se ha demostrado a una escala suficientemente relevante (reactor de cristalización con una capacidad de 50 L), para que los resultados puedan ser utilizados para su posterior implementación a escala industrial. Se han obtenido rendimientos de eliminación de fósforo superiores al 95%.

Large surpluses of on-farm nitrogen (N) and phosphorus (P) are processed or exported out of Flanders in the form of animal manure, while tonnes of synthetic N-fertilisers are being used. The use of recycling-derived fertilisers (RDFs) from manure could counter this. Currently, RDFs derived from manure still need to comply with the legal application constraints of animal manure and are thus not often used.
That is why five RDFs: ammonium nitrate, ammonium sulphate, digestate from co-digestion of pig manure, liquid fraction of digestate and pig urine, are compared with mineral fertiliser CAN, pig manure and a blank treatment in a 3-year field trial focusing on short term N-effects of the RDFs. The main goal of the trial is to establish a clear relationship between the amount of N applied by RDF and dry matter production. Each RDF was applied in 4 doses.
Currently we are one year into the 3 year trial. Weather conditions during the summer months 2019 were extremely dry and hot. Therefore water availability became the principal factor determining crop growth. Lab analysis showed that N and P content could vary up to 50% in different samples in time of pig manure, digestate, liquid fraction from digestate or pig urine. In these extreme conditions the agricultural value of ammonium nitrate and ammonium sulphate appears to approach that of CAN. Furthermore, no significant differences with respect to residual nitrate in the soil profile at harvest are observed for treatments with high Nmin/Ntot ratio when good practices are adopted towards applied dosage based on initial available nitrogen in the soil, good knowledge of composition (considering higher variability of biobased fertilizers as compared to synthetic fertilizer), timing of application etc.

Het mestoverschot in Vlaanderen wordt verwerkt en geëxporteerd in de vorm van dierlijke mest, terwijl kunstmest grootschalig wordt aangekocht. Nochtans kan het gebruik van herwonnen meststoffen dit oplossen. Deze herwonnen meststoffen dienen echter te voldoen aan de wettelijke toepassingsvereisten van dierlijke mest en worden dus niet vaak gebruikt.
In een 3 jaar durende veldproef werden de korte stikstof termijneffecten van vijf herwonnen meststoffen: ammoniumnitraat, -sulfaat, digestaat van co-vergisting van varkensmest, dunne fractie van digestaat en varkensurine, uitgetest en vergeleken met KAS kunstmest, varkensmest en een blanco behandeling. Hierbij wordt getracht een verband te leggen tussen de hoeveelheid N die door de meststof wordt aangebracht en de droge stofproductie. Elke meststof werd in 4 dosissen aangebracht.
Momenteel is het eerste jaar van de veldproef afgerond. De weersomstandigheden in de zomer van 2019 waren extreem droog en warm. Daarom bepaalde voornamelijk de waterbeschikbaarheid de gewasopbrengst. Labo-analyses toonden dat het N- en P-gehalte tot 50% kan variëren in verschillende stalen van varkensmest, digestaat, dunne fractie van digestaat of varkensurine. Onder deze omstandigheden lijkt de bemestingswaarde van ammoniumnitraat en ammoniumsulfaat die van kunstmest te benaderen. Bovendien konden geen significante verschillen voor het nitraatresidu in het bodemprofiel bij de oogst worden waargenomen voor de behandelingen met een hoge Nmin/Ntot ratio wanneer goede praktijken werden gehanteerd voor dosering in functie van de initieel beschikbare stikstof in de bodem, exacte samenstelling (hogere variabiliteit bij biogebaseerde meststoffen), tijdstip van applicatie enz.

INTRODUCTION
European agriculture is characterized by a high overall contribution to greenhouse gas (GHG) emissions and inefficient recovery and re-use of major plant nutrients such as nitrogen and phosphorus. In this respect, carbon has been insufficiently by policy makers as a key component of soil fertility and health. The Nutri2Cycle project wants to address the current gaps in the cycles of mineral nutrients as well as organic carbon for different European agricultural systems through implementation of technologies which enhance recycling from (agro)residues.

RESEARCH FOCUS
An important research line will be investigating innovative soil, fertilization and crop management systems and practices that could lead to maintaining and increasing organic carbon (OC). This will for example include (i) field trials to assess the use of catch crops to reduce nitrogen losses and incorporate additional OC, (ii) field investigation in Northern Italy on using digestate derived products to supplement soils lacking OC and doing so in a balanced (precision fertilization) manner so that mineral nutrient supply also remains in balance with crop requirement, (iii) an assessment of Dutch farming practices for increasing soil OC, (iv) utilization of a combination of manure and dairy processing residues in crop farming.
The most promising pathways as compared to the common practice will be assessed for transferability in the EU.

INTRODUCTION
The Horizon 2020 project Nutri2Cycle aims at implementing optimized management systems to realize better nutrient stewardship and mitigation in European agriculture. Contemporary animal production has been characterized by upscaling and increased animal concentrations. This has been crucial for the European Union food supply and self-sufficiency, but has also lead to nutrient related pressure and greenhouse gas emissions. The challenge now is to drastic reduce emissions through combinations of emission abatement and manure treatment technologies. 

