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2 Soil organic carbon in the Grand Duchy of Luxembourg 

1 INTRODUCTION 

In 2014, the UCLouvain produced the first versions of soil organic carbon (SOC) content and soil organic 

carbon stock maps for the Grand-Duchy of Luxembourg (GDL; Stevens et al., 2014a; Stevens et al., 

2014b). The models fitted covered croplands, grasslands, vineyards and forests, based on analytical 

data from agriculture and viticulture (2012-2014) and from the National Forest Inventory (2008-2013). 

The SOC content and stock maps are essential tools in the present discussion about climate change 

and the potential storage of carbon in cultivated and forested soils. Hence, these maps are used as 

central documents for reporting activities such as the National Inventory Report (NIR) required by the 

UNFCCC as part of the Kyoto protocol.  

Soil organic matter, a key indicator of soil quality regarding its many positive benefits in terms of 

agronomy and environment, consists of 57% C, and plays an important role:   

• for improving soil stability and reducing erosion (Chenu et al., 2000 ; Bronick et al., 2005) ; 

• for providing plant nutrients (Clivot et al., 2017 ; Oldfield et al., 2019) enabling to reduce the use 

of nitrogenous fertilizers; 

• for the degradation and adsorption of phytopharmaceuticals used for crop protection and pest 

control (Fenoll et al., 2011; 2014); 

• for carbon storage (Buysse et al., 2013 ; D’Hose et al., 2014 ; Vanden Nest et al., 2014 ; Wiesmeier 

et al., 2019) in the fight against global warming.   

Since 2014, the soil analytical database in GDL was enlarged with thousands of samples from croplands, 

grasslands and vineyards. 

Objectives 

This project aimed at exploring all the SOC data available in GDL for improving our knowledge on the 

recent evolution of soil organic matter, on the present SOC regional baseline and on the potential 

effects of management practices on the future SOC trends. 

 

 

N.B. this project (2019-2021) contains three work packages (WP): 

WP1: Historical trends of SOC (historical data are also available for GDL) 

WP2: Updating current SOC content maps 

WP3: Indicators assessing effects of management practices on SOC 

The ASTA (Administration des Services Techniques de l’Agriculture) and UCLouvain agreed early in the 

project in prioritizing the WPs in this order: WP2, WP3 and WP1. The WP2 was first modified in order 

to optimize the research around the recent short-term trends in SOC contents, then the research was 

focused on the impact of recent management practices (WP2). Considering the new directions of the 

project, WP1 has been finally set aside. To finish, given the necessity for complementary SOC 

measurements during the research process and the COVID-19 crisis, this report was finalized later than 

foreseen (originally expected for early 2020).  
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2 THE GRAND-DUCHY OF LUXEMBOURG 

 Location and climate 

The Grand-Duchy of Luxembourg (GDL) covers ~2600 km² in northwestern Europe sharing borders with 

France, Germany and Belgium. The climate is temperate semi-oceanic with mean annual temperature 

ranging from 7.3 °C to 9.9 °C and annual precipitation of ca. 830mm (Fig. 1).  

 

 

Figure 1: Maps of A/ mean annual precipitation (mm) and B/ mean annual temperature (°C) in the Grand-Duchy of 

Luxembourg over the period 1971-2000 (source: Stevens et al.; 2014) 

 

 Geology and relief 

The country consists of two main natural regions, the Oesling in the north (~830 km²) and the Gutland 

in the center and south (~1770km²). The Oesling, like the Ardennes in Belgium and Eifel region in 

Germany, is a massif of the Primary Period made of Lower Devonian slate, quartzite and sandstone. 

The Oesling is now a sub-horizontal peneplain with deeply incised valleys and a mean altitude of ca. 

450m (Fig. 2). The Gutland is a more heterogeneous region characterized by a south-west-facing cuesta 

topography (mean altitude of ca. 245m; Fig. 2) which developed on monoclinal Triassic and Jurassic 

sediments. Rocks formed during the same period can be found in the Gaume region in Belgium, north 

of the Lorraine in France and Bitburger Gutland in Germany. Triassic deposits are made of marls, 

sandstone and dolomites, all containing mineral dolomite while Jurassic sediments are made of 

sandstone and marls with calcium carbonates.  
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Figure 2: Natural regions and elevation (m) in Grand-Duchy of Luxembourg. 

 

 Soil types 

The Oesling is predominantly covered by shallow stony silt loam soils (cambic Umbrisol in the WRB 

classification) while soils of the Gutland are mainly Luvisols (IUSS Working Group WRB, 2006). There 

are 26 soil associations (SMU = soil mapping units) in GDL, according to the major geological units, that 

we further regrouped into 10 classes (Table 1; Figure 3A) representing variations based mainly on 

mineralogy (and texture). 

 

Table 1: Soil associations and corresponding WRB classification (IUSS Working Group WRB, 2014) 

 

Ref. Soil association Natural region Geologic WRB classification Relative area (%)

1 Oesling Oesling Lower Devonian skeletic dystric Cambisol (siltic) 29.1

2
Argiles lourdes des schistes 

bitumineux
Gutland Triassic vertic calcaric Cambisol (clayic) 4.6

3 Argiles lourdes du Keuper Gutland Triassic
vertic dolomitic Cambisol 

(clayic)
5.1

4
Argiles du Lias Inf. et 

moyen
Gutland Jurassic

gleyic/stagnic endocalcaric 

Luvisol (loamic)
1.3

5 Dépôts limoneus sur grès Gutland Jurassic haplic Luvisols (loamic) 10.6

6 Grès du Luxembourg Gutland Jurassic haplic Luvisols (arenic) 9.6

7 Calcaire du Bajocien Gutland Jurassic leptic calcaric Cambisol (loamic) 12.5

8 Dolomies du Muschelkalk Gutland Triassic
leptic dolomitic Cambisol 

(loamic)
10.1

9 Bundsandstein Gutland Triassic endolomitic Luvisol (loamic) 3.2

10 Autres Gutland and Oesling Alluvium, colluvium Fluvisol, Cambisol, Regosol 13.9
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Figure 3: Maps of soils of GDL classified by A/ regrouped soil associations (mineralogy / geology) and B/ textural properties. 

 

In addition, based on the texture identified by finger testing on soil samples entering the ASTA - soil 

laboratory, GDL has defined four main textural soil types (Fig. 3B). Each of them cover different classes 

of the texture triangle designed for soils of Belgium and GDL (Tab. 2 and Fig. 4). The shallow stony silt 

loam1 soils (OM) cover the northern natural region - Oesling. The southern natural region – Gutland - 

is mainly covered by clay loam - loam - silt loam soils (M), loamy sand (L) and clay (S) soils. 

 

 

 

 

 

                                                           
1 According to FAO texture classes 
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Table 2: textural soil types and corresponding groups from the texture triangle designed for Belgium and GDL. 

 

 

 

 

Figure 4: Texture triangle designed for soils of Belgium and Grand-Duchy of Luxembourg. 

 

 Land use 

According to the simplified LANDUSE2018 layer (https://data.public.lu/, Fig. 5), forest occupied about 

35% of the GDL territory in 2018, followed by grassland with ~26% and cropland with ~22%, while 

vineyard covered only ~0.5% of the territory. The remaining percentage of ~16.5% represent mainly 

built-up areas, wetland, water and other agricultural land. The last three classes only cover a small 

area. 

Type de sol par test tactile 

(sigle d’abréviation)
Région naturelle Classe texturale (triangle textural LU) Surface relative (%)

Sol léger (L) Gutland Z (sable), S (sable limoneux) 11

Sol moyen (M) Gutland
L (limon sableux), P (limon sableux léger), A 

(limon), E (argile)
48

Sol lourd (S) Gutland U (argile lourde) 8

Sol moyen caillouteux (OM) Oesling G… (Sols argilo-limono-caillouteux) 33

P = LIMON SABLEUX LÉGER 

Z = SABLE 

S = SABLE LIMONEUX 

L = LIMON SABLEUX 

E = ARGILE 

A = LIMON 

U = ARGILE LOURDE 



 

7 
 

7 Soil organic carbon in the Grand Duchy of Luxembourg 

 

Figure 5: Map of landuses in GDL (after reclassification of ’Sub-type 1 LU classes’; 

https://download.data.public.lu/resources/landcover-landuse-2018/20200504-135337/lisl-landuse-2018-

documentation.pdf). 

 

 Agriculture and management practices 

The most common crop rotation in the Oesling area is a 6 to 8 year rotation with cultivation of silage 

maize and cereals for 3 or 4 years, followed by temporary grassland for another 3 or 4 years. The most 

common crop rotation in the Gutland is a three years rotation with winter wheat, winter barley and 

silage maize. 

Amongst the variety of management practices used in modern agriculture, some are recognized as not 

sustainable enough for soils and surrounding environment, e.g. intensive tillage, heavy spreading of 

pesticides, bare soils exposed to rainfall, etc. These last years, national and European policies (as 

Common Agricultural Policy – CAP) have been created to encourage farmers to apply environmentally-

friendly farming techniques (we would call them ‘Good Agricultural Practices’ or ‘GAP’ here) that go 

beyond legal obligations, as the Agri-Environment Measures2 and the Greening initiative3 from EU. So 

far, the most common GAP applied and promoted in cropland over GDL are cover crops, reduced or 

no-till strategies, and temporary grassland.  

                                                           
2 https://ec.europa.eu/info/food-farming-fisheries/sustainability-and-natural-resources/agriculture-and-environment/cap-
and-environment/agri-environment-measures?2nd-language=fr 
 
3 https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/greening_en 
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3 CURRENT STATE OF SOC IN GDL AND ITS SHORT-TERM EVOLUTION 

3.1 CONTEXT  
In the context of the second pillar of the Common Agricultural Policy, the European commission 

approved the RDP (Rural Development Program) of GDL for the period 2014-2020. Based on SOC data 

from 2012 to 2019, the aim of this study is to assess how the SOC content has evolved in general during 

this period, and if, and how, the RDP could have affected the soil quality. To this aim, SOC content 

baselines were computed for the period right before the beginning of the PDR (T1: 2012-2015; 

considering one year delay for a complete implementation of the RDP all over the GDL) and for the 

period right after (T2: 2016-2019).  

Various data (in raster or vector formats) were used to understand the impact of natural environment 

vs anthropogenic activities on spatial and temporal SOC variability. It is now well-known that human 

activities, especially the ways humans occupy and manage soils, have important consequences on soil 

properties such as SOC contents and stocks (Post and Kwon, 2000; Guo and Gifford, 2002). Hence, the 

data analysis and the spatial modeling were performed separately for each landuse, i.e. cropland, 

grassland and vineyard. Consequently, the results are also reported by land use. 

N.B.: during the previous study dedicated to SOC mapping in GDL (Stevens et al., 2014), data for forest 

from the National Forest Inventory (NFI; period 2008-2013) were used. As the database from the NFI 

was not updated at the time of this research, forest soils were not included. 

3.2 METHODOLOGY 

3.2.1 Recent SOC data in GDL (2012-2019) 

SOC data for the period 2012-2019 were first extracted from the ASTA database compiling all the 

results of routine analyses performed for farmers in GDL. Then, more than 300 SOC analyses were 

performed on soil samples from 2019 and early 20204 in order to improve the spatial cover and the 

number of paired observations in the database. Only soil data for cropland, grassland and vineyard 

were considered, i.e 14,972 observations originally (Table 3).  

Table 3: Number of SOC analyses extracted from the ASTA database by landuse and year of sampling. 

 

 

• SOC analysis 

SOC content is analyzed on composite soil samples. The sampling unit being the field, one soil sample 

corresponds to a mean representation of soils within the field (with an average surface of 1.85 ha in 

2019). Samples were taken at 0-25cm in cropland, 0-15 cm in grassland and 0-30 cm in vineyard.  

                                                           
4 Despite the use of some samples from early 2020, period T2 is referred as 2016-2019.  

Landuse 2012 2013 2014 2015 2016 2017 2018 2019 2020

Cropland 314 812 777 811 698 706 956 1348 68

Grassland 139 136 474 149 228 318 411 817 37

Vineyard 823 658 754 675 903 708 458 794 0

Total 1276 1606 2005 1635 1829 1732 1825 2959 105
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Sampling is done by farmers as part of Agri-Environment Measures (AEM) of RDP, with an obligation 

of one soil analysis per field every five years. 

Soil samples are dried at < 40°C, first sieved at 2 mm according to ISO 11464, and then gently ground 

mechanically. Total Organic Carbon (TOC = SOC) is measured according to ISO 10694 (TOC = TC-TIC; 

with TC: Total Carbon and TIC: Total Inorganic Carbon). TC is measured by dry combustion, i.e. burning 

the sample at 1200°C in an O2 atmosphere and analyzing the CO2 produced with an infrared detector. 

Inorganic carbon (TIC) is measured by an automatic acidification of the sample with H3PO4 (20%) and 

measuring the CO2 produced with an infrared detector. The analysis of the SOC is under accreditation 

according to ISO 17025. 

Between November 2012 and June 2020, two successive TC analyzers were used: the Multi EA 4000 

analyzer (Analytik Jena AG, Germany) and the Skalar Primacs SNC-100 Carbon / Nitrogen Analyzer 

(Skalar, The Netherlands). Earlier analyses made with the TruSpec CN (LECO Corporation, Michigan, 

USA) until October 2012 were not used in this study as the replicate errors between the TruSpec CN 

and the Multi EA 4000 analyzer were too large (0.3-0.37%C; Stevens et al., 2014).  

Between October 2012 and August 2018, SOC content analysis was performed on the Multi EA 4000 

analyzer. Since September 2018, samples are analyzed using the Skalar Primacs SNC-100. No significant 

bias was detected between 52 SOC measurements on both machines (38 on non-carbonated samples, 

14 on carbonated samples). However, 7 out of 52 samples presented a difference higher than the 

enlarged incertitude u (Table 4; u in relative percentage %): 4 non-carbonated samples (u = 15%) and 

3 carbonated samples (u = 20%). The enlarged analytical uncertainty u is estimated on results obtained 

from measuring samples of inter-laboratory test. A coverage factor k of 2 is used. Based on the 

comparison of the 52 samples, the mean errors (ME) were estimated and conclued that the Skalar 

Primacs SNC-100 (used since September 2018) produced slightly lower SOC content estimates than 

the Multi EA 4000 analyzer:  

 For non-carbonated samples: ME = - 0.05 %C with 50% within [-0.15 , 0.10] %C; 

 For carbonated samples: ME = - 0.06 %C with 50% within [-0.24 , 0.00] %C. 

