Satellite Earth Observations for Evaluation

Dimitris Skuras

Department of Economics, University of Patras

Why this presentation

- To answer "why to use Earth Observations in evaluation?"
- To show an example of how to use Earth Observations for evaluation
- What is an earth observation?

Earth Observation is the process of gathering information about the Earth's surface, waters and atmosphere via ground-based, airborne and/or satellite remote sensing platforms • How is information collected and delivered via satellites?

Markers

Parameter	Definition	Range	Use Case
LAI	Leaf area per ground area	0–10+	Photosynthesis modeling
FCOVER	Fraction of ground covered by vegetation	0–1 (0–100%)	Land cover mapping
NDVI	Vegetation "greenness"	-1 to +1	Crop health monitoring

The human eye perspective

The "NDVI" Perspective

The "Moisture Index" perspective

How can I use this information in evaluation?

Case Study: Support to Cover Crops
Obligation: Cover crops established after 15th of October
Location: somewhere in the Netherlands
Evaluation Question: Which is the effectiveness of support to cover crops?
Effectiveness criterion: How much land remains covered?

General land use

FCOVER: Fraction of ground covered by vegetation

GSAA (GeoSpatial Aid Application): The important glue to bring together land use, IACS/LPIS info and satellite readings

Data for each one of the plots in this area:

- Ownership (who cultivates the plot)
- Eligibility for cover crops support (declaration to EFA)
- Exact main crop and cover crop cultivation
- Location
- Every 5 days a value of the markers (FCOVER, NDVI, LAI)
- Big data: 73 observations per plot per year

ppervlak grondbe				СТ	_dec efa_	eli		
de	k omschrijvi	NewID H	oldID LC	I	gib	EF	A	Arable
6.830	259 Mais, snij-	2	361	1	153	0	0.00	1.00
6.320	259 Mais, snij-	3	361	1	153	0	0.00	1.00
1.990	259 Mais, snij-	5	362	1	153	0	0.00	1.00
5.140	259 Mais, snij-	6	362	1	153	0	0.00	1.00
1.600	259 Mais, snij-	11	613	1	153	0	0.00	1.00
5.000	259 Mais, snij-	14	358	1	153	0	0.00	1.00
10.130	259 Mais, snij-	23	358	1	153	0	0.00	1.00
2.150	259 Mais, snij-	30	358	1	153	0	0.00	1.00
	Aardappelen,							
3.730	2017 zetmeel	35	93	1	131	1	1.00	1.00
	Aardappelen,							
6.470	2017 zetmeel	36	93	1	131	0	0.00	1.00
10.860	234 Tarwe, zomer-	48	106	1	142	1	1.00	1.00
9.280	256 Bieten, suiker-	49	106	1	13	0	0.00	1.00
	Tarwe,							
1.130	233 winter-	50	106	1	151	1	1.00	1.00
	Tarwe,							
0.240	233 winter-	51	106	1	151	1	1.00	1.00

This is part of the data

each line is a plot

The evolution of the average satellite FCOVER observation through out 2019 (month 1st to 12th) for 3 main crops for beneficiaries and non-beneficiaries

winter wheat

maize

Difference in Differences (DiD)

Fcover (Mean)

How can I use this in netting out a PMEF indicator?

YES

Soil erosion:

E = R x K x C x LS x P (RUSLE equation)

 $C_{arable} = C_{crop} \ x \ C_{management}$

 $C_{management} = C_{tillage} \times C_{cover} \times C_{residues}$

 $C_{cover} = \frac{1 - imp}{e^{LU * FCover}}$

Do I have a baseline?

If nothing else changes but the cover crops, then this change in C_{cover} due to cover crops can be reflected directly into a change in erosion and the risk to soil loss (PMEF impact indicator I.13).

Map of soil erosion in Europe, 2013

Where else can I use Earth Observations?

PMEF Indicator	EO Marker	Application	
CLIMATE			
I.11: Carbon sequestration	LAI, NDVI, FAPAR	LAI quantifies leaf density (carbon uptake); NDVI/FAPAR track vegetation productivity.	
I.10: GHG mitigation	CH₄/CO₂ flux maps, FCOVER	FCOVER identifies wetlands (CH ₄ hotspots); NDVI detects deforestation (CO ₂ release).	
WATER			
I.17: Water use in agriculture	NDWI, ET (Evapotranspiration)	NDWI monitors vegetation water content; ET estimates irrigation needs.	
I.17 : Water use in agriculture	Radar (Sentinel-1), NDWI	Radar detects surface water; NDWI maps flood extent.	
I.09 (part): Water stress	SWI (Soil Water Index), NDVI	SWI measures root-zone soil moisture; NDVI detects drought-induced vegetation stress.	
SOIL			
I.11: Soil organic carbon	FCOVER, NDVI	Low FCOVER/NDVI = bare soil exposure; correlates with RUSLE's C-factor.	
I.13: Soil erosion by water	SMI (Soil Moisture Index), Sentinel-2 SWIR	SWIR bands estimate organic matter; SMI links moisture to decomposition rates.	
BIODIVERSITY			
I.22: Crop diversity	NDVI, Spectral Diversity Index	NDVI measures greenness; spectral diversity proxies species richness.	
I.22: Land cover change	FCOVER, Land Cover Maps	FCOVER trends detect fragmentation; land cover maps classify habitat loss.	

Here is the catch: How to Make Earth Observations Appealing?

Reduce the cost of establishing, operating and maintaining the Earth Observations database Increase the users Monitoring Evaluation Controls and audit Planning Risk management Early warning systems

Increase the geographic extent and the scope

Natura 2000 sites WFD River Basins Nitrate Vulnerable Zones (NVZs)

Private funds (?)

Insurance companies Cooperatives Food manufacturing Cost and Benefit Sharing

...thank you

This work was possible due to the efforts of:

- Sophie Bontemps, Université Catholique de Louvain, then at Sen4CAP Horizon 2020
- Kornelis Oosterhuis, Senior adviseur bij Rijksdienst voor Ondernemend Nederland (RVO.nl)

and the second in

Valdis Kudins, Evaluation Manager, Evaluation Helpdesk

Appendix: Most frequently used markers

Marker	What It Measures	Satellite Source
NDVI	Vegetation health/greenness	Sentinel-2, Landsat, MODIS
LAI	Leaf area per ground area (photosynthesis capacity)	Sentinel-2, PROBA-V
FCOVER	Ground covered by vegetation	Sentinel-2, Copernicus Global Land
NDWI	Water content in vegetation/water bodies	Sentinel-2, Landsat
LST	Surface temperature (energy balance)	MODIS, Landsat Thermal Bands
SWI	Root-zone soil moisture	SMAP, Sentinel-1 (radar)