

GEN4OLIVE

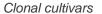
Prof. Concepción Muñoz DíezAgronomy Department
University of Cordoba, Spain

OLIVE TREE

- Most extensively planted fruit crop
- 11 mha olive orchards worldwide
- 65 countries, 5 continents
- Olive oil and table olives

Olive tree (Olea europaea L.)

Mediterranean diet


OLIVE GENETIC RESOURCES

Olea europaea subsp. europaea var. sativa

THREADS

Genetic Erosion

Fragmentation

Loss of diversity

Climate change

Pest and disease outbreaks

STRATEGIES

CONSERVATION

- Ex situ collections in 26 countries
- 6 International Collections -

- Poorly connected
- Characterization?
- · Wild olives not represented

BREEDING

- Still germinal
- <20 new cultivars
- Methodological issues.
 - i.e. juvenile phase

- Lack of agronomical information
- Public initiatives
- Scarce private investment

International initiatives

Evaluate GenRes

Boost breeding

Efficient conservation

Mobilization of Olive GenRes through pre-breeding activities ensuring information availability for end users

Call: H2020-SFS-2020-1

Topic: SFS-28-2018-2019-2020 - Genetic resources and prebreeding communities

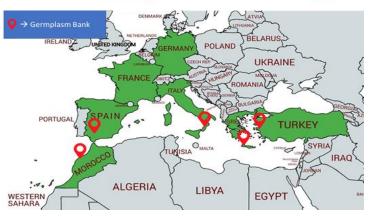
Duration: 1/10/2020-30/03/2025

Overall Budget: 7.535. 758 €

GEN4OLIVE CONSORTIUM

Coordinator: Prof. C. Munoz
 Díez

- 16 partners interdisciplinary and
 transdisciplinary
- 7 countries: Spain,
 Morocco, France, Germany,
 Italy, Greece and Turkey



5 olive germplasm banks (GBs): Cordoba, Marrakech, Mirto, Chania and Izmir

GOALS: PREBREEDING

Making olive genetic resources accesible to end users

- Adaptation to climate change
- Resistance to pest and diseases
- Suitable for new olive growing systems

Cooperation among Germplasm Banks

 Adoption of harmonized evaluations and conservation protocols

- Easy and reliable evaluations
- New biotechnological tools
- Resilience to climate change
- Resistance to pests and diseases
- Production and quality
- Adaptation to modern planting systems

Breed for the future

Preserve

Common protocols

Characterize olive genetic resources

WORKPACKAGES

WP1. Definition of common evaluation protocols and consulting end-users' needs

WP2. Wild olives – sampling, characterization and establishment of germplasm banks

WP3. Cultivated and wild olives - evaluation of valuable agronomical traits

WP4. Development of molecular tools to accelerate the breeding process

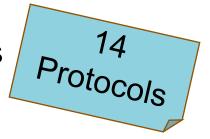
WP5. Evaluation of Genetic X
Environment effects.
Climate change prediction

WP6. Development of the GEN4OLIVE user-friendly interface:
database and apps

GEN4OLIVE

WP1. Definition of common evaluation protocols

WP3. Evaluation of valuable agronomical traits - Cultivated and wild olives

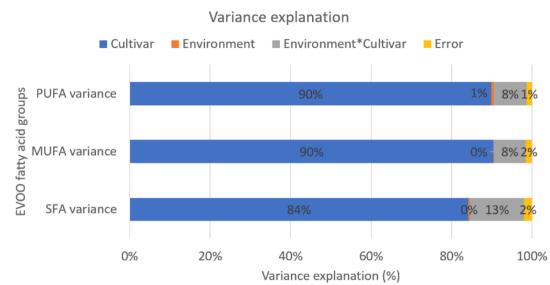


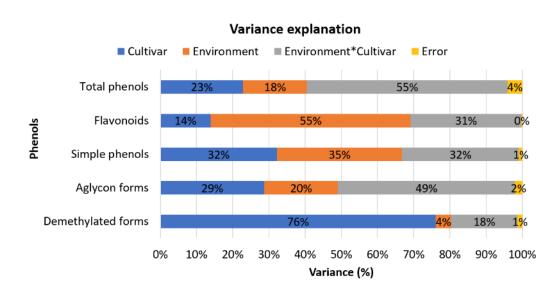


- Morphological and agronomical traits

Biotic streses

- Abiotic streses

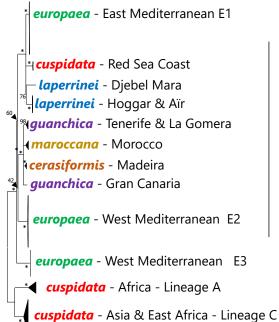



GOAL I: DEVELOPING COLLECTIVE PRE-BREEDING ACTIVITIES → TO CHARACTERIZE OLIVE GERMPLASM

WP5. Evaluation of Genetic X
Environment effects.
Climate change prediction

- Phenotyping of adaptive traits: characterization of the adaptive and quality traits variability in a set of 30 olive shared varieties 5 GBs
- Assessment of their GxE interaction.
- Modelling of adaptive traits for different environments and climate change scenarios