 

Table 4: Enlarged analytical uncertainties u associated to the devices used for the SOC measures used in this study.  

Enlarged analytical uncertainty u (relative percentage %) 

Analyzer Period of use 
Samples without 

carbonate minerals 

Samples with carbonate 

minerals (e.g. Calcite and 

Dolomite) 

Multi EA 4000 Nov 2012 – Aug 2018 15% 25% 

Skalar Primacs SNC-100 Sep 2018 – June 2020 15% 20% 

 

• Database preparation 

Each field has an identifier (named FLIK) corresponding to a unique agricultural field in the official land 

field information system (LPIS) of the GDL. The LPIS is the spatial register within the Integrated 

Administration and Control System (IACS), which ensures that payments of the EU Common 

Agricultural Policy (CAP) to the farmers are correctly made. Hence, LPIS identifies and quantifies 

agriculture land for targeting CAP payments. Each soil sample is identified by his FLIK. The ASTA soil 

data were merged with the LPIS considering the period 2008-2019. This allowed  retrieving the location 
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of each sample (the position of the samples were defined as the centroid of the fields5) as well as the 

crop grown and what has been effectively cultivated on the related field for each year of the period 

2008-20196. Then, the data were cleaned and filtered to minimize the presence of miscoded 

information or errors that could hamper the detection of trends in SOC data analysis by inducing biases 

or noises. The different steps of cleaning and filtering were:  

1. Keeping the SOC analyses obtained by the devices Analytic Jena EA 4000 and Skalar Primacs 

SNC100 only; 

2. Removing the observations from 2016 coming from soils sampled by the operator ‘LAKU’ (the 

operator sampled at 0-30cm depth instead of 0-25cm in cropland); 

3. Removing the observations for which the FLIK polygons were not available; 

4. Removing the duplicates by FLIK and year, and replacing them by their mean SOC value; 

5. Removing all observations related to fields submitted to a recent land use change (within the 

5 years preceding the sampling) considering RPG data from years of interest;  

6. Removing the duplicates by FLIK and period (T1: 2012-2015 and T2: 2016-2019), and replacing 

them by their mean SOC value; 

7. Removing FLIK not in RPG layers, i.e. miscoded or referred to former FLIK (before 2008); 

8. By landuse and soil association, removing right-skewed data7 (filtering greatest outliers). 

The filtered dataset obtained was called LU-SOC-map. 

3.2.2 Spatial covariates 

The Digital Soil Mapping (DSM) approach used in this study fitted a statistical regression model 

between the soil property to predict (SOC content in %C) and independent environmental covariates 

at the same location. The environmental covariates were chosen considering their known influence on 

topsoil SOC content, i.e. their potential implication in the balance between organic matter (OM) inputs 

into the soil and its decomposition (or mineralization) by micro-organisms. Hence, SOC values can be 

predicted at unsampled locations by applying the fitted model to the spatial continuous layers of 

covariates.  

A set of spatial layers in raster format were then prepared with a resolution of 90 meters and with the 

same grid topology. While some of the soil covariates were initially available at a higher resolution (e.g. 

the digital elevation model has a 5 m pixel resolution), we resampled all rasters to the resolution 

corresponding to the one of the raster with the lowest resolution (90 x 90m) by bilinear interpolation. 

These operations and generally all the manipulations related to spatial data were realized with the 

raster and sp R packages (Hijmans and van Etten, 2012; Bivand et al., 2013).  

A large part of the layers of covariates used here was already present in the mapping procedure of 

Stevens et al. in 2014: all the layers related to the ‘relief’, ‘climate’ and ‘land use’ sections of Table 1. 

Most of the layers representing the ‘soil’ covariates were recently updated/modified or created thanks 

to the recent works of Steffen et al. (2019) (e.g., Figs. 6 and 7). 

                                                           
5 Converting areas (fields) to points using polygon centroids is a great simplification and is not strictly appropriate as it 
assumes that the spatial support is constant in shape and size (Kerry et al., 2012) but this greatly facilitate the spatial 
modeling procedure. 
6 Considering the code culture from RPG layers allowed to detect any land use change during the years preceding each 
sampling, which could induce outliers or a bias in the sub-datasets (the mapping procedure is applied separately to each 
considered land use, i.e. cropland, grassland and vineyard). 
7 All data superior to Q3 + 3*SE (with Q3 = 3rd quartile and Se = standard error). 



 

11 
 

11 Soil organic carbon in the Grand Duchy of Luxembourg 

• Relief 

We used the DEM with a resolution of 5 m from the Base de Données TOPO/CARTO (BD-L-TC) - 

altimetric product of the Administration du Cadastre et de la Topographie – (Fig. 2). We derived from 

the DEM a series of morphometric and hydrologic variables using the SAGA-GIS software (Olaya, 2004): 

slope, topographic position index (TPI; Jenness, 2006), upstream flow length of the RUSLE equation, 

eastness and northness. Eastness and northness represent the degree to which aspect is close to the 

East or to the North and take values in the range [-1 , 1]. Combined, these parameters are more 

convenient to use in spatial geometry than aspect. Hence, following Zar (1999), we converted the 

aspect (in degrees) into two separate continuous variables according to Eq. 1 and 2: 

 

𝑒𝑎𝑠𝑡𝑛𝑒𝑠𝑠 = sin⁡(𝑎𝑠𝑝𝑒𝑐𝑡 ∗
𝜋

180
)       (1) 

 

𝑛𝑜𝑟𝑡ℎ𝑛𝑒𝑠𝑠 = 𝑐𝑜𝑠⁡(𝑎𝑠𝑝𝑒𝑐𝑡 ∗
𝜋

180
)      (2) 

 

• Climate 

Spatial layers representing climatic variations in GDL were created by spatial interpolation of 

temperature and precipitation averages for the period 1971-2000 data from weather stations in GDL 

and neighboring countries. Aggregated meteorological data of Luxembourg weather stations were 

obtained from the Observatory for Climate and Environment, Department of Environmental Research 

and Technology of the Luxembourg Institute of Science and Technology (LIST). This dataset includes 

precipitation records of 25 stations and temperature records for 7 stations. We combined this dataset 

with weather data of Belgium (Koninklijk Meteorologisch Instituut, KMI), France (Meteo France) and 

Germany (Deutscher Wetterdienst, DWD) obtained from Dr Jeroen Meersmans and that he gathered 

for creating precipitation and temperature maps of Belgium (Meersmans et al., 2011). Climatic maps 

of GDL were created by modeling temperature and precipitation with altitude using thin-plate splines 

regression (Stevens et al., 2014). Using altitude as covariate for mapping climatic variables can improve 

predictions dramatically (Boer at al., 2001). The smoothing parameter is chosen automatically by 

generalized cross-validation. Elevation data were derived from the Shuttle Radar Topography Mission 

(SRTM) mission of the NASA (Jarvis et al., 2008). The resulting temperature and precipitation maps are 

given in Figure 1. 

 

• Soil 

Three maps of textural classes (sand 50 µm-2mm, silt 2-50µm, clay < 2 µm; Fig. 6) were created based 

on a historical and recent multi-sources dataset (Steffen et al., 2019). Random Forest algorithms 

(package Rborist) was selected and tuned for the modelling of soil texture. Only the topsoil texture 

map (0-30 cm) was used in this study.   

Maps for pH CaCl2, Mg, K2O (Fig. 7) were computed based on the standard analysis (n=43,000) 

performed for farmers between 2014 and 2018 (Steffen et al., 2019) by co-kriging technics.  

TIC map (Total Inorganic Carbon) was obtained from analysis needed in TOC measurement protocol 

(ISO 10694; see section 3.2.1) on which a co-kriging with pH CaCl2 was applied. The number of sample 

was more limited here because TIC analysis is only performed when TOC analysis is required.   



 

12 
 

12 Soil organic carbon in the Grand Duchy of Luxembourg 

The layer detailing the minimum depth of soil hydromorphy was developed within this project (Fig. 8). 

This parameter corresponds to the minimum depth in soil profile where physical indicators of 

temporary or continuous surface water saturation were observed by soil types (for further details 

concerning the methodology, please see ANNEX 7.1).  

 

Table 5: Description of the environmental covariates used in the SOC mapping procedure.  

  

Covariate Definition
Discrete (D) or 

Continuous (C)
Unit Source

elevation elevation C m

slope slope gradient C °

tpi500
Topographic Position Index 

(Jeness, 2006)
C (-)

flow length Flow length as used in RUSLE C m

eastness
aspect, orientation towards 

east (Zar, 1999)
C (-)

northness
aspect, orientation towards 

north (Zar, 1999)
C (-)

precip Precipitation C mm

temp Temperatures C °C

clay clay content C %

silt silt content C %

sand sand content C %

ph pH CaCl2 C (-)

TIC_90 Total Inorganic carbon C %

Mg_90 Available Magnesium C mg/100g (d.s.)

K2O_90 Available Potassium C mg/100g (d.s.)

Hydromorphy 

min. depth

Minimum depth of  

hydromorphy in the soil 

profile

C cm

Derived from a fusion of two digital soil maps: 

~75% the 1:25000 map and ~25% of the 1:10000 

map (ASTA-Soil Department; Bah et al., 2015)

Landuse Main land use D (-)

Based on a reclassification of the landuse 

vector layer for 2018 provided by the'Ministère 

de l’Environnement, du Climat et du 

Développement durable & Ministère de 

l’Énergie et de l’Aménagement du territoire' 

(https://data.public.lu/)

C factor
Crop factor according to RUSLE 

(ref.) 
D (-)

Based on analysis of crop rotation for 2012-

2015; ERRUISSOL3 project (ASTA-Service de 

pédologie; Bah et Marx, 2016)

UF_mean Livestock intesity D UF / ha 

Livestock intensity of 2018  in fertilizing units 

per ha (UF = unité fertilisante / 80 kg N ha-1) 

aggregated at the farms level provided by the 

'Ministère de l'Agriculture'

Land use

Maps based on standard analysis performed for 

farmers between 2014 and 2018 (ASTA-Soil 

Department; Steffen, 2019)

Annual mean data (1971-2000) from meteo 

stations in GDL (AGE - Division de l'hydrologie - 

service hydrométrie, ASTA - Service 

météorologique, LIST - environmental sensing 

and modeling ) and neighboring countries (KMI - 

Belgium, Meteo France - France, DWD - 

Germany); maps modelled using  elevation 

from NASA SRTM DEM (Stevens et al., 2014)

Relief

Derived from a 5m DEM provided by the 

'Administration du cadastre et de la 

topographie' (https://data.public.lu/)

Climate

Soil

Maps based on a historical multi-sources 

dataset (ASTA-Soil Department; Steffen, 2019)
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Figure 6: Map of A/ clay, B/ silt and C/sand content (%) in topsoil of Grand-Duchy of Luxembourg (source: Steffen et al., 

2019). 

 

 

 

Figure 7: Map of A/ pH CaCl2 (-), B/ available Mg (mg/100g of dry soil) and C/available K2O (mg/100g of dry soil) in topsoil of 

Grand-Duchy of Luxembourg (source: Steffen et al., 2019) based on data for 2014-2018 period. The pH layer (A) covers 

agricultural soils only, i.e. croplands and grasslands. 
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Figure 8: Map of the minimum depth of soil hydromorphy (cm) in Grand-Duchy of Luxembourg. 

 

• Land use & human influence 

The landuse layer used to finalize SOC maps, i.e. for applying the final models to the proper landuse 

areas, was derived from aerial images, LiDAR and ancillary GIS data for year 2018 

(https://download.data.public.lu/resources/landcover-landuse-2018/20200504-135337/lisl-landuse-

2018-documentation.pdf). The 45 ’Sub-type 1 LU classes’ depicted in the Landuse2018 layer provided 

by the Luxembourgish data platform were reclassified into five main land cover types: cropland, 

(permanent) grassland, vineyard, forest and other, as shown in Figure 5. The data is in polygon format 

and was therefore converted to raster with a 90 m resolution. We also incorporated a raster map of 

the C (crop) factor of the Universal Soil Loss Equation, computed from an analysis of the crop rotation 

systems 2013-2015. This dataset comes from the ERRUISSOL3 project aiming at mapping the risks of 

erosion and runoff in GDL and commissioned by ASTA. Finally, we included the livestock density of 

2018 expressed in fertilizing units per ha (UF = unité fertilisante / 85 kg N ha-1) aggregated at the level 

of the farms. 

3.2.3 Spatial SOC modelling 

Attributing the values of the covariates (independent variables) to SOC observations (dependent 

variable) in the LU-SOC-map dataset is required to develop the spatial models with a sampling unit 

corresponding to a field and produce maps. The mean values of the covariates for each field were 

computed and attributed to the corresponding observations in LU-SOC-map through their FLIK number 

(see §3.2.1). Then, a model was fitted for each land use, i.e. a total of three models were fitted. 

The dataset LU-SOC-map was first split according to land use and a Generalized Additive Model (GAM; 

Hastie and Tibshirani, 1986) was fitted on the totality of this subset (2012-2019). This regression 

technique is a generalization of linear regression models in which the coefficients can be a set of 

https://download.data.public.lu/resources/landcover-landuse-2018/20200504-135337/lisl-landuse-2018-documentation.pdf
https://download.data.public.lu/resources/landcover-landuse-2018/20200504-135337/lisl-landuse-2018-documentation.pdf
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smoothing functions, then accounting for the non-linearity that could exist between the dependent 

variable and the covariates Eq. (3): 

𝑔⁡⟦𝜇⁡(𝑌)⟧ = ⁡𝛼⁡ + ⁡𝑓1⁡𝑥1⁡ +⁡𝑓2⁡𝑥2 ⁡+ ⋯⁡⁡+⁡𝑓𝑝⁡𝑥𝑝  (3) 

where Y is the dependent variable, X1,X2,…Xp represent the covariates and the fi's are the smooth 

(non-parametric) functions. As for generalized linear models, the GAM approach specifies a 

distribution for the conditional mean μ(Y) along with a link function g relating the latter to an addictive 

function of the covariates. The LU-SOC-map dataset being continuous and strictly positive, we applied 

a Gamma distribution in the GAM model. The log-link function was chosen for the model fitting 

considering the positively-skewed unimodal characteristic of the SOC content distribution. The GAM 

model was built using regression splines, and the smoothing parameters were estimated by penalized 

Maximum Likelihood to avoid an over-fitting (Wood, 2001). An extra penalty added to each smoothing 

term allowed each of them to be set to zero during the fitting process in case of multi-collinearity or 

concurvity8.  

