Assessing CAP impact on soil C stocks with big data

I. Criscuoli, M.C. Andrenelli, I. Falconi, A. Martelli, G. Dara Guccione, V. Carta, R. Farina CREA, Italy

GPW Assessment of environmental impacts of the CAP 12-13 June 2025 Hannover, Germany

EJP SOIL has received funding from the Europea Union's Horizon 2020 research and innovation programme: Grant agreement No 862695

The study

- Framework: EJP SOIL Towards climate-smart sustainable management of agricultural soils <u>https://ejpsoil.eu/</u>
 - •H2020 co-fund programme
 - •2020 2025
 - Up to 1200 researchers in 24 countries
- CARBOSEQ EJP SOIL project
 - 1 task to evaluate the impact of CAP implementation on Soil Organic Carbon stocks:
 - Direct payments (first pillar):
 - conditionality GAEC protection for soil
 - Eco-schemes
 - Rural Development Programs (second pillar):
 - voluntary commitments beyond GAEC
 - in Italy implemented through regional programs

CAP implementation data

- Current CAP : too recent:
 - previous CAP 2014 -2022
- Georeferenced data, parcel level, describing area and time of implementation of CAP measures by farms
 - Case study in Sicily (around 2 mlns parcels)
 - data for whole Sicily: from 2019 until 2022 (4 different shapefiles for each RDP measure)

🔇 psr i	2019 misure selezi	onate — PSR_2019	_count — Elementi	Totali: 56422, Filtra	ti: 56422, Selezion	ati: 0						- 0	×
/ 8	1 B C 🖻	6 × 6 6	ء 📃 🖬 🗣	7 🖀 🕸 🗭	16 16 🕅 🖁	i 🗉 🔍 🗖	J						
	ATTO_19	CODI_B_19	CUAA_19	UFFI_19	ID_INTE_19	CODI_19	DESC_19	ID_PARC_19	SUPE_19	quotamean	Erosioneme	slope%mean	5.
1	117569791	34240014869	CPZSLV65P53B	CAA Confagrico	3975717	10.1.C-02.C	10.1-C-02.C-M	403270935	50961	450,805667371	10,0577910040	22,6345397765	. 30,(
2	117761662	34240016559	SRAMRT73M45	CAA CIA - TRAP	3975718	10.1.C-02.P	10.1-C-02.P-M	404680655	39703	249,322373647	36,8746791223	10,9724167566	. 36,(
3	117935790	34240039759	MRTGPP65B02	CAA CAF AGRI	3975717	10.1.C-02.C	10.1-C-02.C-M	407682928	12502	153,229067847	2,13635562149	11,1864500499	. 62,(
4	117935790	34240039759	MRTGPP65B02	CAA CAF AGRI	3975717	10.1.C-02.C	10.1-C-02.C-M	407682927	37545	173,010899510	2,43721681777	12,5410374937	. 62,(
5	117935790	34240039759	MRTGPP65B02	CAA CAF AGRI	3975717	10.1.C-02.C	10.1-C-02.C-M	407682920	25491	188,297769818	4,07705735648	10,1294750372	. 62,(
6	117935790	34240039759	MRTGPP65B02	CAA CAF AGRI	3975717	10.1.C-02.C	10.1-C-02.C-M	407682918	17319	245,449421635	5,36209678649	12,2332970301	. 62,0
7	117935790	34240039759	MRTGPP65B02	CAA CAF AGRI	3975717	10.1.C-02.C	10.1-C-02.C-M	407682939	41881	145,342515563	-1,5805486183	4,35621189389	. 36,(
8	117679045	34240207349	RMNSVT38L29	CAA CAF AGRI	3975710	11.2.1-00M6	11.2-1-00M6-A	407785941	8073	80,8408775329	14,1366536993	16,3170411927	. 14,(
9	117679045	34240207349	RMNSVT38L29	CAA CAF AGRI	3975710	11.2.1-00M6	11.2-1-00M6-A	407785940	12640	64,3022217220	5,19143135258	6,49362390571	. 14,0
10	117679045	34240207349	RMNSVT38L29	CAA CAF AGRI	3975710	11.2.1-00M6	11.2-1-00M6-A	407785939	11544	83,6957348094	13,9953023811	16,0882024204	. 14,(
11	117679045	34240207349	RMNSVT38L29	CAA CAF AGRI	3975710	11.2.1-00M6	11.2-1-00M6-A	407785938	27191	63,2088662927	5,21410729629	8,41945553232	. 14,(
12	117679045	34240207349	RMNSVT38L29	CAA CAF AGRI	3975710	11.2.1-00M6	11.2-1-00M6-A	407785936	21357	60,7501865835	-1,1204115324	5,70140507992	. 14,(
13	117679045	34240207349	RMNSVT38L29	CAA CAF AGRI	3975710	11.2.1-00M6	11.2-1-00M6-A	407785934	6678	69,3930511474	9,63813532330	13,4633237600	. 14,(
14	118309335	34240113299	PRFMRA70D47	NULL	3975716	10.1.C-02.M	10.1-C-02.M-M	416477046	151838	950,392497328	3,11924351356	21,2367367705	. 87,(
15	118309335	34240113299	PRFMRA70D47	NULL	3975716	10.1.C-02.M	10.1-C-02.M-M	416477044	23153	891,056963015	1,30047932746	12,8868437913	. 87,(
16	118309335	34240113299	PRFMRA70D47	NULL	3975716	10.1.C-02.M	10.1-C-02.M-M	416477043	9426	885,900199381	1,86146635313	19,7975896835	. 87,(
17	118309335	34240113299	PRFMRA70D47	NULL	3975716	10.1.C-02.M	10.1-C-02.M-M	416477042	17708	921,755897258	2,95762401951	11,6329130386	. 87,(
18	118131577	34240076579	CRLPQL70R01A	CAA Confagrico	3975675	11.1.1-00C8	11.1-1-00C8-FR	412291661	15398	37,8985411071	4,44037642711	6,10060735702	. 62,(
i]	440204204	34340430000	0000040010417		2075-02	** 3 * 001 *	44.3.4.004.4.DA	440000745	250002	742 470672240	2.2200045	47 7576060400	17/ [*]