GOAL I: DEVELOPING COLLECTIVE PRE-BREEDING ACTIVITIES → TO CHARACTERIZE OLIVE GERMPLASM


WP1. Definition of common evaluation protocols and consulting end-users' needs

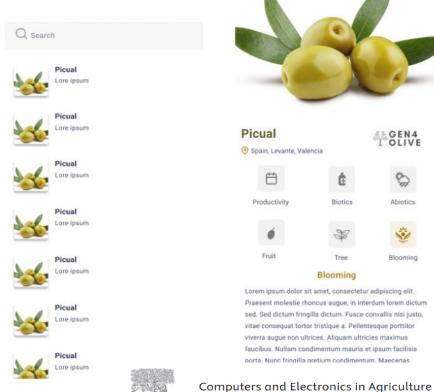
WP2. Wild olives – sampling, characterization and establishment of germplasm banks

- **T2.1**. Delimitation of the geographical areas
- **T2.2.** Multi-scale characterization of wild olive diversity
- **T2.3.** Establishment of reference wild olive germplasm banks
- **T2.4**. Identification and characterization of the "lost ancient varieties"

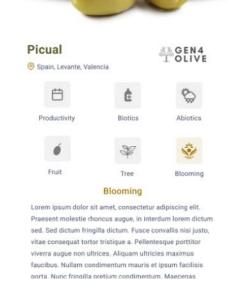
Phenotipycal characterization

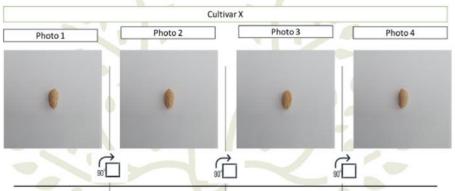
- Germination
- Biotic/Abiotic
 Stresses

Seed collection



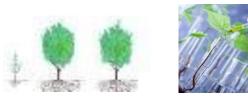
LEU CAP TALWORKOEVELOPING AN INNOVATIVE AND USER-FRIENDLY INTERFACE MAKE GENETIC RESOUP LAND LE FOR THE END USER




WP6. Development of the GEN4OLIVE userfriendly interface: database and apps (SAPIENZA)

OliVaR: Improving olive variety recognition using deep neural networks

Volume 216, January 2024, 108530


Hristofor Miho a 🖂 , Giulio Pagnotta b 🖂 , Dorjan Hitaj b 🙏 🖂 , Fabio De Gaspari b 🖂 , Luigi Vincenzo Mancini ^b 🖂 , Georgios Koubouris ^c 🖂 , Gianluca Godino ^d 🖂 , Mehmet Hakan e 🖂 , Concepción Muñoz Diez a 🖂

- 150.000 pictures
- Machine learning

GOAL I: DEVELOPING COLLECTIVE PRE-BREEDING ACTIVITIES → NEW BREEDING TOOLS

WP4. Development of molecular tools to accelerate the breeding process (UCO)

T4.2 Identification of candidate gene markers of olive juvenility phase

GOAL III: ENGAGING THE PRIVATE SECTOR IN INNOVATION THROUGH TWO OPEN CALLS TO FACILITATE SMES' PRE-BREEDING ACTIVITIES

WP7. Pre-breeding specific calls for SMEs involvement (FCTA)

- First call for projects: December 2021
 - Prebreeding activities
 - Enabling technologies for breeding

- Second call for projects: January 2023
 - Olive breeding plans design and validation activities

1st CALL FOR PROPOSALS RESULTS

2nd CALL FOR PROPOSALS RESULTS

GOAL III: ENGAGING THE PRIVATE SECTOR IN INNOVATION THROUGH TWO OPEN CALLS TO FACILITATE SMES' PRE-BREEDING ACTIVITIES

WP8. Co-creation and capacity building (FOCOS)

- Events for End users and stake holders engagement
- Dynamization events for GEN4OLIVE open calls:
 - 2 co-creation panels replicated in 5 countries

- Capitalization of GEN4OLIVE commons protocols and scientific results / Best practices for breeding
- External Expert Advisory Board: IOC

WP9. Communication, dissemination and results exploitation (SCI)

Communication: Web page, social networks and audiovisual material

FOLLOWERS: 1640 (↑ 50%
PUBLICATIONS: 244
IMPRESSIONS: 78.850

VIDEO VIEWS: 3572

Dissemination, scientific publications, networks, results explotaiting

Pollen production in olive cultivars and its interannual variability

M. Rojas-Gómez^{1,1}, J. Moral¹, R. López-Orozeo^{3,1}, D. Cabello¹, J. Oteros^{3,1}, D. Barranco¹, C. Galán^{3,1}

BOTANY

de Patentes y Marcas

www. gen4olive.eu

THANK YOU!!

EU CAP Network Focus Group 'Local plant genetic resources in view of climate change and biodiversity loss'

27-28 November 2024 | Madrid, Spain

All information on the Focus Group is available on the webpage:

https://eu-cap-network.ec.europa.eu/focus-group-local-perennial-plant-genetic-resources-view-climate-change-and-biodiversity-loss