The aim of the modeling procedure being to spatialize the SOC content all over GDL, the geographical 

coordinates (x, y) were integrated in each model (as a two-dimensional spline on latitude and 

longitude) to account for the spatial dependence and main trends of the target variable at the regional 

scale. Then, a first model with all the covariates was developed followed by a backward selection of 

the terms using their approximate p-values. This was done by sequentially dropping the single term 

with the highest non-significant p-value from the model and re-fitting until all terms are significant as 

indicated in Wood (2001). The level of significance was set at p < 0.05.  

After the model calibration, the landuse subset was split in two periods (T1 and T2). Then, we 

estimated the goodness-of-fit of the model for each period by computing a stratified 10-fold cross-

validation on each landuse-period subset. The stratification of the cross-validation was performed 

considering the soil associations in order to keep a balance on their representation at each fold. Model 

accuracy was evaluated with the Mean Error (ME; Eq. 4): 

𝑀𝐸 =
1

𝑛
∑ (𝑦̂𝑖
𝑛
𝑖=1 −⁡𝑦𝑖)    (4) 

where 𝑦̂𝑖  is the predicted value of observation i in the validation set, 𝑦𝑖  is the observed value and n the 

total number of observations in the validation set. We also computed the Root Mean Square Error 

(RMSE, Eq. 5): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ ((𝑦̂𝑖
𝑛
𝑖=1 −⁡𝑦𝑖)²)    (5) 

After this validation phase, a final model was built with all the samples (i.e. in both the calibration and 

the validation sets) using the covariates selected by the stepwise procedure, in order to improve model 

accuracy and representativity over the GDL territory. The model for each landuse was then applied to 

the stack of spatial layers (covariates) to map topsoil SOC content and associated model uncertainties 

(the mgcv package provides a Bayesian approach to compute standard errors and confidence interval 

for the model predictions). We should note that RMSE computed in Eq. 5 does not give a correct 

                                                           
8 Concurvity defines the non-linear form of collinearity, i.e. the non-linear dependencies among the predictor variables here.  
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measure of the true map accuracy, which should preferably be assessed using a set of samples taken 

from randomly selected locations (Loveland and Webb, 2003). 

3.2.4 Comparing SOC at two periods 

 Observed data 

For each landuse /soil association class, the significance of difference between the distribution of SOCT1 

and SOCT2 was tested with a non-parametric Wilcoxson test. The tests were applied on subsets of 

LU-SOC-map (non-paired tests) and on paired observed data (paired tests).  

NB: Here, the difference of statistical distribution between two datasets was tested. The analytical 

uncertainties were not considered (see 3.2.1).' 

Indeed, each site (i.e., FLIK) with one observation for both periods (one pair of observations) was 

identified. The difference in SOC content dSOC (%C; Eq. 6) between periods and associated statistics 

were computed:  

𝑑𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑇2 −⁡𝑆𝑂𝐶𝑇1      (6) 

 Predicted data 

Two SOC maps were produced by applying the methodology proposed in section 3.2.3: the first map 

SOCT1 for the period 2012-2015, and the second map SOCT2 for the period 2016-2019 (both in %C). The 

relative differences (%) between the two predictions were computed (Eq. 7). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒⁡𝑑𝑆𝑂𝐶 =
𝑑𝑆𝑂𝐶

𝑆𝑂𝐶𝑇1
∗ 100      (7) 

A visual analysis was made on the spatial distribution of the relative differences obtained9, and basic 

statistics on absolute differences were computed for each landuse.  

N.B.: As explained in section 3.2.1, the enlarged SOC estimation of analytical uncertainties (in relative 

percentage) are 15% for non-carbonated samples and 20% for carbonated samples. 

3.3 RESULTS 

3.3.1 Implications of the SOC data filtering 

After the cleaning and the filtering of the extracted raw data, the LU-SOC-map dataset contained 

11,819 observations, including 4820 for the period T1 (2012-2015) and 6999 for the period T2 (2016-

2019). As we did not keep the SOC data analyzed by the LECO device, the effective total period covered 

was from October 2012 to June 2020, which can explain why the number of observations is smaller for 

T1. Not considering the observations obtained with the Tru Spec CN analyzer induced a loss of 1101 

observations (Table 6). Replacing the duplicates, by year first and then by period, by their mean values 

diminished the dataset by 1750 observations. 

 

 

                                                           
9 Due to the complex distribution of the different landuses in GDL and the autocorrelation of the variable Corg, no valid 
statistical test could have been applied to test the difference significance between the two rasters Corg T2 and Corg T1. 



 

17 
 

17 Soil organic carbon in the Grand Duchy of Luxembourg 

Table 6: Filtering steps on the LU-SOC-map database preparation and associated numbers of observations. 

 

3.3.2 SOC by period - descriptive statistics and differences test 

The landuse has a major role on the topsoil SOC (Figs 9 and 10). Croplands and vineyards showed close 

SOC, while grassland showed SOC almost two times higher. A small proportion of observations showed 

SOC content < [1.1 , 1.2%C] (~2% de MO), i.e. soils depleted in SOC with a poor potential for 

aggregation (van Camp et al., 2004). These observations corresponded mainly to sandy soil under 

cropland formed on the Grès du Luxembourg (haplic Luvisol (arenic), Arenosol; Fig. 10). Although both 

histograms for cropland showed a unimodal distribution dominated by observations from Gutland 

(mode around 1.2 - 1.5 %C; Fig. 9), the subdatasets for Oesling are visible around 2.5 – 3.0 %C (soil 

association 1 in Fig. 10). The comparison of those two histograms show that Oesling is proportionally 

more represented in T2 than in T1 subset. This is mainly due to a recent specific agricultural advisory 

service (LAKU) in the drinking water protection area around Esch-sur-Sûre. 

The coverage of croplands in GDL was more homogeneous for T2 than for T1 (Figs. 11 and 12), 

especially in the natural region of Oesling. While grasslands were represented by almost twice as much 

observations for period T2 than for T1 (Fig. 10), the coverage of GDL appeared more homogeneous for 

T1. Some areas of grasslands within the eastern and southern parts of the natural region Gutland were 

covered by few or no samples for the period T2, and grasslands from northwest (west of Wiltz canton 

and north of Redange canton located in Oesling) showed a higher density of observations in T2. 

 

Figure 9: Histograms of topsoil SOC (%C) at T1 (2012-2015) and T2 (2016-2019) for croplands, grasslands and vineyards in 
Grand-Duchy of Luxembourg. 

Filtering step Total Obs. Obs. eliminated

None 14972 -

- Tru Spec CN analyzer 13871 1101

- LAKU 2016 cropland 13772 99

- FLIK NA 13390 382

- Duplicates by year 12676 714

- LU of no interest 12658 18

- Duplicates by period 12216 1047

- FLIK not in RPG 12016 200

- Soil association NA 11921 95

- outliers 11819 102
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Figure 10: Box-plots of topsoil SOC (%C) in croplands, grasslands and vineyards per regrouped soil associations at periods T1 

(2012-2015) and T2 (2016-2019) in Grand-Duchy of Luxembourg. (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du 

Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et 

moyen, 8 = Argiles lourdes du Keuper, 9 = Argiles lourdes des schistes bitumineux, 10 = Others) 
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Figure 11: Observed SOC values (%C) of topsoil under cropland, grassland and vineyard for period T1 (2012-2015). 

 

 

Figure 12: Observed SOC values (%C) of topsoil under cropland, grassland and vineyard for period T2 (2016-2019). 
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We propose to classify SOC observations based on soil associations (which also reflect climatic 

conditions) and use the median and quartiles (Q1 and Q3) of the SOC distributions (Tables 7 - 9) to 

define indicative SOC range in each soil association-landuse class. In each category, any value within 

the boundaries defined by the quartiles (i.e., [Q1 , Q3]) can be qualified as normal or standard values 

prevailing under environmental conditions related to the period considered. Values outside [Q1 , Q3] 

indicate soils either depleted or enriched in SOC in relation to the majority of observations in the same 

soil association.  

N.B.1: In each land use-period class, statistics describing each subset (T1 and T2) without regard of the 

soil association (i.e., ‘ALL’ in Table 7 – 9) can NOT be compared directly as the soil associations are 

represented by very different proportions of samples in T1 and T2. 

N.B.2: In this section 3.3.2, the differences of statistical distribution between different datasets were 

tested (Tables 7 to 10). The analytical uncertainties were not considered (see 3.2.1). 

• Cropland 

Table 7 compiles the descriptive statistics about SOC content in topsoil under cropland during the 

periods T1 and T2 showing large variations amongst the different soil associations. Large variations 

were also apparent when samples are grouped according to the four texture classes defined by ASTA 

soil laboratory (Figure 3B), giving the following sequence in terms of SOC content: L (leicht = light 

texture) < M (mittel = medium texture) < S (schwer = heavy texture) < MO (mittel Oesling = medium 

texture of the Oesling region, stony soils) (see ANNEX 7.2). With more details, the subset representing 

the period T1 had a median of 1.6%C with a range between quartiles of [1.2 , 2.5]%C. The Oesling 

region (1) reached a median of 3.0%C while in Gutland the median values ranged from 1.10%C (“Grès 

du Luxembourg” -5) to 2.3%C (“Argiles lourdes des schistes bitumineux” - 9). The subset representing 

the period T2 had a median of 2.1%C and a range between quartiles of [1.5 , 2.9]%C. As observed 

above, the subset T2 contains a greater proportion of samples from Oesling than the subset T1. And, 

as for T1, the soils under cropland in Oesling during T2 contain more SOC than the other soil 

associations with a median values of 2.9%C. However, SOC contents in “Oesling” slightly decreased 

from T1 to T2 (mean decrease of -0.09%C; p<0.05). Four soil associations showed significant increase 

of their SOC content: “Buntsandstein” (+0.12%C; p<0.05), “Grès du Luxembourg” (+0.07%C ; p<0.05), 

“Dépôts limoneux sur Grès” (+0.14%C; p<0.01) and “Argiles lourdes des schistes bitumineux” 

(+0.09%C ; p<0.05). Finally, five out of the ten soil associations showed no significant evolution in SOC 

contents.  

These SOC observations in croplands are similar to values published in Belgium for similar 

environmental conditions for the period 2004-2014 (SPW - DGO3 - DEMNA - DEE, 2017). In the Belgian 

Ardennes, corresponding to the Oesling region, the mean is 3.15%C (Q1 = 2.90%C, Q3 = 3.38%C) and 

in the Belgian Jurassic region, corresponding roughly to the Gutland, the mean is 1.78%C (Q1 = 1.30%C, 

Q3 = 2.09%C). 
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Table 7: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in croplands at T1 (2012-2015) and T2 (2016-2019), 

and significance of the difference between these two periods (non-paired Mann-Whitney test). (1 = Oesling, 2 = 

Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur 

Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourdes du Keuper, 9 = Argiles lourdes des schistes bitumineux, 10 = 

Others) 

 

 Grassland 

Table 8 compiles the descriptive statistics about SOC content in topsoil under grassland during the 

period T1 and T2. For both periods, the SOC content in grassland of Oesling and Gutland are similar 

with median values of 3.4%C. There are however large variations between soil associations in Gutland. 

Median SOC values reach ca. 4.00%C for clay-rich soils (“Argiles du Lias Inf. et Moyen”,”Argiles lourdes 

du Keuper” and “Argiles lourdes des schistes bitumineux”), while loamy and sandy soils of 

(“Buntsandstein“, “Dolomies du Muschelkalk“, “Calcaires du Bajocien“, “Grès de Luxembourg“, 

“Dépôts limoneux sur Grès“) have median SOC generally less than 3.0%C. As illustrated in Figure 8, the 

differences between Quartiles for grassland appeared larger than in cropland soils indicating larger 

variation of SOC in grassland than cropland. Only the soil association “others”, regrouping mainly the 

”Alluvions et Colluvions”, showed significant differences in SOC content between T1 and T2 (mean of 

+0.26%C; p<0.05). 