CAP implementation data

Each RPD shapefile: all agricultural parcels where measure was applied. For each record:

- a progressive number of CAP support request (ATTO)
- fiscal code of the owner/manager of the parcel (CUAA);
- RDP measure sub-code (DESC_INTE);
- Parcel ID (ID_PARC);
- Parcel surfcae (ha, SUPE_UTIL).

Feature	Value
RDP 2022	109611229
CUAA	MRXXXXXXXX2Q
DESC_INTE	11.2-1-00M3-FORAGGERE
ID_PARC	317412609
SUPE_UTIL	10918

CAP implementation data

RPD shapefile contains a limited amount of info but georeferenced \rightarrow it can be integrated with other georeferenced data with different formats, using geostatistical procedures in GIS environment **FOR EACH PARCEL**

CAP implementation data - Challenges

- Collection of data from Italian coordinator of the paying agencies of the CAP:
 - Very long process:
 - different "languages"
 - no fundings
 - no Ministerial duty
- Data quality :
 - No unique ID for each parcel
 - Different georeferenced area for the same parcel over time
 - Different codes for the same measure over time
 - Fiscal code can vary on the same parcel
 - > 1 measure funded on the same parcel referring to several crops → area for each measure?
 - \rightarrow Very difficult to describe the evolution of land management over time

▼ nsr2019 validity [2]		Feature	Value
T DESC INTE	SRA29-2-0002-EORAGGERE	PSR_2022_validity	
(Derived)		▼ DESC_INTE	11.2-1-00M3-FORAGGERE
 (Actions) 		(Derived)	
ATTO	117090009	 (Actions) 	
CODU DADD	240100020	ATTO	108611338
CODI_BARK	34810008309	CODI_BARR	14240709262
CUAA	MRSxxxxxxx2Q	CUAA	MRSxxxxxxx20
UFFI	CAA Confagricoltura - CALIANISSELLA - 001	UFFI	NULL
ID_INTE	3976897	ID_INTE	3970264
CODI_INTE	SRA29.2-0002	CODI_INTE	11.2.1-00M3
DESC_INTE	SRA29-2-0002-FORAGGERE	DESC_INTE	11.2-1-00M3-FORAGGERE
ID PARC	408724934	ID PARC	217/12609

Estimation of SOC dynamics

- SOC stock change over time due to CAP measures implementation
- Biophysical model: RothC adjusted to arid environment (RothC10_N, Farina et al., 2013)

Soil data

113 SOIL TIPOLOGIES

Soil Unit map: CREA-AA, 1:250,000 scale, vector format. Costantini, E. A. C., Barbetti, R., Fantappie`, M., L'Abate, G., Lorenzetti, R., & Magini, S. (2013). Pedodiversity. In Costantini, E. A. C. & Dazzi, C. (Eds.), The Soils of Italy, World Boformatok Series. doi:10.1007/978-94-007-5642-7_6 (1:5,000,000).

SOIL UNIT	STS_N	DEPTH	SK	Sand	Clay	Silt	BD	OC	STOCK -OC(t/ha)
56.1ANvi13	1	30.00	2.93	79.71	3.77	16.52	1.57	0.76	34.73

Why this source?

Only map available at regional level

Challenges?

Regional map derived from national map based on soil typologies: geospatialised information derived from reference soil profiles.

How to overcome?

Soil samples at farm level where RDP measures are implemented.

Monthly climate data - time interval 2000-2023

- Precipitation (mm)
- Temperature (°C)
- Potential evapotranspiration (mm)

Why this source?

Freely available at EU level, constantly updated **Challenges?** None. Good spatial scale of information for the regional level simulation.

Long time series → needed for the initialisation of the RothC model (estimation of C input level, from which the initial SOC stock derives)

Downloaded from the European climate database on a 25x25 km grid (https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx).