RESEARCH FOCUS
Within Nutri2Cycle different strategies will be examined to achieve these goals. To reduce ammonia emissions and optimize nutrient use efficiency the use of inoculation of microbiota and enzymatic pre-cursors will be investigated in poultry manure, while for animal slurry the effect of acidification on reduction of NH3 volatilization will be examined. Also, the project will investigate innovative stable construction schemes, which intend to source-separate feces and urine into separate flows (as opposed to mixed slurry). Processing these flows separately can result in more optimal energy and N-P-C cycles than conventional manure handling. Different anaerobic digestion strategies for optimized nutrient and energy recovery from animal manure will also be investigated and the option to make tailor made digestate products will be explored.
The most promising pathways as compared to the common practice will be demonstrated in an operational environment and the transferability in the EU will be assessed.

INTRODUCTION
The Horizon 2020 project Nutri2Cycle aims at implementing optimized management systems to realize better nutrient stewardship and mitigation in European agriculture. Contemporary plant production has increasingly required nutrients in directly available form such as mineral fertilizers to obtain the highest possible productivity and economic efficiency. The major challenge now is to maintain this high productivity and product quality at lower environmental impact. A key element in this will be reconnecting the two classical pillars of plant production and animal husbandry through a third pillar of agro-processing. This leads to a range of processed residues or so called bio based fertilizers that now need to be aligned with plant production requirements 

RESEARCH FOCUS
Different tools, techniques and systems for higher precision fertilization could play an important role in this, not only for the application of classic fertilizers, both definitely for novel bio based fertilizers which are characterized by a higher variability in nutrient content. Within the Nutri2Cycle project research will be conducted on precision fertilization tools such as the use of drones, optical sensing technology and nitrate sensoring to cope with the heterogeneity of bio based fertilizers and better alignment of fertilizer dose with actual crop demand (tailor made products). 
The most promising pathways as compared to the common practice will be demonstrated in an operational environment and the transferability in the EU will be assessed.

INTRODUCTION
Intensified European agriculture is crucial for the EU food supply and self-sufficiency, but it also generates environmental challenges related to GHG emissions and nutrient related pressure (eutrophication). In addition, European agriculture is under economic pressure due to its high dependency on import of primary nutrients and energy. The Nutri2Cycle project aims to enable the transition from the current suboptimal nutrient household in European agriculture to the next-generation of agronomic practices, characterized by an improved upcycling of nutrients and organic carbon. In this respect a great opportunity lies within the use of biobased fertilizers and soil enhancers from agro residues as a substitute for primary resources. 

RESEARCH FOCUS
Within Nutri2Cycle we want to further enhance nutrient recovery technologies at farm level such as struvite crystallization, stripping/scrubbing etc with the goal of replacing mineral fertilizers. At the same time the efficiency of the resulting novel fertilizers will be tested in comparative field trials to evaluate their performance, stability towards composition, contribution to soil fertility and nutrient use efficiency in comparison with their mineral counterparts. This will be an important step towards tailor designed fertilizers 
The most promising pathways as compared to the common practice will be demonstrated in an operational environment and the transferability in the EU will be assessed. This should ultimately lead to a higher soil quality, more efficient use of resources, and a reduction of nutrient losses to the environment. As a result, significantly less synthetic N and P fertilizer inputs will be needed.

INTRODUCTION
The Nutri2Cycle project aims to enable the transition from the current suboptimal nutrient household in European agriculture to the next-generation of agronomic practices, characterized by an improved upcycling of nutrients and organic carbon. Developing local protein sources from nitrogen containing waste & waste water streams to reduce import dependency, is one of the strategies investigated within the Nutri2Cycle project.

RESEARCH FOCUS
The animal husbandry sector is characterized by massive intercontinental import of soy bean products. Substitution of these products by locally produced alternatives could greatly improve nutrient stewardship within this economically important sector. Within Nutri2Cycle an important research line is the production of novel animal feeds. One the one hand we will focus on direct replacement by exploring the possibility of domestic cultivation of protein crops. However, another important research aspect will be to search for novel sources of proteins such as insect breeding, floating wetland plants and algae. Interestingly these novel sources could be grown on solid or liquid agro residues. Successful implementation of this approach could not only reduce the import of external protein sources but at the same time prevent nutrient loss by recuperating the nutrients from these otherwise low value side streams.
The most promising pathways as compared to the common practice will be demonstrated in an operational environment and the transferability in the EU will be assessed

Derzeit wird der Seiteninhalt nach Möglichkeit in der Muttersprache angezeigt

Contacts

Project coordinator

  • Ghent University

    Project coordinator

Project partners

  • Ghent University

    Project partner

  • Universita Degli Studi Di Milano

    Project partner

  • United Experts

    Project partner

  • Fundacion Cartif

    Project partner

  • Thuenen Institute

    Project partner

  • Soltub Ltd

    Project partner

  • Stichting Wageningen Research

    Project partner

  • Instituto Superior de Agronomia

    Project partner

  • Kobenhavens Universitet

    Project partner

  • 3R-BioPhosphate ltd

    Project partner

  • Chambre departementale d'agriculture

    Project partner

  • Zuidelijke Land- en Tuinbouw Vereniging

    Project partner

  • Institut de recerca I Tecnologia Agroalimentaries

    Project partner

  • Teagasc

    Project partner

  • European Biogas Associatio

    Project partner

  • IPS Konzalting

    Project partner

  • Inagro

    Project partner

  • Consorzio Italbiotec

    Project partner