 

Table 8: Descriptive statistics of topsoil SOC (%C for the 0-15cm depth) in grasslands at T1 (2012-2015) and T2 (2016-2018), 

and significance of the difference between these two periods (non-paired Mann-Whitney test). (1 = Oesling, 2 = 

Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur 

Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourds du Keuper, 9 = Argiles lourds des schistes bitumineux, 10 = Others) 

 

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 2225 0.40 1.20 1.60 1.94 2.50 6.40 3142 0.40 1.50 2.10 2.27 2.90 6.10

1 548 1.20 2.50 3.00 3.11 3.60 6.40 1345 1.40 2.50 2.90 3.02 3.40 6.10 -0.09 < 0.05

2 144 0.70 1.30 1.60 1.62 1.83 3.10 198 0.90 1.40 1.60 1.74 2.00 3.40 0.12 < 0.05

3 66 0.80 1.50 1.87 2.26 3.18 4.80 149 0.70 1.60 1.90 2.16 2.40 5.70 -0.09 NS

4 21 0.80 1.43 1.65 2.09 2.80 4.20 4 1.45 1.49 2.38 2.78 3.66 4.90 0.68 NS

5 453 0.60 0.90 1.10 1.12 1.30 2.00 287 0.65 1.00 1.10 1.19 1.40 2.10 0.07 < 0.05

6 317 0.70 1.10 1.30 1.38 1.60 3.10 337 0.60 1.20 1.50 1.52 1.70 3.00 0.14 < 0.01

7 366 0.90 1.51 1.80 1.86 2.10 3.90 389 0.40 1.50 1.70 1.84 2.10 3.90 -0.02 NS

8 145 0.50 1.30 1.50 1.69 2.00 3.90 183 0.70 1.40 1.70 1.78 2.10 3.80 0.09 < 0.05

9 37 0.80 1.60 2.30 2.39 2.80 5.00 62 1.00 1.80 2.24 2.26 2.68 5.20 -0.13 NS

10 128 0.40 1.28 1.60 1.80 2.13 4.60 188 0.50 1.30 1.70 1.85 2.30 4.90 0.05 NS

T1: 2012-2015 T2: 2016-2019 Difference

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 679 0.80 2.70 3.40 3.62 4.35 10.10 1452 0.70 2.80 3.40 3.55 4.30 8.30

1 207 1.80 3.10 3.60 3.82 4.30 7.40 516 0.90 3.08 3.50 3.65 4.20 7.30 -0.17 NS

2 17 1.60 2.00 2.20 2.80 3.10 5.50 68 1.20 2.00 2.50 2.56 2.90 5.30 -0.24 NS

3 17 1.70 2.20 3.10 3.14 3.90 5.80 67 1.40 2.90 3.60 3.60 4.30 6.30 0.45 NS

4 4 1.60 2.13 2.50 2.45 2.83 3.20 7 1.80 2.10 2.90 2.84 3.40 4.20 0.39 NS

5 24 1.00 1.58 1.70 2.15 2.70 5.50 45 0.70 1.40 2.00 2.18 2.80 4.30 0.03 NS

6 69 1.20 2.20 2.80 2.99 3.60 7.40 146 1.00 2.13 2.85 3.04 3.70 7.20 0.05 NS

7 99 1.20 2.70 3.70 3.87 4.75 7.80 126 1.20 2.90 3.50 3.64 4.40 6.60 -0.23 NS

8 79 1.80 3.15 3.90 3.96 4.70 7.80 233 1.20 3.00 3.90 3.93 4.80 7.90 -0.03 NS

9 29 2.40 3.90 4.40 4.83 5.80 10.10 56 1.30 3.25 4.10 4.15 5.10 8.00 -0.68 < 0.10

10 134 0.80 2.40 3.20 3.43 4.00 8.50 188 0.70 2.80 3.40 3.69 4.30 8.30 0.26 < 0.05

T1: 2012-2015 T2: 2016-2019 Difference
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 Vineyard 

Table 9 compiles the descriptive statistics about SOC content in topsoil under vineyard during period 

T1 and T2. Vineyards soils are predominantly located on ‘Dolomies du Muschelkalk’, ‘Argiles Lourdes 

du Keuper’ and ‘Others’, and to a lesser extent on ‘Buntsandstein’. The location of dozens of TOC 

observations on other geological formations than these four latter could be an artefact induced by 

the map of soil associations (Fig. 3A). Soils under vineyard have about the same median content and 

interquartiles differences as cropland soils of GDL (Tab. 7; Fig. 10). In vineyard soils, soil associations 

showed a median SOC content oscillating around 1.60-1.80%C for T1, and 1.50-1.70%C for T2, 

indicating low interclass variation. From T1 to T2, two soil associations showed significant evolution of 

their SOC contents: “Dolomies du Muschelkalk” and “Argiles lourdes du Keuper” with respective mean 

decreases of -0.38%C and -0.16%C (both at p<0.01). 

 

Table 9: Descriptive statistics of topsoil SOC (%C for the 0-30cm depth) in vineyards at T1 (2012-2015) and T2 (2016-2018), 

and significance of the difference between these two periods (non-paired Mann-Whitney test). (1 = Oesling, 2 = 

Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur 

Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourds du Keuper, 9 = Argiles lourds des schistes bitumineux, 10 = Others) 

 

 Comparison of paired observed data 

Within the LU-SOC-map dataset (n = 11,819), we identified 560 sites with paired observations (i.e., 

FLIKs with 1 observation for each period) for croplands, 149 for grasslands and 1027 for vineyards. 

Figure 13 presents the spatial location of these sites by landuse. Those in croplands are rather evenly 

spread over the GDL territory. Those in grasslands are concentrated in the Oesling and in the western 

part of Gutland. Finally, the sites in vineyards well cover the valley of Mosel where this landuse is 

concentrated.  

Considering the sites classed by land use and soil association, it was difficult to produce proper 

statistics and test the difference (Fig. 14). Indeed, 3 out of 10 soil associations showed less than 30 

pairs of observations for croplands, 8 out of 10 for grasslands and, 5 out of 8 for vineyards. No test or 

statistics computed on these groups (n < 30) should be considered robust (Tab. 10; results in gray italic 

correspond to groups under 30 sites). 

 

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 1916 0.40 1.20 1.65 1.83 2.21 5.50 2405 0.10 1.10 1.55 1.63 2.10 5.00

2 27 0.60 1.20 1.70 1.85 2.50 4.10 53 0.70 1.40 1.70 1.78 2.10 3.40 -0.06 NS

3 682 0.40 1.20 1.80 2.05 2.60 5.50 995 0.10 1.10 1.60 1.66 2.10 5.00 -0.38 < 0.01

4 22 0.40 1.10 1.38 1.46 1.76 2.80 22 0.50 1.03 1.40 1.39 1.78 2.20 -0.07 NS

5 31 0.40 1.10 1.30 1.45 1.60 3.60 29 0.70 1.10 1.30 1.52 2.00 3.10 0.07 NS

6 13 0.50 1.50 1.60 1.49 1.70 2.00 13 1.10 1.40 1.70 1.68 1.90 2.60 0.19 NS

7 41 0.70 1.20 1.60 1.65 2.10 3.00 39 0.80 1.10 1.60 1.75 2.30 3.30 0.1 NS

8 720 0.40 1.20 1.60 1.73 2.20 4.90 805 0.10 1.00 1.50 1.57 2.00 4.70 -0.16 < 0.01

10 380 0.40 1.20 1.60 1.72 2.10 4.60 449 0.40 1.10 1.58 1.66 2.10 4.00 -0.06 NS

T1: 2012-2015 T2: 2016-2019 Difference
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Figure 13: Location and differences in SOC content (dSOC in %C) between T1 (2012-2015) and T2 (2016-2019) computed on 
paired observations (same FLIKs) in Grand-Duchy of Luxembourg. 

 

Tests on paired observations confirmed that a significant increase in SOC content occurred in croplands 

for soils of “Grès de Luxembourg” (mean of +0.07%C; p<0.05) between T1 and T2. While a non-

significant decrease in SOC (-0.02%C; Tab. 7) was observed for soils on “Argiles du Lias inférieur et 

moyen” when considering all the data, a significant decrease of -0.16%C (p<0.05) was detected here 

considering 92 paired observations. 

None of the soil associations with more than 30 sites in grasslands showed significant differences in 

SOC between T1 and T2. However, we noticed that a significant mean increase of +0.46%C (p<0.05) 

was detected for the 18 paired observations in soil association “others” (alluvium and colluvium).  

Finally, significant decreases were confirmed for soils in vineyards developed on “Dolomies du 

Muschelkalk” (-0.39; p<0.01) and “Argiles lourdes du Keuper” (-0.20; p<0.01).  
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Figure 14: Box-plots of differences in SOC content (dSOC in %C) between T1 (2012-2015) and T2 (2016-2019) computed on 
paired observations (same FLIKs) in Grand-Duchy of Luxembourg. 

 

Table 10: Results of the paired Wilcoxson test computed on paired observations by landuse and soil association, comparing 
SOC evolution from T1 to T2. (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = 

Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourdes du Keuper, 9 = 
Argiles lourdes des schistes bitumineux, 10 = Others) 
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3.3.3 SOC relations to spatial covariates 

The covariates that potentially contribute to the modeling procedure are presented here. We paid 

more attention to the form and dispersion of the plots than the Pearson correlation coefficient, as 

the latter considers only linear relations while the GAM are designed to handle non-linear relations. 

The main drivers of SOC spatial distribution in GDL, other than the landuse, are coordinates (x, y), soil 

type (texture), climatic condition and elevation. In addition, we observed conspicuous relations 

between topsoil SOC and new ‘soil’ covariates implemented in this project (section 3.2.2; Tab. 5). The 

latter are both influenced by natural processes and agricultural activities.  

• Cropland 

We observed in §3.3.2 a clear dichotomy in SOC level between the Oesling and Gutland (Figs 11 and 

12). The Oesling showed higher SOC level than the Gutland describing a negative trend from NW to SE 

in GDL (see the shapes and the strengths of the relations between SOC and the geographic coordinates 

in Figure 15A). As observed in many other studies, soil texture, especially clay content, has an 

important role in SOC spatial distribution in croplands (Fig. 16). This is especially true for the Gutland 

region. Indeed the Oesling has soils showing a smaller textural variability (clay content mainly between 

~ 15 to 25%) than soils of Gutland (clay content mainly between 5 and 45%). Consequently, the relation 

between clay and SOC is of ρ=0.57 in Gutland and ρ=0.15 in Oesling. Clay fraction has an important 

role on SOC through chemical stabilization (Six et al., 2002) and higher soil moisture content (due to 

poor drainage status) leading to lower SOC mineralization rates (Skopp et al., 1990; Davidson and 

Janssens, 2006). Also, fine-textured soils with their greater nutrient and water-holding capacity favor 

plant production and thereby the amount of fresh OM returning to the soil.  

The relation of SOC with elevation was strong (ρ=0.57). The same is true for precipitation (ρ=0.53) and 

temperature (ρ=-0.54; Fig. 15B). The two natural regions present very different geomorphologies, 

especially their ranges of altitude (Fig. 1) associated to different climatic contexts. The high plateaus 

of Oesling experience rainier and colder conditions than the lower cuestas of Gutland. Higher SOC 

content in areas with higher precipitation and lower temperature is often observed due the effects of 

precipitation on Net Primary Productivity, lower level of oxygen concentration in wetter soils 

(anaerobic conditions), and decreased microbial activity or decomposition of organic matter in colder 

climate (Kirschbaum, 1995; Post et al., 1982; Trumbore et al., 1998). However, soils of Oesling present 

a good infiltration capacity due to their texture, stoniness and SOC content. SOC content and slope 

showed a weak positive relation here (ρ=0.18) due to a regional effect as Oesling present higher slope 

gradients and SOC contents than Gutland. 

A clear relation was observed between SOC and the C-factor (ρ=-0.35). The values of C-factor ranges 

between 0 and 1, increasing when crop cover decreases (i.e. 1 is for bare soils). The crop cover 

influences the rate of OM incorporation into the soils through plant residues and OM decomposition 

through variations in runoff and erosion rates. Livestock intensity showed no significant relation with 

SOC in croplands (ρ=0.05) maybe due to the data aggregation at the farm level (not the field), and/or 

that the regional natural variations (induced by climate, elevation and texture) could hide the local 

effect of farming practices.  

Amongst the environmental covariates included in the procedure here, we observed clear relations of 

SOC content with available Mg (ρ=0.22) and K2O (ρ=0. 27). The available Mg is linked to the presence 

of dolomite or dolomitic marls in the soils, coming mainly from geology but also from amendments. 
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The available K2O is linked to the amount of some minerals in the soils; e.g., mica, feldspath and illite 

(Steffen et al., 2019). K2O also depends on the (historical and actual) type and amount of fertilizer and 

organic amendments applied. This is less the case for Mg. Mg and K2O are both important elements 

needed for plant growth and development: the first as primary macronutrient and the second as 

secondary macronutrient (Parikh and James, 2012). Minimum depth of hydromorphy between 0 and 

80cm showed a clear negative relation with SOC. Indeed, SOC content increased while drainage 

deteriorated, i.e. while hydromorphy features appeared closer to the surface. The decomposition of 

Organic Matter is slower under anaerobic conditions (Gale and Gilmour, 1988). 

• Grassland 

No clear regional trend was observed for topsoil SOC in grassland of GDL (Figs. 11 and 12). 

Consequently, coordinates and climatic covariates showed no clear relation with SOC (Fig. 17A). 

Amongst covariates linked to management, the plots showed a positive relation with available Mg and 

K2O, although these appear weak when considering linear relations (ρ=0.20 for both; Fig. 17B). Clay 

and sand contents have a strong influence on SOC level in grasslands of Gutland (ρ = 0.55 and ρ = -0.50, 

respectively; Fig. 16). Similar to the croplands, minimum depth of hydromorphy < 80cm depth showed 

a clear negative relation with SOC. 

• Vineyard 

Vineyards in GDL are concentrated in the Mosel river valley characterized by rather homogeneous 

environmental conditions, which can explain the poor correlations between SOC and environmental 

covariates (Fig. 18). Moreover, vineyards are located where land consolidation and terracing have 

occurred in the past. However, as for grassland and cropland, we observed a positive but weak relation 

with available Mg, (ρ = 0.20). 



 

27 
 

27 Soil organic carbon in the Grand Duchy of Luxembourg 

 

 

Figure 15: Scatter plots of topsoil SOC (%C) in croplands as function of A/ geographical coordinates (x and y in m) and relief 

parameters and, B/ climate, soil and landuse parameters.  
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Figure 16: Scatter plots of topsoil SOC (%C) by land use and natural region as function of A/ clay content (%), B/ silt content 

(%) and C/ sand content (%). 
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Figure 17: Scatter plots of topsoil SOC (%C) in grasslands as function of A/ geographical coordinates (x and y in m) and relief 

parameters and, B/ climate, soil and landuse parameters.  
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Figure 18: Scatter plots of topsoil SOC (%C) in vineyards as function of A/ geographical coordinates (x and y in m) and relief 

parameters and, B/ climate, soil and landuse parameters. (Minimum level of soil hydromorphy was homogeneous all over 

the vineyard dataset) 
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The semivariograms of the SOC observations show very different spatial structures between the 

different landuses (Figure 19). Cropland soils have a small nugget-to-sill ratio, indicating a high degree 

of spatial dependence, and the large range indicates that SOC in croplands is mostly determined by 

long-range factors (e.g. climate variables). The semivariogram for croplands is also possibly 

unbounded, which can be related to the presence of a trend in the data (probably due to the 

differences between the Oesling and Gutland regions). In grasslands, SOC content has also a low 

nugget-to-sill ratio but with a much smaller range (ca. 2 km). The spatial dependence of SOC in 

grasslands occurs at a much lower distance than croplands and can be due to the above-mentioned 

role of the clay content (which can vary on short distances). Vineyard soils show very little spatial 

structure suggesting that SOC almost varies randomly in space. Spatial variation of SOC in vineyards 

should be very diffcult to model. 