Crop yields & management data → Carbon Input

• For each Province and crops: **Yield** data from ISTAT - National Istitute of Statistics. Example:

Crono	Agrigento	Caltanissetta	Catania	Enna	Messina	Palermo	Ragusa	Siracusa	Trapani		
Crops	Yield q ha ⁻¹										
Winter wheat	27.6	27.5	28.6	28.8	27.3	27.2	32.3	27.2	22.9		
Oat	104.4	48.5	15.0	48.5	157.5	29.4	101.6	100.2	20.5		
	•••			•••	•••	•••		•••	•••		

• Crop rotation and common agricultural management: experts' opinion

• Scientific allometric function: transformation of crop yields into C input (it calculates C contribution from aboveground biomass, root and exudates)

Why ISTAT? Official data homogeneous at national level. Detailed at the Province level. Challenge? Different soils, crops and yields at province level: simulations run at province level: more complex elaboration

Yearly

Carbon

Input

Challenges: selection of CAP measures

RDP	CAP measure possibly impacting on SOC	Inclusion or exclusion from the SOC impact analysis	Reasons for inclusion or exclusion in the SOC impact analysis
8.1.A	Planting of new forests	Excluded	Data available only for 2021 No Carbon input data in Roth-C 10N for tree species in managed forests
8.1.B	Maintenance of new planted forests	Excluded	Data available only for 2021 No Carbon input data in Roth-C 10N for tree species in managed forests
10.1.A	Integrated agricultural production	Excluded	No data available on this measure
10.1.B	Environmentally sustainable management methods	Included	
10.1.C	Conversion and maintenance of croplands into permanent grasslands	Excluded	No Carbon input data in Roth-C for livestock C input
10.1.F	Conservative agriculture	Included	
13.1	Agriculture in mountain areas	Excluded	Not enough details on soil management practices in RDP
13.2	Agriculture in protected areas (e.g., Natura 2000)	Excluded	Not enough details on soil management practices in RDP
13.3	Agriculture in areas subject to other constraints	Excluded	Not enough details on soil management practices in RDP
11.1	Conversion to organic agriculture	Currently excluded	Vast application area in terms of crop: more specific information are described in organic farming regulation for each crop
11.2	Maintenance of organic agriculture	Currently excluded	Vast application area in terms of crop: more specific information are described in organic farming regulation for each crop

Challenges: selection of CAP measures

Sele	ected RDP CAP measure	Measure requirements in terms of soil management	Simulated with Roth-C 10N	Duration
		Improvement in the efficiency of water management through software	NO – not enough specific info at farm level	
		Improvement in the efficiency of fertiliser management through software	NO – not enough specific info at farm level	
		Erosion control:		
		Cropland:		
	Environmentally	- Spring-Summer crops: cover crops (leguminous or mixed)	YES (soil cover during	
10 1 D	sustainable	during autumn-winter	autumn and winter)	5 voars
10.1.0	management methods	- Crop rotation: 2/5 years leguminous crop	YES	5 years
		- Residues incorporation into soil.	YES (% of crop residues derived from yields	
			and local agronomists)	
		- Cropland with av. slope >8%: work soll along level curves;	NO – soil work not simulated by Roth-C10_N	
		Erosion control:		
		Tree crops:		
		Interrow grassing with leguminous or grasses in autumn;	YES	
		lf impossible: compost (1 t/ha)	(soil cover during autumn)	

COUNTERFACTUAL SCENARIO

Compared with:

uropean Joint Proa

- Cropland: no crop rotation or different crop rotation, no cover crops
- Tree crops: no grassing and no compost

Challenges: selection of CAP measures

Selected RDP CAP measure		Measure requirements in terms of soil manageent	Simulated with Roth-C 10N	Duration
		Sod-seeding	NO – soil work not simulated by current version of Roth-C	
10.1. F	Conservative agriculture	Mulching with agricultural residues	NO – mulching not simulated by current version of Roth-C	7 years
		Crop rotation: autumn-winter grain cereals + grain leguminous or mixed fodder	YES	

COUNTERFACTUAL SCENARIO Compared with no crop rotation

Results

Conclusions

Although challenging, using **big data** for CAP evaluation of environmental impacts is **crucial** because:

Homogeneity of data quality → fundamental in large scale evaluation such as CAP impact even if data might be less
accurate than local and smaller scale databases

Replicability:

- At MS level:
 - for Italy, the simulation can be extended at national level if data about RDP implementation are made available from the Paying Agency
 - Can be applied in other MS
 - Can be expanded to the first pillar

if data are available and after accurate methodological evaluation

- Can be extended to current CSP interventions
- For homogeneous evaluation at EU level, for comparative analysis → favour the use of EUROSTAT instead of national institutes of statistics

We warmly encourage:

- To make data about CAP measures implementation at parcel level from Paying Agency **available to researchers** or other bodies in charge of setting up methodologies for CAP evaluation
- ----To foster the **interoperability** between Paying Agencies and scientific/environmental data sources

Thank you for your attention!

irene.criscuoli@crea.gov.it

mariacostanza.andrenelli@crea.gov.it

ilaria.falconi@crea.gov.it

andrea.martelli@crea.gov.it

giovanni.daraguccione@crea.gov.it valentina.carta@crea.gov.it

roberta.farina@crea.gov.it