 

 

Figure 19: Semi-variograms of SOC under cropland, grassland and vineyard in Grand-Duchy of Luxembourg. 
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3.3.4 Model results and performance 

The exploratory analysis showed some clear relations between topsoil SOC content and different 

natural and anthropogenic covariates, especially for croplands. For each landuse, a GAM model was 

calibrated on the whole subset containing T1 and T2 observations, and then the performance of the 

model was tested separately on each landuse-period subset. Before fitting, a pre-selection of 

covariates considering their relations, especially collinearity (concurvity is managed in the GAM 

procedure; section 3.2.3) was done. The performance of the final models supported the observations 

during the exploratory analysis about the relations between SOC and the different covariates in the 

different landuse classes. Figure 20 presents the point plots between observed and predicted data 

produced during the stratified 10-fold cross-validation for each landuse and period. Hence, ranked by 

descending order, the final models performed best for croplands, then grasslands and finally vineyards. 

According to the maps elaborated from the models fitted on T1 and T2, the national mean (and 

standard deviation) is of 2.25(0.74)%C for cropland, 3.57(0.76)%C for grassland and 1.74(0.31)%C for 

vineyards. 

• Cropland 

To model the spatial variation of topsoil SOC in cropland, the backward stepwise procedure selected, 

in addition to the geographical coordinate couple (x,y - supporting the main regional trends), the clay 

content, the C-factor, the Mg content, the K2O content, the minimum depth of hydromorphy, the slope 

and the elevation, (here in decreasing order of importance; Fig. 21). The model explains 74% of the 

variance in the SOC content. Considering T1 and T2 separately, the model achieved a deviance 

explained of 77% and 73%, respectively. The remaining non-explained deviance could be related to 

factors not included in this study, especially management factors as crop rotation or good agricultural 

practices application. The predicted-observed point plots in Figures 20 showed that the model fitted 

well for both periods with R² of 0.70 and 0.66, RMSE of 0.52 %C for T1 and 0.55%C for T2. Although 

the predictions seemed unbiased, the observations with SOC > 4%C were underestimated for both 

period, even if croplands with such high SOC content are scarce. 

• Grassland 

The final GAM model fitted for grasslands explained 40% of the variance in the whole subset (T1+T2). 

The backward stepwise procedure selected, in addition to the geographical coordinate couple (x,y): 

the clay content, the Mg content, the minimum depth of hydromophy, the K2O content , the elevation 

and the pH (by decreasing order of importance). The model showed poor results in validation 

procedure for both period with R² of 0.29 and 0.31, RMSE of 1.08 %C for T1 and 0.97 %C for T2 (Fig. 20). 

The results for T1 appeared a bit poorer than for T2 certainly due to the smaller number of 

observations (n=679 for T1, n=1452 for T2). The model tended to overestimate observations < 4 %C 

whereas, as for cropland, observations with SOC > 4%C were underestimated. The difference in RMSE 

between the T1 and T2 models can also be explained by the fact that the subset T1 contained much 

more observations > 6 %C than T2 creating a more pronounced bias induced by the underestimation 

of high SOC contents (i.e., > 4 %C) in this model.  

Three possible explanations for the poor model fit in grassland are:  

- i/ soils samples from grasslands contain more or less vegetal debris like roots that 

influence greatly the OC analysis inducing higher variability in SOC measurements than in 

cropland or vineyard soils; 
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- ii/ a non-negligible part of present grassland fields were converted from cropland after 

Second World War till the 1980s. Hence, soils of numerous grassland fields have probably 

not yet reached their SOC equilibrium phase, i.e. they did not yet reach their maximum 

SOC storing capacity; 

- iii/ the vertical SOC gradient in the topsoil is much stronger in grasslands and a slight 

variation in sampling depth can have an effect in SOC content. 

  

Figure 20: Observed vs predicted SOC (%C) as obtained by the models fitted for cropland, grassland, and vineyard soils at 

T1 (2012-2015) and T2 (2016-2019). 
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Figure 21:  Implication of covariates, complementary to the coordinates (x,y), in the GAM fitted on topsoil SOC (%C for the 0-

25cm depth) in croplands of Grand-Duchy of Luxembourg according. dAIC represents the difference of AIC to the final model 

(Akaike Information Critrerion; Akaike, 1974). Only the covariates showing a p-value < 0.05 in the final GAM model were 

kept in this Figure. 

 

• Vineyard 

The deviance explained by the model fitted for vineyards was very poor (14% on the whole subset). 

This poor fit was expected since the exploratory analysis demonstrated that the covariates were very 

poorly correlated with SOC observations. In the past, 84 % of the vineyards have been reallocated and 

undergone terracing. This emphasizes that vineyard soils have been disturbed so that topsoil SOC 

content and environmental covariates are not spatially linked anymore. Large variation of SOC on very 

small distance can be related to land reallocation and terracing operations that are very common in 

vineyards.  

N.B.: In addition to GAM, ordinary kriging and regression kriging were tested as mapping technics for 

SOC in vineyards. Unfortunately, the results did not improve compared to the GAM procedure. 

 

3.3.5 SOC maps - description and comparison 

The models developed were applied to the layers of the selected covariates (90m x 90m resolution) to 

produce two maps of topsoil SOC contents under cropland, grassland and vineyard (one for each 

period T1 and T2). These maps are presented in Fig. 22 and 23 along with their respective map of 

standard error of prediction. Additional maps produced for croplands and grasslands separately are 

available in ANNEX 7.3. 

Both SOC maps show the same general trends. Oesling and Gutland have very distinctive patterns. 

Oesling shows a smaller range of topsoil SOC content and a more homogeneous spatial variability than 

Gutland. The patterns in Oesling are mostly determined by the spatial location of the land uses of 

interest: croplands are mainly located on the plateaus (summits and shoulders of hillslopes) whereas 

grasslands are located on the shoulders and hillslopes. In addition, Oesling is mainly represented by 
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only one soil association and textural soil type (OM) with relative homogenous clay content and the 

climatic conditions are quite homogeneous within this natural region. Topsoil SOC patterns in Gutland 

are mainly controlled by the clay content (the three textural soil types L, M and S can be clearly 

distinguished here; Fig. 3 and 5) and by land use repartition. The error of prediction map for T1 shows 

no clear regional trend (Fig. 22 – right part). The prediction errors are higher in areas with scarce 

observations for both SOC maps. Consequently, wider areas with higher prediction errors can be 

observed in southern and eastern parts of GDL for SOCT2 map (Fig. 23 – right part). 

 

 

 

Figure 22:  Maps of predicted SOC content (%C; on the left) and standard error of prediction (%C; on the right) for topsoil of 

Grand-Duchy of Luxembourg under Croplands, Grasslands and Vineyards for period T1 (2012-2015).  
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Figure 23:  Maps of predicted SOC content (%C; on the left) and standard error of prediction (%C; on the right) for topsoil of 

Grand-Duchy of Luxembourg under Croplands, Grasslands and Vineyards for period T2 (2016-2019).  

 

Figure 24 presents the significance of predicted SOC differences between T1 (2012-2015) and T2 (2016-

2019) for cropland (left part) and grassland (right part). The p-values were estimated based on a 

comparison between predicted dSOC (i.e., SOCT2
 – SOCT1) and the standard errors (SE) of prediction for 

both SOCT1 and SOCT2 (depicted in right parts of Figures 22 and 23, respectively). For cropland and 

grassland, we estimated that ca. 40% of their respective areas had Non-Significant (NS) evolution of 

their topsoil SOC content. The predicted gain of SOC was estimated significant for ~25% of the cropland 

areas and for ~30% of the grassland areas (of which ~13% were significant at p < 0.05 for each landuse). 

Regarding the predicted loss of SOC, it was estimated significant for ~35% of the cropland areas and 

~30% of the grassland areas (of which ~17% were significant at p < 0.05 for each landuse). However, it 

is important to note that, considering the weak goodness-of-fit of the models for grasslands, the 

estimations for grassland are less reliable than those for croplands. 

The cropland areas subject to a significant predicted loss of SOC (Fig. 24 – left part) are mainly located 

in: 

 The west and north-east parts of Oesling (Fig. 3A) where we observed a significant mean 

decrease of -0.99%C (p<0.05; Tab. 7); 
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 the easternmost part of Gutland which corresponds to the northern area of “Dolomies du 

Muschelkalk” soil association where we observed a mean decrease of -0.09%C (NS; Tab. 7);  

 southernmost parts of Gutland corresponding mostly to the “Argiles du Lias inf. et moyen” and 

the “Argiles Lourdes des Schistes bitumineux” where we observed a decrease of -0.02%C and 

-0.13%C, respectively (NS; Tab.7).  

The cropland areas subject to a significant predicted gain of SOC (Fig. 24 – left part) are located in: 

- the southernmost part of “Oesling” (although the trend is negative at the entire region scale; 

Tab. 7); 

- the northernmost part of Gutland, i.e in the “Buntsandstein” which showed a mean SOC 

increase of +0.12%C (p<0.05; Tab. 7); 

- the center and eastern parts of Gutland, i.e. in the “Grès du Luxembourg”, the “Dépôts 

limoneux sur Grès” and the “Argiles lourdes du Keuper” which had a respective mean SOC 

increase of +0.07%C, +0.14%C and +0.09%C (p<0.05; Tab. 7). 

 

The grassland areas subject to a significant predicted loss of SOC (Fig. 24 –right part) are mainly 

concentrated in Gutland: 

 in its northwestern most part which corresponds to the “Buntsandstein” soil association (fig. 

3A) where we observed a mean non-significant decrease of -0.24%C (Tab. 8); 

 in its southwestern part, mainly on soil associations “Argiles du Lias inf. et moyen” and “Argiles 

Lourdes des Schistes bitumineux” where we observed  respective mean decrease of -0.23%C 

and – 0.68%C (NS; Tab. 8). 

The grassland areas subject to a significant gain of SOC are also mostly concentrated in Gutland (Fig. 

24 – right part):  

 in most of the “Alluvions et Colluvions” located in valley bottoms where we observed a 

significant increase of 0.26%C (p<0.05; Tab. 8) and; 

 locally on soils developed on “Grès du Luxembourg” and “Dépôts limoneux sur Grès” where 

we observed respective non-significant increase of +0.03%C and +0.05%C, (Tab. 8). 

Grassland of Oesling tend to gain SOC in the northern part of this natural region, whereas they tend to 

loss SOC in the southern part. Overall, the mean absolute differences between predicted SOC at T1 

and T2 are of -0.05%C for croplands and -0.02%C for grasslands (Fig. 25). 
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Figure 24:  Significance of predicted SOC differences (p-value) between T1 (2012-2015) and T2 (2016-2019) for soils under 

croplands (left) and grasslands (right).  

 

 

Figure 25:  Histograms of the predicted difference in SOC (%C) between T1 (2012-2015) and T2 (2016-2019) for soils under 

cropland (top) and grasslands (bottom).   
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Considering the expertise of ASTA and the results of chapters 3 and 4, hypotheses are put forward on 

the processes and practices involved in the recent SOC trends. The recent temperature increase is 

likely to have had a positive impact on C mineralization. Also, these last years were characterized by 

drier summers that could have a negative impact on biomass production, and by more frequent 

extreme events enhancing topsoil erosion, especially in cropland. However, soils of wet areas (mainly 

occupied by grasslands) could have benefitted from a better productivity in these drier and warmer 

conditions, i.e. increased productivity in a warmer soil and less stress from asphyxiation. Finally, in the 

framework of Good Agricultural Practices (see chapter 4), changes in management practices could 

have induced more C inputs and/or less C outputs. Unfortunately, more data and additional research 

are needed to confirm or not these hypotheses, and to identify which of them is/are involved in the 

SOC dynamics depicted above.  
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4 IMPLICATION OF GOOD AGRICULTURAL PRACTICES (GAP) ON SHORT-

TERM SOC DYNAMICS 

4.1 CONTEXT 
In the context of the RDP (Rural Development Program) for the period 2014-2020, the European 

commission asked the Member States to monitor the effects of the environmentally-friendly farming 

techniques, as applied in the context of Agri-Environment Measures (AEM) for example, and develop 

indicators in order to highlight their benefits on different environmental compartments including soils. 

Here, we studied the effects of three Good Agricultural Practices (GAP) applied under cropland - cover 

crops (CC), reduced tillage (RT), and temporary grassland (TG) – on the evolution of topsoil SOC content 

at short-term (since 2012). 

4.2 METHODOLOGY 

4.2.1 Characteristics of the Good Agricultural Practices 

Cover crops and reduced tillage both constitute the GAP introduced in the AEM 262-362-462. This AEM 

exists since 2000 and was designed to prevent soil erosion and to limit nitrate leaching from cropland 

soils. Farmers can apply cover crop or reduced tillage separately, or combined. Operational since 2015, 

the Greening Initiative supports the sustainable use of farmland through cover crop cultivation as GAP.  

Cover crops are cultivated in order to protect the soils. They are ploughed in to increase soil organic 

matter and nutrients. In Northwestern Europe, they are usually cultivated ‘off-season’, sown after the 

harvest of the main crop (the commercial crop) in autumn and incorporated into the soil by plough or 

reduced tillage in early spring before seeding the next summer crop. Their cultivation helps preventing 

erosion and nitrate leaching, improving soil physical and biological properties, supplying nutrients to 

the following crop, improving soil water availability, and breaking pest cycles (Snapp et al., 2005).  

Since the end of WWII, increased mechanization and intensive tillage, leading to an increase in erosion, 

have greatly degraded many agricultural soils (Lal, 1993; van Oost et la., 2005). Reduced tillage aims 

to reduce intensity of tillage operations, and may progress to stopping tillage completely (no-tillage). 

These practices result in some environmental benefits (e.g., reducing erosion, improving soil water 

availability, avoiding soil compaction), but also economic ones (as reducing fuel and labor costs) (Busari 

et al., 2015; Jacobsen and Ørum, 2010).  

The third GAP is the application of temporary grassland. The EC (European Commission) makes a clear 

distinction between temporary grassland (fields under grassland less or equal than five consecutive 

crop years without ploughing) categorized under ‘arable land’ (i.e., cropland here), and permanent 

pasture (fields under grassland more than five consecutive crop years without tillage) categorized 

under grassland10. The temporary grasslands induce positive residual effects on the following arable 

crops, increasing soil fertility and reducing crop diseases and weed infestation (Panattieri et al., 2017; 

Viaud et al., 2018).  

                                                           
10 https://ec.europa.eu/eurostat/documents/2393397/8259002/Grassland_2014_Task+1.pdf/8b27c17b-b250-4692-9a58-
f38a2ed59edb 
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4.2.2 Database preparation 

We used SOC data extracted from the ASTA database for the period 2012-2020 (as in section 3) merged 

to the Land Field Information System for the period 2008-201911. Firstly, the data were filtered and 

cleaned, following the steps below:  

1. Keeping the SOC observations obtained by the device Jena EA 4000 and the Skalar Primacs 

SNC100 only; 

2. Removing the observations from 2016 from soils sampled by the operator ‘LAKU’ (the operator 

sampled at 0-30 cm depth instead of 0-25 cm in cropland); 

3. Removing the observations for which the FLIK polygons were not available or the FLIK was 

miscoded; 

4. Removing observations without date of sampling (mandatory to assess the cultural year); 

5. Removing all observations related to fields submitted to a recent land use change (within the 

5 crop years preceding the sampling) and related to a landuse of no interest12; 

6. Removing the duplicates by FLIK and crop year, and replacing them by their mean SOC value; 

7. Removing those without GAP for more than 3 consecutive crop years (before the sampling 

year); 

8. By land use and soil association, removing right-skewed data13 (filtering greatest outliers). 

The crop year of each observation was determined considering the date of sampling or entry at the 

laboratory: e.g. soils sampled between July XXXX and June XXXX+1 were related to the cultural year 

XXXX+1. As the information about what was grown in each field (as main crop) for cultural years 2008-

2019 was collected, the fields concerned by a period of temporary grassland were already identified. 

Then, we merged the data with the spatial layers identifying fields where the AEM 362-462 (during 

cultural years 2008-2019 also) and the Greening Initiative (declared in 2015-201914) were applied. 

These layers allowed us to compile the exact GAPs applied each cultural year in each field related to 

the SOC observations. Each observation was classified in a GAP or GAP combination by considering 

those applied from 2008 to the crop year corresponding to the sampling – even if no GAP was applied 

the year of sampling, the field was classified in the GAP category if a GAP was applied at least once 

from 2008 to less than 3 years before the crop year of sampling. Fields not submitted to any GAP 

between 2008 and the year of soil sampling were defined as ‘Control’ fields. The final dataset was 

called LU-SOC-GAP.  

 

 

                                                           
11 For thorough information about the methods of soil sampling, Corg analysis or merge between Corg data and LPIS, please 

refer to §3.2.1. 

12 To this aim, the cultural history of the FLIKs from cultural year 2008 has been reconstituted until 2019 to consider FLIK 

number changes over time. The methodology is, at the time of this reporting, still under improvement. 

13 All data superior to Q3 + 3*SE (with Q3 = 3rd quartile and SE = standard error). 

14 A cover crop sown in the context of the Greening Initiative during the calendar year XXXX is declared the same year. So, a 

cover crop from Greening initiative declared in XXXX is associated with cultural year XXXX+1.  
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4.2.3 Analysis of SOC differences between management practices 

• LU-SOC-GAP 

For each soil association, the significance of differences between the distributions of SOC in fields 

under Control conditions and in fields under GAP (undifferentiated) were tested with a non-parametric 

Wilcoxson test (non-paired). Tests were also applied to fields submitted to a single GAP (i.e. cover 

crops - CC, reduced tillage – RT or temporary grassland – TG) against fields under Control conditions. 

• Paired observations 

We identified paired observations in the LU-SOC-GAP database, i.e. FLIKs with two or more SOC 

observations between 2012 and 2020. Then, we studied the relative SOC differences between paired 

observations considering the number of years separating them (relative annual difference in %/yr), 

and the application or not of GAP between both observation, and before the first observation. 

4.2.4 Conditional inference trees 

In order to assess the relative importance of farming practices and environmental covariates on SOC 

variability, we produced conditional inference trees. Each model (‘a forest’) was created based on 500 

trees using the party package in R (Strobl et al., 2007). They are similar to a random forest and can be 

used to model non-linear interactions between the response variable (i.e. the SOC) and predictor 

variables without the requirements of normality and homoscedasticity (Hobley et al., 2016). 

Considering the analysis of relations between SOC and environmental covariates performed in section 

3.3.3, we introduced the same covariates selected for introduction in the GAM models as predictor 

variables, i.e. elevation, slope, northness, eastness, precipitation, clay content, pH, available Mg, 

available K2O, the C factor and the minimum depth of hydromorphy. To consider the impact of GAP on 

SOC variability, we added two specific variables: 

- GAP_app informs about the type of GAP or combination of GAPs applied on the sites from 

2008 to the crop year of sampling, i.e. Control, Cover Crops, reduced Tillage, Temporary 

Grassland and all their possible combinations. 

- GAP_app_years informs about the number of years of GAP application (this variable is 

potentially biased as our database considered management practices form 2008 only). 

Finally, the covariate CROP_yr was added as the crop year of sampling which could inform about the 

influence of weather, drought… of the concerned year. 

The conditional inference forest was grown over 500 trees with the number of predictor variables 

randomly selected per split set to ~ square root of p (p being the number of covariates) and a 

significance relationship between predictor and response variable at α < 0.05. The relative variable 

importance was expressed as n=I/T*100, where I is the covariate importance and T is the total variance 

explained by the model (Hobley et al., 2015). A full model was first fitted on the LU-SOC-GAP dataset 

and then sequentially the least important covariate was skipped until having the best goodness-of-fit. 

The overall performance of the models was evaluated on the RMSE and R² of the out-of-bag dataset 

(as a cross-validation).  

4.3 RESULTS 

4.3.1 Implications of the SOC data filtering and merging 

After cleaning and filtering of the extracted raw data, the LU-SOC-GAP dataset contained 4016 

observations, including 960 associated to Control fields and 3056 to fields under GAP (Table 11).  Not 
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considering the observations obtained with the Tru Spec CN analyzer induced a loss of 1101 

observations. The elimination of fields submitted to recent landuse change or being under landuse of 

no interest here (i.e., not under cropland strictly speaking) induced a loss of more than 7850 

observations (~5770 were vineyards). Replacing the duplicates by cultural year by their mean values 

led to diminish the set of 1082 observations. 

Table 11: Filtering steps on the LU-SOC-GAP database preparation and associated numbers of observations 

  

 

4.3.2 Impact of GAP on SOC 

• LU-SOC-GAP 

Observations related to Control conditions and to GAP application in the LU-SOC-GAP dataset showed 

very different distributions (Fig. 26). ‘Control’ observations had a unimodal distribution with mode 

around 1.75%C, while ‘GAP’ observations had a bimodal distribution with a first mode around 1.70%C 

and a second around 2.80%C. Those distributions are mainly explained by the spatial distribution of 

the observations. The Control subset is dominated by observations from Gutland while the GAP subset 

is more evenly distributed between the Gutland and the Oesling. The latter is characterized by soils of 

higher SOC content compared to Gutland (Figs. 27-28; see also section 3.3.2.).  

 

 

Figure 26: Histograms of topsoil SOC (%C) in croplands for fields under Control conditions and fields under GAP in Grand-
Duchy of Luxembourg (2012-2019). 

Filtering step Total Obs. Obs. eliminated

None 14972 -

- Tru Spec CN analyzer 13871 1101

- LAKU 2016 cropland 13772 99

- FLIK NA 13390 382

- Date NA 13344 46

- obs from 2020 (potential TG)* 13211 133

- LU of no interest 5352 7859

- duplicates by crop year 4270 1082

- FLIK not in RPG 4270 0

- potential miscoded GAP 4059 211

- Soil association NA 4051 8

- outliers 4016 35
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Figure 27: Observed SOC values (%C) of topsoil in croplands for fields under Control conditions and fields under GAP in 
Grand-Duchy of Luxembourg (2012-2019). 

 

 

Considering the soil associations separately, GAP observations generally outnumbered Control 

observations (especially in ‘Oesling’), and we observed a positive mean difference in SOC when 

comparing ‘GAP’ observations to ‘Control’ observations (Fig. 28; Table 12). However, this difference is 

statistically significant for only two soil associations: ‘Oesling’ (+0.16%C; p<0.05), ‘Dolomies du 

Muschelkalk’ (+0.29%C; p<0.05). The difference was also significant for ‘Argiles lourdes des schistes 

bitumineux’ (+0.65%C; p<0.001) but, as the number of Control observations was < 30 (n=14), this 

result should not be considered as relevant. As each GAP or combination of GAP are susceptible to 

impact soils differently, we will now consider them separately. 

N.B.: In this section 4.3.2., the differences of statistical distribution between different datasets were 

tested (Table 12 to 15). The analytical uncertainties were not considered (see 3.2.1). 
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Figure 28: Box-plots of topsoil SOC (%C) in croplands for fields under Control conditions and fields under GAP (2012-2019).  
(1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts 

limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourdes du Keuper, 9 = Argiles lourdes des schistes 
bitumineux, 10 = Others) 

 

 

Table 12: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in croplands for fields under Control conditions and 

fields under GAP (2012-2020)), and significance of the difference between these two types of management (non-paired 

Mann-Whitney test). (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de 

Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourds du Keuper, 9 = Argiles lourds 

des schistes bitumineux, 10 = Others) 

 

 

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 960 0.3 1.2 1.6 1.8 2.0 5.2 3056 0.4 1.4 2.1 2.2 2.8 6.0

1 164 1.70 2.40 2.80 2.86 3.30 5.20 1259 0.90 2.50 2.90 3.02 3.40 6.00 0.16 < 0.01

2 69 0.70 1.40 1.60 1.58 1.70 2.90 184 0.90 1.40 1.60 1.71 2.00 3.10 0.14 NS

3 35 1.00 1.50 1.60 1.74 1.90 3.50 104 0.80 1.50 1.80 2.03 2.43 3.60 0.29 < 0.05

4 10 1.10 1.45 1.55 2.16 2.80 4.90 9 1.40 1.50 1.80 2.44 3.00 4.20 0.29 NS

5 172 0.25 1.00 1.10 1.15 1.30 2.00 383 0.60 0.98 1.10 1.15 1.30 2.10 0 NS

6 175 0.70 1.20 1.40 1.39 1.60 2.60 341 0.60 1.20 1.40 1.43 1.60 2.80 0.04 NS

7 182 0.90 1.50 1.70 1.79 2.00 3.90 398 0.90 1.50 1.80 1.85 2.20 3.32 0.05 NS

8 76 0.90 1.38 1.60 1.70 2.00 3.50 160 0.80 1.30 1.60 1.69 2.00 3.60 -0.01 NS

9 12 1.40 1.50 1.75 1.77 1.93 2.30 56 0.80 1.90 2.43 2.41 2.80 5.20 0.65 < 0.01

10 65 0.80 1.20 1.50 1.61 1.80 4.20 162 0.40 1.30 1.65 1.80 2.20 4.20 0.18 NS

Control Good Agricultural Practices Difference
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All GAPs (cover crops - CC, reduced tillage – RT or temporary grassland – TG) and possible combination 

of GAPs (CC RT, RT TG, CC TG and CC RT TG) were found in all soil associations except in ‘Calcaires du 

Bajocien’ (the latter has only 19 observations; Fig. 29). Most soil association subsets were composed 

of around 25-35% of Control observations, except Oesling with only ca. 12%. More than 50% of GAP 

observations in Oesling were related to fields where temporary grassland (TG, RT TG, CC TG and CC RT 

TG) has been or is currently applied. Soil associations from Gutland showed subsets dominated by 

observations related to cover crops and/or reduced tillage strategies application (CC, RT, CC RT), 

representing ca. 50% of each subset.  

 

 

Figure 29: Bar-plots of the proportion of observations in LU-SOC-GAP from fields under Control conditions and fields under 

GAP or combination of GAPs (2012-2020).  (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du 

Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourdes du 

Keuper, 9 = Argiles lourdes des schistes bitumineux, 10 = Others) 

 

It appears difficult to observe and confirm major trends in GAPs by soil association considering the 

number of box-plots and the fact that many subcategories have less than 30 individuals (Fig. 30). 

However, we can observe in soil associations the most represented in the dataset (1 – Oesling,  5 - Grès 

de Luxembourg, 6 - Dépôts limoneux sur Grès and 7 - Argiles du Lias inf. et moyen) that fields concerned 

by TG and/or combinations including TG could have higher SOC contents than fields under Control or 

CC and/or RT conditions.  
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Figure 30: Box-plots of topsoil SOC (%C) in croplands for fields under Control conditions and fields under GAP or combination of GAPs (2012-2020).  (1 = Oesling, 2 = Buntsandstein, 3 = 
Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourdes du Keuper, 9 = Argiles lourdes 

des schistes bitumineux, 10 = Others) 
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Table 13 to 15 present summary statistics and results of statistical tests between observations under 

Control vs Reduced Tillage, Cover Crops and Temporary Grassland. In Table 13, only four out of ten soil 

associations (1 – Oesling, 5 - Grès de Luxembourg, 6 - Dépôts limoneux sur Grès, 7 - Argiles du Lias inf. 

et moyen) have more than 30 observations in each subcategory, i.e. Control and Reduced Tillage. The 

differences in SOC between Reduced Tillage and Control observations varied from -0.01%C to +0.15%C 

considering these 4 soil associations. None of their SOC differences was significant (p>0.05). In Table 

14, seven out of the ten soil associations (1 – Oesling, 2 - Buntsandstein, 5 - Grès de Luxembourg, 6 - 

Dépôts limoneux sur Grès, 7 - Argiles du Lias inf. et moyen, 8 - Argiles lourds du Keuper, 10 - Others) 

present more than 30 individuals in each subcategory, i.e. Control and Cover Crops. The differences in 

SOC between CC and Control varies from -0.13% to +0.10%C for these 7 soil associations, most of those 

differences being negative. None of these differences were significant. Considering the GAP Temporary 

Grassland, four out of ten soil associations (1 - Oesling, 5 - Grès de Luxembourg, 7 - Argiles du Lias inf. 

et moyen, 10 - Others) have more than 30 observations in each subcategory. The differences in SOC 

between TG and Control ranged between +0.04% and +0.53%C and were all significant (p<0.05) except 

for ‘Argiles du Lias inf. et moyen’ (+0.04%C; p>0.05).  

 

 

Table 13: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in croplands for fieldss under Control conditions 
and fields submitted to reduced tillage strategies (2012-2020), and significance of the difference between these two types 

of management (non-paired Mann-Whitney test). (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = 
Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles 

lourds du Keuper, 9 = Argiles lourds des schistes bitumineux, 10 = Others) 

 

 

 

 

 

 

 

 

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 960 0.3 1.2 1.6 1.8 2.0 5.2 396 0.8 1.4 1.8 2.0 2.5 5.2

1 164 1.70 2.40 2.80 2.86 3.30 5.20 94 1.40 2.50 3.05 3.01 3.40 5.00 0.15 NS

2 69 0.70 1.40 1.60 1.58 1.70 2.90 11 0.90 1.35 1.60 1.71 2.10 2.70 0.13 NS

3 35 1.00 1.50 1.60 1.74 1.90 3.50 15 1.10 1.50 1.70 1.87 2.00 3.30 0.13 NS

4 10 1.10 1.45 1.55 2.16 2.80 4.90 1 3.00 3.00 3.00 3.00 3.00 3.00 0.84 NS

5 172 0.25 1.00 1.10 1.15 1.30 2.00 46 0.80 1.00 1.10 1.14 1.34 1.80 -0.01 NS

6 175 0.70 1.20 1.40 1.39 1.60 2.60 50 0.80 1.20 1.40 1.46 1.68 2.80 0.07 NS

7 182 0.90 1.50 1.70 1.79 2.00 3.90 127 0.90 1.45 1.80 1.79 2.10 2.90 0 NS

8 76 0.90 1.38 1.60 1.70 2.00 3.50 24 1.00 1.30 1.45 1.55 1.71 2.40 -0.15 NS

9 12 1.40 1.50 1.75 1.77 1.93 2.30 18 1.50 1.93 2.55 2.52 2.78 5.20 0.76 < 0.01

10 65 0.80 1.20 1.50 1.61 1.80 4.20 10 0.90 1.40 1.50 1.63 1.88 3.00 0.02 NS

Control Reduced Tillage Difference
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Table 14: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in croplands for fields under Control conditions and 
fields submitted to cover crops cultivation (2012-2020), and significance of the difference between these two types of 

management (non-paired Mann-Whitney test). (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires 
du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourds du 

Keuper, 9 = Argiles lourds des schistes bitumineux, 10 = Others) 

 

 

Table 15: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in croplands for fields under Control conditions and 
fields submitted to temporary grassland (2012-2020), and significance of the difference between these two types of 

management (non-paired Mann-Whitney test). (1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires 
du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles du Lias inf. et moyen, 8 = Argiles lourds du 

Keuper, 9 = Argiles lourds des schistes bitumineux, 10 = Others) 

 

 

According to these preliminary results, Temporary Grassland seems to be the most effective GAP for 

increasing SOC in cropland soils from GDL. Reduced Tillage tends to help maintaining or slightly 

increasing original SOC content, while Cover Crops barely maintain SOC content when compared to 

Control fields. This latter fact is counter-intuitive as CC application enhances organic matter inputs in 

soils, and CC is recognized as one of the most effective GAP for improving SOC content and stock in 

cropland soils (Pellerin et al., 2019.). However, CC are mainly applied in GDL right before silage maize 

cultivation which is known as being a powerful humus consumer – the removal of straw/stover 

inducing a net reduction of the topsoil SOC stock  (Xu et al., 2019). Here, 85.5% of the FLIK concerned 

by CC application only in the LU-SOC-GAP dataset are cultivated with maize silage at least once during 

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 960 0.3 1.2 1.6 1.8 2.0 5.2 533 0.6 1.2 1.5 1.7 2.0 5.4

1 164 1.70 2.40 2.80 2.86 3.30 5.20 85 1.50 2.20 2.70 2.71 3.10 5.40 -0.15 NS

2 69 0.70 1.40 1.60 1.58 1.70 2.90 53 0.90 1.20 1.50 1.55 1.80 2.60 -0.02 NS

3 35 1.00 1.50 1.60 1.74 1.90 3.50 16 1.10 1.40 1.65 1.94 2.13 3.60 0.21 NS

4 10 1.10 1.45 1.55 2.16 2.80 4.90 2 1.50 1.58 1.65 1.65 1.73 1.80 -0.51 NS

5 172 0.25 1.00 1.10 1.15 1.30 2.00 116 0.60 0.90 1.05 1.10 1.23 2.10 -0.05 NS

6 175 0.70 1.20 1.40 1.39 1.60 2.60 98 0.60 1.13 1.30 1.34 1.50 2.40 -0.05 NS

7 182 0.90 1.50 1.70 1.79 2.00 3.90 92 1.00 1.50 1.80 1.90 2.20 3.30 0.1 NS

8 76 0.90 1.38 1.60 1.70 2.00 3.50 38 0.90 1.20 1.40 1.59 1.80 3.60 -0.1 NS

9 12 1.40 1.50 1.75 1.77 1.93 2.30 3 1.10 1.40 1.70 1.53 1.75 1.80 -0.23 NS

10 65 0.80 1.20 1.50 1.61 1.80 4.20 30 0.80 1.10 1.35 1.48 1.80 3.00 -0.13 NS

Control Cover Crops Difference

Assoc. n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 960 0.3 1.2 1.6 1.8 2.0 5.2 599 0.5 2.0 2.7 2.7 3.3 6.0

1 164 1.70 2.40 2.80 2.86 3.30 5.20 388 1.40 2.60 3.00 3.14 3.66 6.00 0.28 < 0.001

2 69 0.70 1.40 1.60 1.58 1.70 2.90 22 1.10 1.43 1.70 1.69 1.88 2.70 0.11 NS

3 35 1.00 1.50 1.60 1.74 1.90 3.50 15 1.60 2.00 2.60 2.59 3.15 3.60 0.86 < 0.01

4 10 1.10 1.45 1.55 2.16 2.80 4.90 1 1.70 1.70 1.70 1.70 1.70 1.70 -0.46 NS

5 172 0.25 1.00 1.10 1.15 1.30 2.00 44 0.60 1.10 1.30 1.30 1.43 2.10 0.16 < 0.01

6 175 0.70 1.20 1.40 1.39 1.60 2.60 26 1.10 1.40 1.60 1.64 1.78 2.50 0.26 < 0.02

7 182 0.90 1.50 1.70 1.79 2.00 3.90 35 0.90 1.40 1.70 1.84 2.20 3.20 0.04 NS

8 76 0.90 1.38 1.60 1.70 2.00 3.50 23 1.10 1.50 1.90 1.93 2.40 3.40 0.23 NS

9 12 1.40 1.50 1.75 1.77 1.93 2.30 10 1.60 2.18 2.53 2.68 3.40 3.70 0.91 < 0.01

10 65 0.80 1.20 1.50 1.61 1.80 4.20 35 0.50 1.45 2.10 2.15 2.70 3.60 0.53 < 0.01

Control Temporary Grassland Difference
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their rotation. For comparison, 67.5% of the FLIK under Control condition, 54.5% of the FLIK with RT 

application, and 44.1% of the fields with TG are concerned by maize silage cultivation. Considering this 

information, the application of CC may appear as an effective way to counter-balance the negative 

effect of silage maize cultivation on SOC. 

 

• Paired observations 

Amongst the 500 fields concerned, from the first to the second observations (separated by min = 1yr, 

max = 6yrs, median = 4yrs), 53 remained under Control conditions, 86 went from Control to GAP, and 

361 remained under GAP (Fig. 31). The 1st quartile of relative annual difference in SOC between the 

first and second sampling was -2.9%, the median 0.0% and the 3rd quartile 4.6%. Considering the 

enlarged analytical uncertainties of 15% for non-carbonated samples and 20-25% for carbonated 

sample (Table 4), plus the error propagation induced by the difference computation, those results 

cannot be considered as significant and have to be considered very carefully. For information 

purposes only, we computed the relative annual difference in SOC and compiled the results in Table 

16.   

 

 

 

Figure 31: Location and relative annual differences in SOC content between paired observations (same FLIKs) in the LU-SOC-
GAP dataset. 
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Table 16: Evolution of management practices and relative annual difference of SOC content (%/yr) between the first and the 
second sampling for the 518 fields with paired observations in ASTA-SOC-LU dataset. (CC = Cover Crops, RT = Reduced 

Tillage, TG = Temporary Grassland) 

 

 

 

4.3.3 Relative importance of management practices vs environmental covariates on SOC variability  

A first conditional inference tree was developed on the 4016 observations in croplands of the 

LU-SOC-GAP dataset covering the entire GDL territory (Fig. 32). The model was based on ten covariates 

and explained ~82% of SOC variance (R²=0.82) with a RMSE of 0.39%C. The SOC variance was mainly 

explained by three environmental covariates (varying at the regional scale): the elevation, the clay 

content and the precipitation. Elevation had a relative importance of almost 35% in the model, 

whereas clay and precipitation were around 20%. Two others environmental covariates were selected 

in the model, the minimum depth of soil hydromorphy and their pH, each having a relative variable 

importance ~ 5%. Five covariates selected in the model were related (or in part related) to farming 

practices: Mg, K2O, GAP_app, C factor and GAP_app_years. Each had also a relative importance < 5% 

in the final model. Finally, the crop year of the sampling was selected with a relative importance < 2%. 

For thorough information about the relations between SOC and covariates, except the GAPs, please 

refer to section 3.3.3 (Fig. 15-16). 

1st sampling 2nd sampling n Q1 median mean Q3

Control Control 53 -2.4 1.2 2.3 6.7

Control RT 14 -1.4 0.0 2.6 2.1

Control CC 47 -1.7 0.0 2.1 3.8

Control CC RT 11 -0.4 2.3 3.0 5.2

Control TG 7 -5.4 0.0 -1.1 3.0

Control RT TG 1 -2.4 -2.4 -2.4 -2.4

Control CC TG 6 -3.0 4.3 1.4 5.8

RT RT 39 -1.9 1.3 2.0 7.2

RT CC RT 31 -4.2 -1.9 -1.2 2.6

RT RT TG 7 5.1 6.0 6.2 7.8

RT CC RT TG 1 3.0 3.0 3.0 3.0

CC CC 56 -5.4 0.0 -0.2 4.2

CC CC RT 3 -1.5 0.0 9.7 16.0

CC CC TG 6 -8.1 -5.2 -4.6 -0.6

CC RT CC RT 90 -2.9 0.0 1.0 4.6

CC RT CC RT TG 4 -2.9 -0.2 0.3 3.0

TG TG 34 -4.1 0.0 1.9 5.7

TG RT TG 3 3.0 3.0 4.2 4.8

TG CC TG 20 0.0 3.1 3.4 4.8

TG CC RT TG 5 -1.8 1.2 -1.1 1.7

RT TG RT TG 11 -1.6 2.1 5.1 7.5

RT TG CC RT TG 10 1.6 4.1 4.9 5.5

CC TG CC TG 15 -6.0 0.0 -0.3 3.4

CC TG CC RT TG 2 0.8 2.4 2.4 3.9

CC RT TG CC RT TG 24 -4.1 -0.8 -2.3 2.4

Management relative annual SOC difference (%/yr)
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Figure 32: Relative variable importance of covariates selected by the fitting procedure of the conditional inference forest 
model for SOC in croplands all over GDL (n = 4016). The vertical blue dashed lien indicates the average relative importance. 

 

To get rid of the major trend induced by the differences between the Oesling and the Gutland, we 

fitted one additional inference forest for each (Fig. 33-34). The model for Gutland (R²=0.67; 

RMSE=0.31) was stronger than that for Oesling (R²=0.50; RMSE=0.50). SOC variance in Gutland was 

mainly explained by clay, for which the relative variable importance was > 45%, and then pH (relative 

variable importance ~ 10%; Fig. 34). The GAP applied and their duration (i.e., GAP_app and 

GAP_app_years) both had a relative importance ~ 5%. In Oesling, SOC variance is mainly explained by 

the minimum depth of hydromorphy, the dominant gradients (from N to S) of precipitation and 

elevation15, the clay and the Mg contents, and the GAP application (Fig. 33). The GAP_app covariate 

showed a relative importance of ~ 9% while GAP_app_years accounted for 5%. These differences 

between Oesling and Gutland could have different origins as: i) Oesling has a smaller range of clay 

content than Gutland (section 3.3.3), ii) Oesling showed a higher proportion of GAP, especially under 

TG and combinations including TG, than Gutland, and iii) fields submitted to temporary grassland 

showed highest differences in SOC content than fields under cover crops or reduced tillage (section 

4.3.2). The remaining unexplained SOC variance in each model could be induced by 

farming/management practices not reflected by the covariates and induced by sampling and SOC 

measurement.  

                                                           
15 The implication of the local positioning, e.g. in valley bottoms, on hillslopes or on plateaus, has a relative implication of ~4% 
(see TPI: Topographic Position Index in Fig. 33)  
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Figure 33: Relative variable importance of covariates selected by the fitting procedure of the conditional inference forest 
model for SOC in croplands of Oesling (n = 1464). The vertical blue dashed line indicates the average relative importance. 

 

 

 

Figure 34: Relative variable importance of covariates selected by the fitting procedure of the conditional inference forest 
model for SOC in croplands of Gutland (n = 2552). The vertical blue dashed line indicates the average relative importance. 
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5 CONCLUSIONS  

1. Using observations from the ASTA database for the period 2012-2019, we analyzed the spatial 

variability of soil organic carbon (SOC) in croplands, grasslands and vineyards all over the 

Grand-Duchy of Luxembourg (GDL). In cropland, in addition to the geographical coordinate 

couple (x,y - supporting the main regional trends) the clay content, the C-factor, the Mg 

content, the K2O content, the minimum depth of hydromorphy, the slope and the elevation 

(by decreasing order of importance) explained SOC variability. For grasslands, in addition to 

the geographical coordinate couple (x,y), the SOC variability was explained by the clay content, 

the Mg content, the minimum depth of hydromophy, the K2O content , the elevation and the 

pH (by decreasing order of importance). Concerning vineyards, no explicit relations between 

SOC and environmental covariates was observed. Generalized Additive Models were fitted 

explaining 74% of SOC variance in cropland, 40% in grassland and 14% in vineyards. 

 

2. We studied the recent evolution of soil organic carbon (SOC) in these three landuses 

considering the transition to the last Rural Development Program (RDP) for 2014-2020. To this 

aim, we split the data discussed in (1) to consider two distinct sub-periods - T1: 2012-2015 and 

T2: 2016-2019. In croplands, SOC increased significantly for the soil associations 

‘Buntsandstein’, ‘Grès du Luxembourg’, ‘Dépôts limoneux sur grès’ and ‘Argiles lourds du 

Keuper’, and decreased significantly for soils of ‘Oesling’. In grasslands, only soils from soil 

association ‘Others’ (mainly ‘Alluvions etColluvions’) showed a significant difference (an 

increase) in SOC content. In vineyards, we observed a significant decrease in SOC for soils on 

‘Dolomies du Muschelkalk’ and ‘Argiles lourdes du Keuper’. Few of the significant differences 

detected between T1 and T2 could have been confirmed by studying paired observations. 

N.B.: While we observed statistically significant differences/trends, those have to be 

considered very carefully considering the analytical errors of SOC.  

 

3. The GAMs (see above; point 1) were applied to T1 and T2 subsets to map SOC at both period 

all over GDL. Both maps have the same main patterns. Oesling has significant higher SOC 

contents than Gutland. SOC patterns in Oesling seems mainly induced by landuse repartition 

(related to hillslope position), while in Gutland landuse repartition and clay content seem to 

dominate. By comparing both maps, we estimated that SOC in croplands of Oesling has 

decreased in its western and northeastern parts while increasing in the southernmost part. In 

croplands of Gutland, a significant decrease was estimated in the southwestern part and in the 

easternmost part of the region, though increasing in most of the eastern part. Considering the 

grasslands, we estimated that SOC decreased in the northwestern, center-eastern and 

southwestern areas of Gutland while increasing mainly in the valley bottoms of both natural 

regions. Grassland of Oesling tended to gain SOC in the northern part of this natural region, 

whereas they tended to loss SOC in the southern part.  

N.B.: Considering the goodness-of-fit of the GAM for grasslands, the differences 

between both maps have to be considered very carefully.  

 

4. Hypotheses have been put forward on the processes and practices involved in the recent SOC 

trends. The recent temperature increase is likely to have had a positive impact on C 

mineralization. Also, these last years were characterized by drier summers that could have a 

negative impact on biomass production, and by more frequent extreme events enhancing 

topsoil erosion, especially in cropland. However, soils of wet areas (mainly occupied by 
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grasslands) could have benefitted from a better productivity in these drier and warmer 

conditions, i.e. increased productivity in a warmer soil and less stress from asphyxiation. 

Finally, in the framework of Good Agricultural Practices (see 5 below), changes in management 

practices could have induced more C inputs and/or less C outputs. Unfortunately, more data 

and additional research are needed to confirm or not these hypotheses, and to identify which 

of them is/are involved in the SOC dynamics. 

 

5. By combining analyses from the ASTA for the period 2012-2019 and layers from the Land Parcel 

Information Service for crop years 2008 to 2019, we analyzed the impact of three Good 

Agricultural Practices (GAP) on SOC content: cover crops – CC, reduced tillage – RT, and 

temporary grassland – TG. For eight out of the ten soil associations, fields under GAP 

(undifferentiated) showed higher SOC content than ‘Control’ fields. Significant differences 

were detected in ‘Oesling’, ‘Dolomies du Muschelkalk’ and ‘Others’. Considered separately, 

the introduction of temporary grassland in the crop rotation seems the most effective practice 

for improving SOC content in croplands. Indeed, fields submitted to temporary grassland had 

mainly higher SOC content than Control fields, with significant positive difference detected in 

‘Oesling’, ‘Grès du Luxembourg’ and ‘Others’ (mainly ‘Alluvions et Colluvions’). Fields managed 

with reduced tillage showed higher SOC content but no significance was detected. To finish, 

parcels submitted to CC only showed negative or equivalent SOC contents to Control fields. 

Only ‘Oesling’ showed a significant negative difference. It is worth noting that CC are mainly 

applied in GDL right before silage maize cultivation which is known as being a powerful humus 

consumer. So, the application of CC may appear as an effective way to counter-balance the 

negative effect of silage maize cultivation on SOC. However, more SOC observations from sites 

under CC and not associated to silage maize are needed to compare with these first results in 

order to properly test this hypothesis. 

N.B.: Some sub-groups in this analysis (soil association x GAP) contained less than 30 
observations inducing that statistics and tests of significance related to them could not 
be considered as relevant. 

 

6. Using conditional inference trees, we studied the relative importance of environmental 

covariates vs management practices (GAP) on SOC variability in croplands. Considering data all 

over the GDL territory, the model was able to explain ~80% of the SOC variance predominantly 

by regional covariates as elevation, clay and precipitation. The application of GAP (considering 

the type of GAP or combination) and the duration of their application (number of years since 

the first application in the period 2008 – crop year of sampling) had both a relative importance 

< 5% in the model. When considering Oesling and Gutland separately, the application of GAP 

and their duration of application had a total relative importance in explaining SOC variance of 

~14% in Oesling and of ~9% in Gutland. This difference between the two natural regions could 

be induced by a higher proportion of GAP application, especially temporary grassland (TG) and 

combinations including TG, in Oesling than Gutland. 
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7 Annexes 

7.1 METHODOLOGY: MAP OF THE MINIMUM DEPTH OF SOIL HYDROMORPHY 
The minimum depth of soil hydromorphy corresponds to the minimum depth in soil profile where 

physical indicators of temporary or continuous surface water saturation were observed.  

The table Anx1 compiled the range of depth for the presence of oxido-reduction and reduction 

features by drainage classes in each soil type of GDL (as defined on the texture triangle designed for 

soils of Belgium and GDL; Fig. 4).  

 

Table Anx1: characteristics of the drainage classes for soils of GDL (source: Marx et Flammang, 2018). 

 

 

In order to join the minimum depth of soil hydromorphy to the numerical soil map of GDL, we 

simplified the Table Anx1 to create the Table Anx2. For drainage classes c, d, D, e, f, F, h, i, I and g, we 

applied the central value of the observed depth ranges of oxido-reduction features compiled in the 

Table Anx1 as the minimum depth of soil hydromorphy. In GDL, soil augering investigations were 

performed between depths of 0 and 80cm. Hence, for drainage classes with potential minimum depth 

of soil hydromorphy > 80cm (a, b and B - referred as ‘Absence’ in figure 8), we used range of depths 

observed for equivalent soils in Belgium, where soil profiles were investigated till a depth of 120cm 

(Table 1 in Meersmans et al., 2009). In addition, when oxido-reduction features could not be observed 
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because located deeper than 120cm in the profile or absent, a default value of 120cm was applied. 

These decisions were taken in order to create a covariate layer, continuous in space, covering the 

maximum territory of GDL, i.e. to optimize in the modeling procedure the inclusion of the known 

drainage influence on SOC content all over GDL. 

 

Table Anx2: Table joined to the attribute table of the 1:25000 numerical soil map (Bah and Marx, 2016) to create the map of 
minimum depth of soil hydromorphy (cm) in GDL. 

 

 

Once the Table Anx2 was joined to the attribute table of the 1:25000 numerical soil map (Bah et Marx, 

2016), we mapped the minimum depth of soil hydromorphy all over the GDL. Using a majority rule16, 

this vector map (polygons) was then converted to a raster format (resolution of 90x90m) with the same 

exact characteristics as all the covariate layers used here in the SOC mapping procedure. To finish, a 

low-pass filter was applied to the raster layer in order to smooth the transitions between areas of 

different minimum depths of soil hydromorphy.  

                                                           
16 Majority rule: when converting polygons to a raster format, if a cell from the raster grid covers different polygons, this cell 
will take the value corresponding to the polygon covering the biggest proportion of the cell’s area.  

Drainage class 
Minimum depth of soil 

hydromorphy (cm)

a 120

b 100

B 110

c 70

d 45

D 60

e 15

f 15

F 15

h 15

i 15

I 15

g 0



 

62 
 

62 Soil organic carbon in the Grand Duchy of Luxembourg 

7.2 SOC SUMMARY STATISTICS: REFERENCE TABLES FOR TEXTURE CLASSES L, M, OM AND S 
This annex provides tables of summary statistics and results of difference test of SOC for the 4 texture 

classes defined by ASTA. Tables Anx3, Anx4 and Anx5 are related to cropland, grassland and vineyard, 

respectively. 

 

Table Anx3: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in croplands at T1 (2012-2015) and T2 
(2016-2019), and significance of the difference between these two periods (non-paired Mann-Whitney test). (L = léger, 

M = moyen, OM = moyen caillouteux, S = lourds) 

 

 

Table Anx4: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in grasslands at T1 (2012-2015) and T2 
(2016-2019), and significance of the difference between these two periods (non-paired Mann-Whitney test). (L = léger, 

M = moyen, OM = moyen caillouteux, S = lourds) 

 

 

Table Anx5: Descriptive statistics of topsoil SOC (%C for the 0-25cm depth) in vineyards at T1 (2012-2015) and T2 
(2016-2019), and significance of the difference between these two periods (non-paired Mann-Whitney test). (L = léger, 

M = moyen, OM = moyen caillouteux, S = lourds) 

   

Texture n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 2225 0.40 1.20 1.60 1.94 2.50 6.40 3142 0.40 1.50 2.10 2.27 2.90 6.10

L 558 0.40 0.90 1.10 1.11 1.20 2.70 327 0.60 0.98 1.10 1.16 1.30 3.20 0.05 NS

M 928 0.70 1.30 1.60 1.74 2.00 5.00 1268 0.50 1.40 1.70 1.78 2.00 5.70 0.03 < 0.05

OM 555 1.30 2.50 3.00 3.10 3.60 6.40 1379 0.90 2.50 2.90 3.00 3.40 6.10 -0.1 < 0.05

S 184 0.50 1.50 1.80 1.96 2.30 3.90 168 0.40 1.68 2.10 2.08 2.40 5.20 0.11 < 0.05

T1: 2012-2015 T2: 2016-2019 Difference

Texture n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 679 0.80 2.70 3.40 3.62 4.35 10.10 1452 0.70 2.80 3.40 3.55 4.30 8.30

L 30 1.00 1.53 1.70 1.96 2.08 4.40 44 0.70 1.30 1.65 1.89 2.05 5.60 -0.08 NS

M 380 0.80 2.50 3.40 3.62 4.40 10.10 719 0.70 2.50 3.30 3.46 4.20 8.30 -0.15 NS

OM 232 1.70 3.08 3.60 3.75 4.20 7.40 581 0.90 3.00 3.50 3.63 4.20 7.30 -0.13 NS

S 37 1.90 3.30 3.90 4.07 4.90 7.30 108 0.80 3.50 4.35 4.44 5.23 7.20 0.36 NS

T1: 2012-2015 T2: 2016-2019 Difference

Texture n min Q1 median mean Q3 max n min Q1 median mean Q3 max mean p-value

ALL 1916 0.40 1.20 1.65 1.83 2.21 5.50 2405 0.10 1.10 1.55 1.63 2.10 5.00

M 118 0.60 1.33 2.00 2.15 2.80 5.35 280 0.40 1.35 1.90 1.98 2.50 5.00 -0.17 NS

S 1798 0.40 1.20 1.60 1.81 2.20 5.50 2125 0.10 1.10 1.50 1.59 2.00 4.70 -0.22 < 0.001

T2: 2016-2019 DifferenceT1: 2012-2015
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7.3 ADDITIONAL SOC MAPS FOR CROPLAND AND GRASSLAND 
Figures Anx1 and Anx2 propose some additional SOC maps for cropland and grassland, respectively. 

Each figure contains 4 maps corresponding for each landuse to: 

 A: the map resulting from the application all over the GDL territory of the GAM fitted for T1 (2012-

2015); 

 B:  the map resulting from the application all over the GDL territory of the GAM fitted for T2 (2016-

2019); 

 C: the map resulting from the application all over the GDL territory of the GAM fitted for T1+T2 

(2012-2019); 

 D: the standard error of SOC estimation associated to the GAM pictured in C, i.e. the GAM fitted 

for T1+T2 (2012-2019). 
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Figure Anx1: additional maps of SOC considering the whole territory as croplands – A/ SOC (%C) for period 2012-2015, 
B/ SOC (%C) for period 2016-2019, C/ SOC (%C) for period 2012-2019 and D/ standard error of estimation (%C) for period 

2012-2019.   



 

65 
 

65 Soil organic carbon in the Grand Duchy of Luxembourg 

 

Figure Anx2: additional maps of SOC considering the whole territory as grasslands – A/ SOC (%C) for period 2012-2015, 
B/ SOC (%C) for period 2016-2019, C/ SOC (%C) for period 2012-2019 and D/ standard error of estimation (%C) for period 

2012-2019. (White areas are not covered by the pH map - Fig. 13A, a significant covariate in the SOC model for grasslands)  
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